

Town of Yarmouth

Groundwater and Surface Water Monitoring & Testing, Civic No. 2014 Lake George Road, Lake George, NS

Report

Date: November 28, 2017 Ref. No: P-0010903-0-0-205

Town of Yarmouth

Groundwater and Surface Water Monitoring & Testing Civic No. 2014 Lake George Road, Lake George, NS

Report | P-0010903-0-00-205

Prepared by:

Lisa Ladouceur, CET

Technologist, Environmental Engineering

Approved by:

Aven Cole, M.Sc.E., P.Eng.

Project Engineer, Environmental Engineering

TABLE OF CONTENTS

EXECTUIVE SUMMARY	I\
1 INTRODUCTION	
2 BACKGROUND	<i>'</i>
3 SCOPE OF WORK	
4 SITE DESCRIPTION	\$
5 METHODOLOGY	
5.1 FIELD PROGRAM	
5.2 GROUNDWATER SAMPLING	
5.3 SURFACE WATER SAMPLING	
5.4 POTABLE WATER SAMPLING	
5.5 SEDIMENT	
6 RESULTS	
6.1 HYDROGEOLOGICAL ASSESSMENT	
6.2 HYDRAULIC ASSESSMENT	
6.3 ANALYTICAL RESULTS	
6.4 GROUNDWATER	
6.5 SURFACE WATER	
6.6 POTABLE WATER	
6.7 SEDIMENT	
7 IMPLICATIONS OF RESULTS	
7.1 GROUNDWATER	
7.2 SURFACE WATER	
7.2.1 General Chemistry	
7.2.2 Aluminum and Iron	
7.2.3 Arsenic	
7.2.4 Cadmium	
7.2.5 Chromium and Cobalt	
7.2.6 Copper	
7.2.7 Lead	
7.2.8 Mercury	
7.2.9 Manganese, Vanadium and Zinc	
7.2.10 Wetland Locations	
7.3 POTABLE WATER	
8 SUMMARY AND CONCLUSIONS	
8.1 POTABLE WATER	
8.2 GROUNDWATER	
8.3 SURFACE WATER	
8.4 GENERAL	
9 REPORT USE AND CONDITIONS	
10 REFERENCES	2

TABLE OF CONTENTS

Tables		
Table 5-1. Su	urface Water and Sediment Sample Locations	5
Table 5-2. Su	ummary of Locations not sampled	6
	roundwater Elevations at Civic No. 2014 Lake George Road, Lake George –	8
Table 6-2. Gı	roundwater NSE Tier 1 EQS Exceedances	10
Figures Figure 4-1. S	ite Location Map, Lake George Road, Lake George, NS	3
Appendices		
Appendix 1	Site Plans	
Appendix 2	Laboratory Analytical Results	
Appendix 3	Laboratory Certificates	

Property and Confidentiality

"This engineering document is the property of Englobe and, as such, is protected under Copyright Law. It can only be used for the purposes mentioned herein. Any reproduction or adaptation, whether partial or total, is strictly prohibited without having obtained Englobe's and its client's prior written authorization to do so.

Test results mentioned herein are only valid for the sample(s) stated in this report.

Englobe's subcontractors who may have accomplished work either on site or in laboratory are duly qualified as stated in our Quality Manual's procurement procedure. Should you require any further information, please contact your Project Manager."

REVISION AND PUBLICATION REGISTER										
Revision N° Date Modification And/Or Publication Details										
00	22-Sept-2017	Report Issued								
01	28-Nov-2017	Final Report Issued								

EXECTUIVE SUMMARY

As a follow-up to our May 2016 Environmental Investigation, Englobe Corp. (Englobe) has conducted a long term monitoring program so that a Remedial Action Plan (RAP) could be prepared to fulfill your obligations under the Nova Scotia Environment (NSE) Contaminated Sites Regulations.

The Monitoring Plan was designed to:

- Assess the seasonal variability of the groundwater quality at the site so that the onsite pathways can be closed under the NSE Contaminated Sites Regulations;
- ► Assess the seasonal variability of the surface water at the site and adjacent 3rd party properties;
- Fully map the drainage pathways from the source to the downgradient receiving habitats, evaluate connectivity of water features and establish surface water and sediment monitoring locations to delineate impacts;
- Identify a background wetland to evaluate surface water quality in this specific habitat;
- Assess the seasonal variability and transport mechanism between the surface water and potable water at select locations;
- Prepare a RAP to address potential for human harm or ecological harm that needs to be repaired, monitored or buffered in some capacity and fulfill the requirements of the NSE Contaminated Sites Regulations; and
- Complete NSE regulatory checklists

From our review of the data collected and field observations, the Site (2014 Lake George Road) is not impacting potable water quality at the neighbouring properties. There is no direct transport between shallow groundwater at on-site and off-site locations. Given our review of the surface water results, metals are either naturally occurring or not consistently detected, and do constitute an exceedance of the NSE Tier 1 EQS.

In terms of potable water, the one NSE Tier 1 EQS exceedance (lead at PW3) appears to be anomalous and not related to the Site. Natural groundwater quality in the area leads to elevated iron and manganese, and depressed pH; however, these are aesthetic concerns. The homeowners should continue regular monitoring of their drinking water supplies, as recommended by NSE, and treat as required for any objectionable odours or taste (i.e. iron, manganese).

In terms of shallow groundwater, although arsenic was elevated near the former dip tanks, the detections were sporadic in nature (both spatially and temporally). Although arsenic in the groundwater may be related to past fungicide use, in our opinion, it is not mobile and is limited to a small area of the Site. This also relates to potable water, as previous testing revealed the drilled potable water well associated with the site and connected to the dwelling at 2012 Lake George

Road had an elevated arsenic concentration during one sampling event. This elevated concentration may be related to integrity issues with the well, leading to transport from shallower water at the site to the deeper potable well. Further testing was not conducted. Given the uncertainty of the well ownership and the long term water quality, this potable water well should be decommissioned by a licensed well driller to prevent any consumption of untreated water, and to prevent potential impacts (arsenic) from being drawn into the deeper aquifer from pumping and regular use of the well. From previous testing of the adjacent dug well (PW2), there do not appear to be arsenic impacts to the drinking water; although, the homeowner should continue regular monitoring of the drinking water supply.

Various metals were present in surface water on and off Site, and in perched surface water within the wetlands at the Site, at concentrations that exceeded the NSE Tier 1 EQS and CCME FAL guidelines. In our opinion, these metals are related to natural conditions or other background processes, are anomalous (i.e. infrequently detected) and not the result of activities at the Site. This is supported by the natural affinity of these metals to bind with organic and particulate matter, the organic-rich environment of the drainage pathways, lack of connectivity and discernable trends in most of the metals. Further, there is no apparent on-site source (fungicide or soil) for most metals, and for those metals that could be related to past fungicide use (i.e. copper), other metals that would also be present (i.e. boron) are generally not elevated suggesting that there is no remnant source of fungicide at the site. Therefore, it is unlikely that past handling practices of fungicide onsite are currently affecting the environment.

Based on review of the current and past data, the metals present in the drainage pathway leading from wetland 2 (SW3, SW5 and SW6) are naturally occurring (aluminum, cadmium, chromium and iron) or sporadically detected (arsenic, lead, mercury and zinc) and there are no apparent trends or evidence of migration. However, there is a direct piped connection between wetland 2 and drainage infrastructure on Site, and there is evidence of metals adhered to sediment and particulate matter in the crock. Given that the Site will be re-vegetated and no longer used in a commercial capacity, the drainage crock should be drained, and the connection to wetland 2 removed.

The exposed areas of the Site should be stabilized to prevent erosion and potential transport of suspended solids in surface water. Appropriate stabilization methods would include surface treatments (such as mulch and vegetation) and shrub and trees.

1 INTRODUCTION

As a follow-up to our May 2016 Environmental Investigation at the above-noted property, Englobe Corp. (Englobe) has conducted a long term monitoring program so that a Remedial Action Plan (RAP) could be prepared to fulfill your obligations under the Nova Scotia Environment (NSE) Contaminated Sites Regulations.

This report provides the methodology and results achieved from the program.

2 BACKGROUND

The Town of Yarmouth purchased the former J. Ibbitson Sawmills Inc. lands in 2005. The sawmill reportedly operated between the early 1990s and 2005, when it was purchased and subsequently decommissioned. The land has been vacant since the purchase. In September 2015, the site was selected by the Town of Yarmouth for a reclamation project, and compost produced from a Town of Yarmouth composting facility (municipal green bin program) was transported to the site and spread across areas of the site.

Residents living adjacent to the site expressed concern with debris (plastics, metals, etc.) in the compost, and the effect the compost may have on the drinking water and surface water in the surrounding area. An initial groundwater and surface water study was carried out by Englobe in February 2016 to evaluate the potential for the compost to affect the environmental conditions of the surrounding surface water and groundwater resources. Those results were provided in our report dated February 23, 2016. The results of the investigation revealed no environmental concerns with the quality of the compost and its effect of the surrounding environment. The debris content in the compost, although not an environmental concern, affected the compost classification and its permissible uses, and ultimately the compost was removed from the property in September 2016.

However, review of the February 2016 results and the history of the site suggested that the elevated metals (and depressed pH) in surface water and groundwater near the site may be from historic activities at the site, most likely related to wood preservative use. Using the results of the background investigation and results from the February 2016 testing, an intrusive investigation program was designed to determine potential chemicals and sources present at the site, assess the spatial extents of the impacts and assess the human harm or ecological harm that may need to be repaired, monitored or buffered in some capacity.

Results from the May 2016 Investigative Report indicated there are impacts (metals) at the site in surface water, soil and groundwater that exceed the NSE Tier 1 Environmental Quality

Standards (EQS). The metals in soil at the site satisfied NSE Tier 2 Pathway Specific Standards (PSS) and no further work was recommended.

However, some of the impacts (surface water metals and pH) appear to originate at the site and migrate off-site over adjacent 3rd party properties. There was insufficient information to determine if the identified surface water impacts are the result of past activities at the site or the result of natural conditions at the site. Further, there was insufficient information to determine if the impacts are seasonal or steady state (i.e. constant) in nature and to confirm that impacts in the shallow and deeper groundwater are the result of surface water impacts. Therefore, Englobe recommended collecting additional data so that additional surface water and sediment delineation could be carried out to obtain a more thorough understanding of the extent of the metals impacts and seasonal data variability in the surface water, groundwater and potable water.

3 SCOPE OF WORK

The Long Term Monitoring was carried out by Englobe following the NSE *Contaminated Sites Regulations*. The Monitoring Plan was designed to:

- Assess the seasonal variability of the groundwater quality at the site so that the onsite pathways can be closed under the NSE Contaminated Sites Regulations;
- ► Assess the seasonal variability of the surface water at the site and adjacent 3rd party properties;
- Fully map the drainage pathways from the source to the downgradient receiving habitats, evaluate connectivity of water features and establish surface water and sediment monitoring locations to delineate impacts;
- Identify a background wetland to evaluate surface water quality in this specific habitat;
- Assess the seasonal variability and transport mechanism between the surface water and potable water at select locations;
- Prepare a RAP to address potential for human harm or ecological harm that needs to be repaired, monitored or buffered in some capacity and fulfill the requirements of the NSE Contaminated Sites Regulations; and
- Complete NSE regulatory checklists.

Since two rounds of analytical testing at the remainder of the homes did not reveal any drinking water concerns related to metals, no further testing at the dwellings other than the three included in the current program was recommended.

Soil environmental quality at the Site was fully investigated during the Environmental Investigation (reported in May 2016), and not included in the Scope of this work.

The potable water, groundwater, surface water and sediment samples collected were submitted to Maxxam Analytics Inc. laboratory (Maxxam) for chemical analysis of the samples including metals and general chemistry (water).

Details of the field program are provided in Section 5.

4 SITE DESCRIPTION

The current area of interest is identified as Civic No. 2014 Lake George Road (PID No. 90149808) in Lake George, Yarmouth County, Nova Scotia. A site location map is presented in Figure 4-1. A site plan is provided in Appendix 1 (Figure 1).

Figure 4-1. Site Location Map, Lake George Road, Lake George, NS.

Currently, the subject property is undeveloped and vacant. A sawmill, kiln and associated storage and treatment areas had been located on the western part of the site between the early-1990s and 2005. The eastern (tree-covered and undisturbed) portion of the property forms a portion of the Lake George Protected Water Area.

The only remaining evidence of the site's past use as a sawmill were four monitor wells (that were installed during an environmental site assessment of a former fungicide underground storage tank in 2005) and a crock that collected shallow surface water. Based on discussion with the local residents, a drain tile system had been installed at the site during former

operations, and drained surface water away from product laydown and spraying areas. A holding pond had been excavated in the northwest corner of the sawmill area to store water used in spraying activities. The discharge pipes of a drainage system were observed entering the crock that remains at the site.

The former sawmill area is a localized topographic high; topography slopes downward radially from the center of the disturbed area. Surface water drainage left the disturbed areas through localized drainage pathways and channels, some manmade and some naturally formed.

Access to the site is via Lake George Road from the west. Neighboring properties include undeveloped tree-covered lands to the north, east and south; Lake George is further to the east. Residential properties are located to the west along Lake George Road, including Civic No. 2012 Lake George Road which was the former residence of the sawmill owner, and is immediately adjacent to the site. There are four neighbouring adjacent land owners which surface water flows directly discharge onto (and through).

5 **METHODOLOGY**

5.1 Field Program

In July 2016, the surface water features (permanent channels, intermittent channels and wetlands) downgradient of SW1, SW2, SW6 and SW12 were assessed, mapped, and the discharge locations into Lake George and Killam Lake were identified. The surface water feature locations were acquired with a handheld GPS (sub-metre accuracy). At encountered wet areas, Englobe evaluated the three criteria, vegetation, hydrology and soil, which are necessary for wetland determinations and conducted field pickup of the wetland boundaries. Since there were no permanent channels observed, and no direct connectivity of the drainage features at the site to Lake George and Killam Lake, NSE determination of potential watercourses was not required.

Several potential background wetlands were identified from a desktop study, and field verification was conducted to verify the presence and wetland type. A background wetland similar to those at the site was identified and established as BACK2.

Four additional surface water sampling stations were established (SW13 to SW16) to further delineate and evaluate previously identified elevated metals concentrations, and evaluate background conditions. Sediment sampling locations were established at 6 of the surface water stations to assess streambed quality and equilibrium conditions between surface water and sediment.

Details of the surface water and sediment sample locations are summarized in Table 5-1 and presented on Figure 1.

Table 5-1. Surface Water and Sediment Sample Locations.

ID	LOCATION
SW1	Wetland discharge, at downgradient side of the culvert beneath Lake George Road, between 2087 and 2065 Lake George Road. Sediment collected.
SW2	Drainage channel that discharged from wetland that collected surface water from north and northeast portion of the disturbed area. Sediment collected.
SW3	Ditch downgradient of wetland and onsite water collection crock. Sediment collected.
SW4	Downgradient of SW1 (below fish pond at 2065 Lake George Road).
SW5	Pond discharge downgradient of SW3.
SW6	Downgradient of SW5, discharges to wetland and ultimately Killam Lake.
SW7	Downgradient from SW2 at the wetland edge.
SW8	Northeast corner of cleared area where flow discharges to wetland.
SW9	Discharge from infilled pond area.
SW10	Upgradient of SW8, adjacent to former dip tank location.
SW11	Upgradient of SW1 at discharge from wetland 1.
SW12	Wetland 2 discharge south of the site. Sediment collected.
SW13*	Downgradient of SW7 where wetland discharges to Lake George.
SW14*	Downgradient of SW4 at wetland edge. Sediment collected.
SW15*	Downgradient of SW12 at downgradient side of the culvert beneath quarry access road.
SW16*	Downgradient of SW14 and SW15 where wetland discharges to Killam Lake.
BACKGROUND	Surface flow to the north of the site, flowing northeast to southwest.
BACK2*	Watercourse to southeast of Lake George, flowing northwest. Sediment collected.
P1A	Piezometer in wetland 2
P1B	Piezometer in wetland 2
P2A	Piezometer in wetland 1
P2B	Piezometer in wetland 1
P3	Piezometer in wetland 1

Note: * sampling station established in July 2016

5.2 **Groundwater Sampling**

During the four sampling events, Englobe personnel measured the field parameters in the 17 on-site monitor wells for static water level, conductivity, temperature, and pH. Static water levels were measured using a Solinst electronic water level tape. Temperature, pH and conductivity were measured using a YSI Multiparameter Probe field instrument. All equipment was decontaminated between sampling locations. Each monitor well is equipped with dedicated Waterra tubing and a locked stick-up protective cover; although due to turbidity issues, MW9 and MW10 are sampled with disposable bailers. The monitor wells were purged a minimum of three well volumes (using a 3-stage electric pump), and sampled for laboratory testing. The sampling locations are shown on the enclosed plan, Figure 1, Appendix 1.

In accordance with laboratory sampling protocols, groundwater samples were collected using 120mL plastic containers for dissolved metals (filtered and preserved with nitric acid in the field), 120mL plastic containers for total lead (preserved with nitric acid in the field), 200mL

plastic containers for general inorganic chemistry, 100mL amber glass bottles for ammonia and Total Organic Carbon (TOC) (preserved with sulfuric acid) and 100mL glass bottles (preserved with potassium dichromate) for mercury. Groundwater samples were immediately placed in an ice-packed cooler and transported to Maxxam for analysis as detailed above.

Due to turbidity issues, some samples were not filtered or preserved in the field; this was conducted by the laboratory.

During the July 2016 sampling event, MW-2S was dry.

5.3 **Surface Water Sampling**

During the four sampling events, Englobe personnel measured the field parameters (dissolved oxygen, conductivity, temperature, and pH) at the 23 surface water and piezometer locations prior to sampling. All equipment was decontaminated between sampling locations. The laboratory-supplied bottles were carefully immersed at the surface water stations to prevent mobilization of settled bed sediment, in some cases, surface water samples were collected with large bore syringes.

In accordance with laboratory sampling protocols, surface water samples were collected using 120mL plastic containers for total metals (preserved with nitric acid in the field), 200mL plastic containers for general inorganic chemistry, 100mL amber glass bottles for ammonia and TOC (preserved with sulfuric acid) and 100mL clear glass bottles for mercury (preserved with potassium dichromate). Water samples collected from SW1, SW2, SW3, SW14 and BACK2 also included dissolved metals in 120mL plastic containers (filtered and preserved with nitric acid in the field) and total suspended solids (TSS) in 500mL plastic containers. The surface water samples were immediately placed in an ice-packed cooler and transported to Maxxam for analysis as detailed above.

During the sampling events, select surface water locations were either dry, frozen or not accessible. Conditions are summarized in Table 5-2.

Table 5-2. Summary of Locations not sampled.

Mar 2016	July 2016	Oct 2016	Jan 2017	Apr 2017
		Dry		
	SW1 SW6 SW8 SW10 SW11 SW12 Background P1B	SW8 SW10 SW12 Background P2A	Background	SW10 Background

Mar 2016	July 2016	Oct 2016	Jan 2017	Apr 2017
	P2A			
	P2B			
		Frozen		
			SW12	
		No Access		
	SW15			
	SW16			

5.4 Potable Water Sampling

During the four sampling events, Englobe personnel measured field parameters at two potable wells (one drilled (PW8) and one dug (PW3)). Due to site access restrictions and a well ownership dispute, one proposed potable water well (PW2A) was not assessed or sampled. Note, this potable well is a backup to the dug well that supplies the dwelling and is not used on a regular basis. This potable well was previously sampled by the occupant of the dwelling in January 2016 and by Englobe in March 2016.

Prior to measuring the field parameters, the water was allowed to run for 5 minutes (or more). The residents had also been running the water in advance of the sampling program. The sampling locations were prior to any water treatment systems, and at one dwelling (PW3), an additional sampling location was at the kitchen tap to evaluate the water treatment system. All equipment was decontaminated between sampling locations.

In accordance with laboratory sampling protocols, water samples were collected using 120mL plastic containers for metals (preserved with nitric acid in the field), 200mL plastic containers for general inorganic chemistry and 100mL amber glass bottles for ammonia and TOC (preserved with sulfuric acid). The potable water sample containers were immediately placed in ice-packed coolers and were transported to Maxxam for analysis as detailed above.

5.5 **Sediment**

During the July 2016 sampling event, sediment samples were collected from the water features at surface water stations SW1, SW2, SW3, SW14 and BACK2. The channel substrates were characterized, and samples carefully collected by hand with a stainless steel trowel and placed in laboratory-supplied 250ml glass containers. All equipment was decontaminated between sampling locations. The sediment sample containers were immediately placed in ice-packed coolers and were transported to Maxxam for metals analysis.

6 **RESULTS**

6.1 **Hydrogeological Assessment**

Groundwater levels obtained from each monitoring well are presented in Table 6-1.

Table 6-1. Groundwater Elevations at Civic No. 2014 Lake George Road, Lake George – 2016-2017

LOCATION	GROUND SURFACE	STA	TIC GRO	UNDW <i>A</i> (mbgs)	TER LE	VEL	GROUNDWATER ELEVATION (metres)							
Location	ELEVATION (metres)	Mar 2016	July 2016	Oct 2016	Jan 2017	Apr 2017	Mar 2016	July 2016	Oct 2016	Jan 2017	Apr 2017			
MW-1S	55.68	0.77	1.53	2.35	0.90	1.10	54.91	54.15	53.33	54.78	54.58			
MW-1D	55.54	0.93	1.92	2.88	2.18	1.36	54.61	53.62	52.66	53.36	54.18			
MW-2S* (JWA MW1)	56.22	0.38	1.76	2.42	0.74	1.07	55.84	54.46	53.80	55.48	55.15			
MW-2D	56.34	1.14	2.33	3.26	1.90	1.79	55.20	54.00	53.08	54.44	54.55			
MW-3S	52.98	0.56	1.12	1.97	1.10	0.89	52.42	51.86	51.01	51.88	52.09			
MW-3D	52.96	0.24	1.00	2.25	1.15	0.77	52.72	51.96	50.72	51.82	52.19			
MW-4S	55.55	NA	2.225	2.90	1.45	1.64	NA	53.32	52.65	54.10	53.92			
MW-4D	55.50	NA	2.39	3.98	2.63	1.80	NA	53.11	51.52	52.87	53.70			
MW-5	54.71	1.82	2.12	2.84	1.94	2.10	52.89	52.59	51.87	52.77	52.61			
MW-6S	55.40	0.31	0.31 2.22 2.93		0.94	1.15	55.09	53.18	52.47	54.46	54.26			
MW-6D	55.44	1.13	1.13 2.12 3.10 1.71 1.50 54.31 53.3		53.32	52.34	53.73	53.94						
MW-7	53.57	0.44	1.58	1.67	0.86	1.13	53.13	51.99	51.90	52.71	52.44			
MW-8	55.12	1.28	2.14	2.96	1.58	1.99	53.84	52.97	52.15	53.54	53.13			
MW-9	54.02	0.94	1.44	2.03	1.00	1.39	53.08	52.59	51.99	53.02	52.63			
MW-10	55.04	0.20	1.06	1.45	0.37	0.70	54.84	53.98	53.59	54.67	54.34			
MW-11* (JWA MW2)	55.77	0.49	1.96	2.50	0.69	1.45	55.28	53.81	53.27	55.08	54.32			
MW-12* (JWA MW4)	56.39	1.85	1.99	3.11	0.35	1.08	54.54	54.40	53.28	56.04	55.31			

Note: ground surface elevations acquired by Doucette and Acker and referenced Active Control Station #229012.

mbgs = metres below ground surface

The shallow groundwater is located generally within the till. In the nested monitor wells, deeper groundwater is at a similar elevation to the shallow monitor wells, suggesting the till may act as a confining layer, with slight upward vertical velocity. Groundwater levels at the site generally followed the cyclical groundwater pattern expected in Nova Scotia, with seasonal lows in October to November and seasonal highs in February to March. April to October 2016 was abnormally dry, with less than 500 mm of rain in southern NS. Groundwater flow was evaluated for each sampling event. During all events, groundwater generally flows radially from the

^{*}Shallow monitor wells that were installed by Jacques Whitford Associates (JWA) during an environmental site assessment of a former fungicide underground storage tank in 2005.

highest elevation at the site (MW-2 and MW-12). The groundwater contours are presented on Figure 2. Although groundwater levels approached the ground surface during periods of high groundwater, there was no evidence that groundwater was discharging to surface water features.

6.2 **Hydraulic Assessment**

As previously reported, there are five wetlands on site that were previously delineated. The wetlands observed in the northeast (wetland 1) and southwest (wetland 2) portions of the site were mainly shrub and treed swamps and extended off property. A similar, although much smaller, shrub swamp (wetland 3) was also observed at the headwaters for the unnamed creek flowing to wetland 4 (discussed below) and ultimately to Lake George (downgradient of wetland 1).

The swamp to the northeast (wetland 1) receives water from overland flow and discharges to the west via subsurface flow that turns into the watercourse at SW11 and to the east via subsurface flow to the unnamed watercourse (SW2) that flows to Lake George. Based on the topography of wetland 1, there are likely other discharges farther to the north that were not observed, as these are beyond the area of interest. Water at SW11 continues westward, beneath Lake George Road (via a culvert) and predominantly into a manmade pond behind the dwelling at 2065 Lake George Road. In high flow periods, there may be intermittent flow to the northwest (along the property boundary with 2087 Lake George Road); however, during the sampling events, this pathway was dry. The manmade pond discharges via a piped drain into a wetland downgradient of the pond. The wetland eventually discharges to another surface water drainage pathway (at SW4) before entering another large wetland (wetland 6).

The swamp to the southwest (wetland 2) receives water from overland flow and from a pipe connected to a drainage crock and ultimately discharges to Killam Lake to the west via ditching (SW3, SW5 and SW6) and wetlands. Wetland 2 also discharges to the southwest (SW12) beneath Lake George Road (via a culvert) beneath another access road (via a culvert near SW15) and eventually into a large wetland.

The wetlands located in the southeast (wetland 4) and south (wetland 5) portions of the site are shrub bogs. The bog (wetland 4) to the southeast receives water from wetland 1, wetland 3 and the unnamed watercourse (SW2 and SW7) and ultimately discharges to Lake George. The bog to the south (wetland 5) receives water from overland flow and discharges towards wetland 4 via a small watercourse.

During the current field program, a large off-site wetland (wetland 6) was partially delineated on the west side of Lake George Road, and is the downgradient receiving habitat for discharge leaving the west side of the site (drainage routes depicted by the following stations, in sequence: SW11→SW1→SW4→SW14; SW3→SW5→SW6; and SW12→SW15). This wetland is partially bounded by Killam Lake Drive, and a culvert extends beneath the road/driveway and P-0010903-0-00-205

surface water drains from this culvert directly to Killam Lake. There are likely other surface water inputs and outlets associated with this wetland (farther north) that were not observed as these are beyond the area of interest.

The wetlands and drainage flow pathways are depicted on Figure 1. Given the discontinuous nature of the drainage features and the presence of wetlands (with no distinct channels), there are no natural fish habitats between Lake George and Killam Lake, and the site. We understand that fish were introduced into the manmade pond; however, they would not be naturally present in these drainage systems.

6.3 Analytical Results

Laboratory analytical results are presented in Tables 1 through 8, Appendix 2. Field parameter measurements are also summarized in Tables 1, 3 and 6. Laboratory Certificates of Analysis are presented in Appendix 3.

The groundwater analytical results are provided in comparison with the 2013 NSE Tier 1 EQS. Although the Site is commercial in nature, the surrounding properties are residential in nature and the groundwater and potable water samples have been compared to the more stringent NSE Tier 1 EQS for potable water, residential land use and coarse grained soils. In terms of pathways that are specific to groundwater discharging to surface water, since surface water has been assessed directly, the groundwater has not been compared to the NSE Tier 2 PSS for groundwater >10m from surface water. For evaluation purposes, the 2017 Health Canada Drinking Water Quality (HCDWQ) Guidelines have also been presented.

The surface water samples have been compared to the NSE Tier 1 EQS for freshwater surface water. For evaluation purposes, the 1999 (with 2015 updates) Canadian Council of Ministers of Environment (CCME) Freshwater Aquatic Life (FAL) Guidelines have also been presented.

Sediment samples have been compared to the NSE Tier 1 EQS for freshwater sediment.

6.4 **Groundwater**

Laboratory analytical results are summarized in Tables 1 and 2, Appendix 2.

During all sampling events (March 2016 to April 2017), the only NSE Tier 1 EQS exceedances that were identified are cobalt and arsenic. Historically, boron has exceeded the NSE Tier 1 EQS at one location (MW2S); however, this result was never repeated. The cobalt and arsenic exceedance locations and events are summarized in Table 6-2.

Table 6-2. Groundwater NSE Tier 1 EQS Exceedances.

DATE	ARSENIC	COBALT
March 2016	MW2D, MW6S	MW1S, MW3S, MW4S, MW4D, MW6S, MW9, MW10, MW12

DATE	ARSENIC	COBALT
July 2016	MW5, MW12	MW1S, MW9, MW10, MW11, MW12
November 2016	MW5	MW1S, MW9, MW10, MW12
January 2017	MW11	MW1S, MW4S, MW6S, MW10, MW12
April 2017	MW5	MW1S, MW4S, MW6S

The cobalt NSE Tier 1 EQS is based on discharge of groundwater within 10m of a surface water body pathway. This pathway is independently assessed at the site and there is no potable water pathway guideline.

As an assessment tool, total lead was analyzed in groundwater at the wells, in addition to the dissolved lead that is part of the metals analytical package. Note, the standard groundwater sampling methodology for lead is dissolved (i.e. filtered), so comparison of total lead concentrations to guidelines is an overestimation of potential risk. The total lead analysis was used to assess the transport mechanism of metals at the site. All dissolved lead results satisfied the NSE Tier 1 EQS. Total lead concentrations were elevated over the NSE Tier 1 EQS (10 μ g/L) at all the shallow monitor wells during some of the sampling events. Total lead concentrations at the deep monitor wells were generally less than the NSE Tier 1 EQS, except at MW2D and MW6D. At MW2S and MW6S, the lead concentrations were at least a magnitude of order higher than in MW2D and MW6D.

As noted above, the groundwater analytical data was compared to the HCDWQ guidelines for evaluation purposes. Generally in the groundwater, the pH was slightly depressed and total dissolved solids (TDS) and colour (assigned a numerical unit) were frequently elevated. The elevated TDS and colour are related to the elevated turbidity. Other than arsenic (discussed above), the only metals that exceed the HCDWQ guidelines are iron and manganese; these guidelines are aesthetic objectives (i.e. not health based) and there are no corresponding Tier 1 EQS for either. Further, there is no HCDWQ guideline for cobalt.

6.5 **Surface Water**

Laboratory analytical results are provided in Tables 3, 4 and 5, Appendix 2.

During all sampling events (March 2016 to April 2017), the following NSE Tier 1 EQS exceedances were identified:

- Aluminum concentrations at all locations, during all sampling events;
- Arsenic concentrations at SW3 (July 2016), SW4 (October 2016), SW9 (most events), BACK2 (July 2016), and piezometers P1A (March and July 2016, and April 2017), P1B (November 2016), P2B (November 2016) and P3 (November 2016 and April 2017);
- Cadmium concentrations at all locations during most sampling events;

- Copper concentrations at all locations except SW10 and Background (both of which were mostly dry and had no samples collected) during most sampling events;
- Iron concentrations at all locations except Background (which was mostly dry and had no sample collected) during most sampling events;
- ▶ Lead concentrations at all locations, except SW6, SW15 and Background (which were mostly dry and had no sample collected) during most sampling events;
- Manganese concentrations at SW4 (October 2016), SW9 (March and July 2016, and April 2017) and piezometer P1A (July 2016)
- Mercury concentrations at SW1 (all events), SW3 (July 2016 and April 2017), SW9 (March and October 2016, and April 2017), SW11 (November 2016, January and April 2017), SW12 (April 2017), SW16 (April 2017), and piezometers P1A (March and July 2016 and April 2017), P1B (all events), P2A (April 2017), P2B (November 2016 and April 2017) and P3 (July and November 2016, and January and April 2017);
- Nickel concentrations at SW9 (March 2016) and piezometers P1A (July 2016), P1B (November 2016) and P3 (July 2016);
- Selenium concentrations at SW9 (March 2016 and April 2017) and P1B (March and November 2016) and P3 (July 2016 and April 2017);
- ► Silver concentrations at SW9 (March 2016 and April 2017), P1A (July and November 2016), P1B (March and November 2016), P2B (November 2016) and P3 (July and April 2016);
- Vanadium concentrations at P1A (March and July 2016), P1B (March and November 2016), P2B (November 2016) and P3 (July 2016 and April 2017);
- Zinc concentrations at SW3 (November 2016 and January and April 2017), SW9 (March 2016 and April 2017) and piezometers P1A (March, July and November 2016, and April 2017) and P1B (November 2016), P2B (November 2016) and P3 (July 2016 and April 2017).

No other metals exceeded the respective NSE Tier 1 EQS.

As an assessment tool, dissolved metals were analyzed in surface water at select locations to evaluate the effect of particulate matter in the surface water. At most locations, there was not a significant difference in concentrations of the dissolved and total metals analyses. At SW3 (all events), SW14 (July) and BACK2 (July) the elevated total metal concentrations (particularly aluminum and iron) appear to be influenced by particulate matter. Turbidity and total suspended solids (TSS) concentrations in these samples was elevated, and in general, total organic carbon (TOC) was also high in all samples.

As noted above, the surface water analytical data was compared to the CCME FAL guidelines for evaluation purposes. In general, pH at most locations was depressed below the CCME FAL range of 6.5 to 9.0; there is no NSE Tier 1 EQS for pH.

Nitrite exceeded the CCME FAL at P1B during one sampling event; this result was not repeated and appears to be an anomaly; there is no NSE Tier 1 EQS for nitrite.

For most metals, usually when the NSE Tier 1 EQS was exceeded, the corresponding CCME FAL was also exceeded; although in some instances for CCME FAL guidelines based on hardness (such as cadmium, copper, lead and nickel) the reported concentrations do not always exceed the CCME FAL.

6.6 **Potable Water**

Laboratory analytical results are summarized in Tables 6 and 7, Appendix 2.

During all sampling events (March 2016 to April 2017), there are no NSE Tier 1 EQS exceedances. Historically, lead exceeded the NSE Tier 1 EQS at one location (PW3); however, this result was never repeated.

As noted above, the groundwater analytical data was compared to the HCDWQ guidelines for evaluation purposes. Generally in the potable water, the pH was slightly depressed and iron and manganese concentrations were frequently elevated. The elevated iron and manganese concentrations are likely related to turbidity (i.e. naturally occurring fine-grained particulate matter). The HCDWQ guidelines for iron and manganese are aesthetic objectives (i.e. not health based). There is no HCDWQ guideline for pH.

6.7 **Sediment**

Laboratory analytical results are summarized in Table 8, Appendix 2.

At the sampling locations, the substrate conditions generally consisted of organic matter or fine-grained soils, rather than coarse-grained soils. During the July 2016 sampling event, arsenic exceeded the NSE Tier 1 EQS at SW14 and BACK2.

7 IMPLICATIONS OF RESULTS

7.1 Groundwater

In groundwater, there are no NSE Tier 1 EQS for general chemistry parameters and since surface water has been assessed directly, the groundwater has not been compared to the NSE Tier 2 PSS for groundwater >10m from surface water. There are no NSE Tier 1 exceedances for general chemistry parameters.

As noted in Section 6, groundwater results were compared to the HCDWQ guidelines for evaluation purposes. At all locations, during most events, the pH was depressed below the HCDWQ guideline range. Colour was elevated in most wells during most events, TDS was occasionally elevated in three monitor wells and nitrite was elevated once in one monitor well.

pH is expected to occur naturally in the ranges reported, except for MW4S where pH was slightly more depressed than expected. The pH at MW4S may be related remnant saw dust at the site.

In groundwater, the NSE Tier 1 EQS for metals are generally based on the HCDWQ guidelines for health based parameters. In cases where the HCDWQ guideline is an operational guideline or an aesthetic objective, there is usually no corresponding NSE Tier 1 EQS.

For cobalt, the NSE Tier 1 EQS is based on groundwater discharging to freshwater environments, which, as previously discussed, has been addressed by directly evaluating the surface water quality. For several other metals parameters (beryllium, molybdenum, nickel, silver, thallium and vanadium), the NSE Tier 1 EQS is based on drinking water standards from Ontario. In the recent (2016 and 2017) sampling program, the only NSE Tier 1 EQS exceedances are cobalt (in most shallow monitor wells and less commonly in the deep monitor wells) and arsenic in five monitor wells. As discussed, the cobalt criteria is based on protection of surface water, and there are few cobalt exceedances in the surface water tested at the site (discussed below), thus indicating that although cobalt is present in the groundwater, it is not discharging to surface water.

The arsenic detections in groundwater are sporadic, and only occurred more than once in one location (MW5) at concentrations that only marginally exceed the NSE Tier 1 EQS (i.e. 11, 12 and 13 μ g/L compared to the NSE Tier 1 EQS of 10 μ g/L). Except for one potable water well immediately adjacent to the site (that is not regularly used), all other potable water wells that were tested through this program and in the initial February 2016 testing had either no detections or low concentrations of arsenic (i.e.: within criteria). Arsenic related to groundwater discharging to surface water (particularly downgradient of MW5) is independently assessed and discussed below.

Historically, boron was elevated (over the criteria) at one location (MW2S) although this elevated result was not repeated during the current testing.

From review of products known to be on site (sapstain and PQ-8), the active metals components include copper (as listed on the MSDS sheets); the inert materials are not listed, but both products are identified as corrosive (i.e. low pH). Boron is likely one of the inert metals, as inferred from review of testing of the dip tank product by NSE in 2005 (July 18) in which boron was the metal with the highest concentration; copper was also detected.

It appears that NSE had the dip tank sample independently analyzed by two laboratories, and although arsenic was detected in one sample, it was not in the second sample. Lead was not identified in either dip tank sample. The dip tank material was reported to have a pH of more than 8. From our review of the current analytical data, copper is generally not elevated in the groundwater and boron is generally only detected (at compliant concentrations) at monitor wells MW2S/2D (near former dip tank). This suggests that if fungicide handling practices were

poor, or if a release of the dip tank products occurred following decommissioning of the sawmill, that these products have not migrated (by the compliant boron at MW2S/2D and no other locations) and are in a stable condition. Although the fungicides are identified as corrosive, given the length of time since the products were onsite, that the 2015 NSE dip tank testing indicated a pH of 8, and lack of other metals (i.e. copper and boron), the depressed pH at the site is likely not related to remnant chemicals or past chemical releases.

As noted in Section 6, groundwater results were compared to the HCDWQ guidelines for evaluation purposes. Manganese concentrations were elevated in all monitor wells, and iron concentrations were elevated in approximately half of the monitor wells; the detected concentrations of these parameters are similar to those expected from natural groundwater in the surficial geology and bedrock geology of Lake George. This is further supported by the low (or no) detections of iron in the dip tank sampling by NSE in 2005.

Further, as discussed in Section 6, total and dissolved lead was analyzed for evaluation purposes to assess the transport mechanism of metals at the site. Based on the results, lead (and likely other metals) is associated with the fine sediment present in the shallow groundwater. Based on the lead testing and groundwater elevations, lead in shallow groundwater is not migrating downwards into deeper aquifers. Further, based on the magnitude of the total lead concentrations in the monitor wells (as high as $600 \mu g/L$) and in surface water (as high as $13 \mu g/L$) at the site, shallow groundwater is not directly discharging to surface water. The lead being related to natural geochemistry is further supported by the low (or no) detections of lead in the dip tank sampling by NSE in 2005.

As previously mentioned, the shallow groundwater at the site is located generally within the till. In the nested monitor wells, deeper groundwater is at a similar elevation to the shallow monitor wells, suggesting the till may act as a confining layer, with slight upward vertical velocity. The groundwater elevations noted in the monitor wells during the program are generally much shallower than the groundwater supplying the nearby potable water wells. This, in conjunction with evaluation of the chemical testing, indicates that there is no direct transport between shallow groundwater in on-site and off-site locations, with the exception of PW2A (discussed below).

7.2 Surface Water

In surface water, the NSE Tier 1 EQS for metals are generally based on the CCME FAL guidelines, and where pH (aluminum) or hardness (cadmium, copper, lead and nickel) is used to calculate the guideline, the lowest calculated value was chosen for the Tier 1 EQS. Therefore, it is appropriate to use the CCME FAL where it differs from the NSE Tier 1 EQS.

7.2.1 **General Chemistry**

In surface water, there are no NSE Tier 1 EQS for general chemistry parameters. As noted in Section 6, surface water results were compared to the CCME FAL guidelines for evaluation purposes. At all locations, during most events, the pH was depressed below the CCME FAL guideline range. Given our review of the groundwater quality at the site, in our opinion the depressed pH in surface water is naturally occurring, and in general this has been well documented (by independent studies) through southwest Nova Scotia and is also common in wetland habitats where organics are naturally decomposing and result in acidic conditions.

7.2.2 Aluminum and Iron

Aluminum and iron at almost all locations, for almost all events, exceeded the NSE Tier 1 EQS and the CCME FAL. In areas where organic matter or suspended solids were noted in the surface water (or inferred by elevated TOC, TSS or turbidity concentrations), the concentrations for aluminum and iron were higher, and evaluation of total and dissolved concentrations of these metals (at select locations), confirms that suspended organic matter and sediment contribute a large component of the total metals concentration where these conditions were noted. Aluminum and iron are naturally elevated in soil and organic matter and are not the result of activities at the site.

7.2.3 Arsenic

Elevated concentrations of arsenic were detected sporadically in surface water flowing from the site; once at SW3 (and not present downgradient at SW5), once at SW4 (and not present upgradient at SW1 or downgradient at SW14) and once in the background sample (BACK2). TOC, TSS and/or turbidity were elevated in these samples and the dissolved arsenic was compliant with the criteria (at SW3 and BACK2), confirming that the arsenic in these events is adhered to soil or organic matter and only occasionally present. Arsenic was present most often at SW9; although given the results from SW1 and SW11, arsenic is not migrating from SW9. Based on field observations, the arsenic at SW9 is related to suspended organic matter that is inadvertently disturbed when the sample is collected. Given our review of the results, arsenic was not consistently detected, and does constitute an exceedance of the NSE Tier 1 EQS.

7.2.4 Cadmium

Cadmium concentrations are elevated over the NSE Tier 1 EQS at all locations (including the background) for all except two sampling events (SW6; Oct 2016 and SW13; Jan 2017). The NSE Tier 1 EQS for cadmium is based on the lowest CCME value from the 2007 version of the guideline. Further the CCME guideline was revised in 2014. The CCME FAL is based on hardness and the value of the guideline increases or decreases based on the magnitude of the

hardness. Cadmium is naturally present in the environment, and tends to bond with organic matter and clay/silt particulate.

Review of the cadmium data compared to the CCME FAL reveal that at most locations cadmium concentrations exceed the CCME FAL less often than they exceed the NSE Tier 1 EQS. In drainage pathways SW3, SW5 and SW6, cadmium exceeds the CCME FAL at SW3 (February 2016, July and April 2017) and is compliant in downgradient samples (SW5 and SW6). In drainage pathway SW12 and SW15, cadmium is sporadically elevated. In the drainage pathway including SW11, SW1, SW4 and SW14, cadmium concentrations generally decrease from SW11 to SW14. In the drainage pathway including SW8, SW2, SW7 and SW13 cadmium concentrations show no apparent trend. The stream bed conditions in these drainage pathways are organic matter. In our opinion, the cadmium detected is natural in origin and not the result of activities at the site. This is supported by the presence of cadmium in organic matter dominated drainage conditions with no suspected on-site source (dip tank testing by NSE in 2005 and in soil from the 2016 Environmental Investigation) revealed no detectable cadmium and generally similar cadmium concentrations in the background location (BACK 2).

7.2.5 **Chromium and Cobalt**

Other than at SW9, chromium concentrations were only elevated in one sample (SW2) during one event; this result is considered anomalous. As previously discussed, elevated metals at SW9 are related to suspended organic matter that was inadvertently disturbed when the sample was collected.

Other than at SW9, cobalt concentrations were only elevated in one sample (SW4) during one event; this result is considered anomalous, and confirms that groundwater with elevated cobalt concentrations is not discharging to surface water. As previously discussed, elevated metals at SW9 are related to suspended organic matter that was inadvertently disturbed when the sample was collected.

7.2.6 Copper

Copper concentrations are elevated over the NSE Tier 1 EQS at most locations (including the background) at least once during the sampling program. The NSE Tier 1 EQS is based on the lowest CCME value. The CCME FAL is based on hardness and the value of the guideline increases or decreases based on the magnitude of the hardness; since there is no buffering capacity of the water (i.e. the hardness is low), the CCME FAL guideline is usually calculated to be $2.0~\mu g/L$.

Copper is naturally present in the environment, and tends to bond with organic matter and clay/silt particulate which reduces its toxicity since it is the soluble form of copper that affects aquatic life. The toxicity of copper in natural waters containing organic matter is less than that

predicted from laboratory tests and that guidelines should be adjusted upwards for surface waters with TOC concentrations significantly above 2 to 3 mg/L (CCREM 1987).

The copper exceedances detected are irregular with no discernable trend; in some cases upgradient concentrations are less (or even non-detect) than downgradient concentrations such as at SW1, SW4 and SW11 (in October/November and January). Where total copper concentrations are elevated, TOC is also generally greater than 10 mg/L, in some cases much higher, and where both dissolved and total copper were evaluated, the dissolved copper concentration is lower.

This confirms that suspended organic matter and sediment contribute a large component of the total metals concentration where these conditions were noted. Although the fungicide used at the site (PQ-8) contained copper, the fungicide also contained higher concentrations of boron. Given that copper is elevated in surface water, and boron, is generally not elevated, it is unlikely that past handling practices of fungicide onsite are affecting the environment, more than 10 years since last being present onsite. In our opinion, the copper concentrations detected are related to natural conditions, and not the result of activities at the site.

7.2.7 **Lead**

Lead concentrations are elevated over the NSE Tier 1 EQS at most locations (including the background) at least once during the sampling program. The NSE Tier 1 EQS is based on the lowest CCME value. The CCME FAL is based on hardness and the value of the guideline increases or decreases based on the magnitude of the hardness. Since the hardness is generally low, the CCME FAL is usually the same as the NSE Tier 1 EQS.

As discussed above, there is elevated lead in the shallow groundwater, associated with suspended particulate matter in the groundwater. Lead, similar to other metals, is highly affiliated with organic matter and sediment in the water column. The lead exceedances detected are irregular with no discernable trend, and in some cases upgradient concentrations are less (or even non-detect) than downgradient concentrations such as at SW1, SW4 and SW11 (in October/November). Where total lead concentrations are elevated TOC is also generally greater than 10 mg/L. In our opinion, the total lead detected in the surface water is related to natural geochemisty of the soil in the area, supported by the total lead concentrations in the shallow groundwater at the monitor wells and lack of lead present the dip tank sampling by NSE in 2005.

7.2.8 **Mercury**

Mercury concentrations are elevated over the NSE Tier 1 EQS (and CCME FAL) at only six locations. Mercury is naturally present in the environment and from anthropogenic sources such as wood and fossil fuel burning, and tends to bind with organic matter. At SW11, mercury concentrations were elevated in November (2016), January and April (2017), although at

downgradient location SW1, the mercury concentrations were sometimes higher (and elevated more often). Mercury was elevated at SW3 (July (2016) and April (2017)), although none was detected at downgradient SW5. Mercury was elevated at SW9 during three events (March and October (2016) and April (2017)).

At SW12 and SW16, mercury was only detected during one event (April, 2017). As previously discussed, elevated metals at SW9 are related to suspended organic matter that was inadvertently disturbed when the sample was collected. Given the sporadic detections, and the lack of connectivity between upgradient and downgradient locations (such as at SW16 and not present in any direct upgradient locations SW4, SW6, SW14, or SW15), in our opinion the mercury detected in the surface water is related to background processes in the area (such as automobile exhaust) given that most detections were adjacent to the road.

7.2.9 Manganese, Vanadium and Zinc

Manganese and vanadium concentrations exceeded the NSE Tier 1 EQS at SW4 (October (2016)), but were not present in the upgradient sample locations (SW1 or SW11). The vanadium concentration also exceeded the NSE Tier 1 EQS at BACK2 (July). Zinc concentrations at SW3 (November (2016), January and April (2017) exceeded the NSE Tier 1 EQS (and CCME FAL) although zinc was not elevated at any other location. Given the lack of connectivity of results between upgradient and downgradient locations, and the sporadic nature of the elevated parameters, in our opinion these are anomalous and not related to activities at the site.

7.2.10 Wetland Locations

At SW9 and the wetland piezometers (P1A, P1B, P2A, P2B and P3), many metals parameters had elevated concentrations (such as aluminum, arsenic, cadmium, chromium, cobalt, copper, iron, lead, manganese, nickel, selenium, silver, vanadium and zinc) that exceeded the NSE Tier 1 EQS. In our opinion, the elevated metals detected at these locations is related to the elevated organics in the water samples (TOC and turbidity). These metals tend to bind to organic matter and, and when TOC and turbidity concentrations are lower, the metals concentrations are also lower. Although water drainage patterns at the site discharge to these wetlands, there is generally a lack of connectivity between the metals concentrations in the piezometers and the flowing surface water (such as between P1B and SW12, P1A and SW3, P2B and SW11, and P3 and SW2). Surface water at wetland 2 (from the crock discharge) would be expected to have the greatest concentration of metals since there is a direct connection between drainage infrastructure at the site and the wetland.

7.3 **Potable Water**

At PW3, there were no NSE Tier 1 EQS exceedances identified in sampling between March 2016 and April 2017. Sampling at PW8 was recommended because the lead concentration

exceeded the NSE Tier 1 EQS in February 2016 testing of the potable water. The initial sample was collected from the exterior hose bib since the home owner wasn't home at the time. Between February and March 2016, a water treatment system (for lead) was installed, and the sampling location was moved to the water distribution inlet in the basement (i.e. before the treatment system). A second sampling location was added at the kitchen sink (i.e. after the treatment system), to confirm that the treatment system was removing lead that may be present in the potable water.

From our review of the results, lead (as well as copper, nickel and zinc) concentrations that were identified in the February 2016 sampling event are much lower at the inlet sample location. Although lead was detected in some inlet samples, it was at concentrations much lower (i.e. an order of magnitude) than detected in February. Lead was only detected in one kitchen sink sample, again at a concentration that was an order of magnitude lower (and compliant) than in the corresponding inlet sample.

From our review of the data, it appears that the elevated lead concentration (February 2016) was likely due to the plumbing fixture associated with the exterior hose bib and not related to surface water (at SW1). As noted in Section 6, potable water results were compared to the HCDWQ guidelines for evaluation purposes. Iron and manganese concentrations were noted to be elevated over the HCDWQ guidelines in some samples, and pH was noted to be depressed below the HCDWQ guidelines in all samples. The detected concentrations of these parameters are similar to those expected from natural groundwater in the geology of Lake George. These HCDWQ guidelines are not health based. Rather, they are related to taste (iron and manganese), staining of plumbing and laundry fixtures (iron and manganese) and treatment effectiveness, corrosion and leaching from distribution systems and plumbing components (pH).

At PW8, there were no NSE Tier 1 EQS exceedances identified in any of the sampling events. Sampling at PW8 was recommended because the lead concentration was close to the NSE Tier 1 EQS in February 2016 testing of the potable water. Lead was not detected in any of the subsequent samples collected. As noted in Section 6, potable water results were compared to the HCDWQ guidelines for evaluation purposes. Iron and manganese concentrations were noted to be elevated over the HCDWQ guidelines in some samples, and pH was noted to be depressed below the HCDWQ guideline in all samples. The detected concentrations of these parameters are similar to those expected from natural groundwater in the geology of Lake George. These HCDWQ guidelines are not health based, rather, they are related to taste (iron and manganese), staining of plumbing and laundry fixtures (iron and manganese) and treatment effectiveness, corrosion and leaching from distribution systems and plumbing components (pH).

The potable well at PW2A was not sampled during this program. Previously it has been sampled by the occupant of the dwelling (January 2016) and Englobe (March 2016), both times

from fixtures within the dwelling. Arsenic was detected (at a concentration that exceeded the NSE Tier 1 EQS) during the March 2016, and we recommended further testing. However, due to access restrictions and a dispute over the ownership/location of the well, additional sampling was not conducted. From the well log, this drilled potable well has soil deposits to 4.5m (15 feet) and was cased to 7.9m (26 feet), although from our field inspection, the integrity of the well could not be confirmed, and we noted that a plastic pail was placed over the well head, suggesting potential surface water infiltration issues. We also understand that the well is not regularly used; it is a backup to the adjacent dug well (PW2) which had compliant metals results during testing. Since testing to verify the long term chemical quality of the well water was not possible, we recommended that the well be decommissioned since the arsenic concentrations could not be fully evaluated. It is likely that the elevated arsenic is from the site; however, we suspect that the transport route is from surface (or shallow groundwater) activities and well integrity issues, since arsenic concentrations were only sporadically elevated in other shallow groundwater at the site.

From our review of the potable water data, the site (2014 Lake George Road) is not impacting potable water quality at the neighbouring properties. The only NSE *Contaminated Sites Regulation* exceedance was lead at one home, during one event, which was never repeated. Natural groundwater quality in the area leads to elevated iron and manganese, and depressed pH; however, these are aesthetic concerns. The homeowners should continue regular monitoring of their drinking water supplies, as recommended by NSE, and treat as required for any objectionable odours or taste (i.e. iron, manganese).

8 SUMMARY AND CONCLUSIONS

From our review of the data collected and field observations, the site (2014 Lake George Road) is not impacting potable water quality at the neighbouring properties. There is no direct transport between shallow groundwater at on-site and off-site locations. Given our review of the surface water results, metals are either naturally occurring or not consistently detected, and do constitute an exceedance of the NSE Tier 1 EQS.

8.1 Potable Water

In terms of potable water, the one NSE Tier 1 EQS exceedance (lead at PW3) appears to be anomalous and not related to the site. Natural groundwater quality in the area leads to elevated iron and manganese, and depressed pH; however, these are aesthetic concerns. The homeowners should continue regular monitoring of their drinking water supplies, as recommended by NSE, and treat as required for any objectionable odours or taste (i.e. iron, manganese).

8.2 Groundwater

In terms of shallow groundwater, although arsenic was elevated near the former dip tanks, the detections were sporadic in nature (both spatially and temporally). Although arsenic in the groundwater may be related to past fungicide use, in our opinion, it is not mobile and is limited to a small area of the site. This also relates to potable water, as previous testing revealed the drilled potable water well associated with the site and connected to the dwelling at 2012 Lake George Road had an elevated arsenic concentration during one sampling event. This elevated concentration may be related to integrity issues with the well, leading to transport from shallower water at the site to the deeper potable well. Further testing was not conducted. Given the uncertainty of the well ownership and the long term water quality, this potable water well should be decommissioned by a licensed well driller to prevent any consumption of untreated water, and to prevent potential impacts (arsenic) from being drawn into the deeper aquifer from pumping and regular use of the well. From previous testing of the adjacent dug well (PW2), there do not appear to be arsenic impacts to the drinking water; although, the homeowner should continue regular monitoring of the drinking water supply.

8.3 Surface water

Various metals were present in surface water on and off site, and in perched surface water within the wetlands at the site, at concentrations that exceeded the NSE Tier 1 EQS and CCME FAL guidelines. In our opinion, these metals are related to natural conditions or other background processes, are anomalous (i.e. infrequently detected) and not the result of activities at the site. This is supported by the natural affinity of these metals to bind with organic and particulate matter, the organic-rich environment of the drainage pathways, lack of connectivity and discernable trends in most of the metals. Further, there is no apparent on-site source (fungicide or soil) for most metals, and for those metals that could be related to past fungicide use (i.e. copper), other metals that would also be present (i.e. boron) are generally not elevated suggesting that there is no remnant source of fungicide at the site. Therefore, it is unlikely that past handling practices of fungicide onsite are currently affecting the environment.

Based on review of the current and past data, the metals present in the drainage pathway leading from wetland 2 (SW3, SW5 and SW6) are naturally occurring (aluminum, cadmium, chromium and iron) or sporadically detected (arsenic, lead, mercury and zinc) and there are no apparent trends or evidence of migration. However, there is a direct piped connection between wetland 2 and drainage infrastructure on site, and there is evidence of metals adhered to sediment and particulate matter in the crock. Given that the site will be re-vegetated and no longer used in a commercial capacity, the drainage crock should be drained, and the connection to wetland 2 removed.

8.4 General

The exposed areas of the Site should be stabilized to prevent erosion and potential transport of suspended solids in surface water. Appropriate stabilization methods would include surface treatments (such as mulch and vegetation) and shrub and trees.

9 REPORT USE AND CONDITIONS

This report has been prepared by Englobe Corp. for the exclusive use of the Town of Yarmouth. Any use that a third party makes of this report, or any reliance on or decisions made based on it, are the sole responsibility of the third party. Englobe accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

The statements and conclusions presented in this report are professional opinions based upon visual observations made during the scope of work identified herein, and is based solely upon the condition of the property on the dates of such inspection, supplemented by information obtained and described herein.

Environmental conditions are dynamic in nature and changing circumstances in the environment and in the use of the property can alter radically the conclusions and information contained herein.

10 **REFERENCES**

- Canadian Council of Ministers of the Environment (CCME). 1999 (with 2015 updates). Environmental Quality Guidelines.
- Council of Resource and Environment Ministers (CCREM). 1987. Canadian Water Quality Guidelines.
- Englobe. 2016a. Environmental Investigation, 2014 Lake George Road, Lake George, NS.
- Englobe. 2016b. Groundwater and Surface Water Quality, Lake George Road, Lake George, NS.
- Freeze, R.A., and Cherry, J.A., 1979. Groundwater, Prentice-Hall Inc.
- Google Maps, https://maps.google.ca, 2017.
- Health Canada. 2017. Canadian Water Quality Guidelines for Community (Drinking) Water (HCDWQ).
- Keppie, J.D., 2000. Geological map of the Province of Nova Scotia; Nova Scotia Department of Natural Resources Minerals and Energy Branch, Map ME 2000-1, scale 1:500,000.
- Nova Scotia Environment. 2013. Contaminated Sites Regulations and associated Protocols.
- Nova Scotia Environment. 2014. Environmental Quality Standards for Contaminated Sites, Rationale and Guidance Document.

Appendix 1 Site Plans

Appendix 2

Laboratory Analytical Results

TABLE 1: GENERAL CHEMISTRY in Groundwater (Monitor Wells) Client: Town of Yarmouth Site Location: Lake George Road, Lake George, NS Englobe Project No.: P-0010903

		Health Canada												Sample ID Date										
PARAMETER	UNITS	Drinking Water	NSE Tier 1 EQS ²	MW1S					MW1D						MW2S									
		Guidelines ¹		20-Mar-16	15-Jul-16	1-Nov-16	31-Jan-17	26-Apr-17	20-Mar-16	15-Jul-16	1-Nov-16	Lab-Dup 1-Nov-16	31-Jan-17	26-Apr-17	4-Nov-05	11-Jan-06	20-Mar-16	15-Jul-16	1-Nov-16	Lab-Dup 1-Nov-16	31-Jan-17	Lab-Dup 31-Jan-17	26-Apr-17	Lab-Dup 26-Apr-17
Field pH	pН	7-10.5	NG	6.01	6.07	6.04	6.17	6.44	7.03	6.49	6.38	-	6.16	6.86	-	-	6.96		6.21	-	6.13	-	6.98	-
Field Conductivity	uS/cm	NG	NG	383	417	735	697	261	522	681	1215	-	933	598	-	=	288		443	-	396	=	111	-
Field Temperature	°C	NG	NG	6.3	14.45	12.42	7.25	8.16	8.77	13.63	11.92	-	6.64	8.71	-	-	4.13		13.43	-	4.57	=	7.99	-
Anion Sum	me/L	NG	NG	3.36	4.20	5.86	2.57	2.35	9.15	10.6	12.4	-	10.8	10.0	2.81	1.93	5.37		3.48	-	3.91	=	3.27	-
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	NG	NG	130	180	270	96	83	420	490	600	-	510	480	114	75	140		99	-	130	-	120	-
Calculated TDS	mg/L	<u><</u> 500 (AO)	NG	270	250	310	210	210	470	550	620	-	550	530	169	120	310		200	-	230	=	190	-
Carb. Alkalinity (calc. as CaCO3)	mg/L	NG	NG	<1.0	<1.0	<1.0	<1.0	<1.0	1.1	4.0	1.2	-	1.2	<1.0	<1.0	<1.0	<1.0		<1.0	-	<1.0	=	<1.0	-
Cation Sum	me/L	NG	NG	6.39	4.35	4.77	4.47	4.88	8.88	10.7	11.7	-	10.4	10.4	2.85	2.03	5.02		3.14	-	3.96	÷	3.05	-
Colour	TCU	<u><</u> 15 (AO)	NG	2100	220	15	790	540 (2)	< 5.0	<5.0	<5.0	-	<5.0	<5.0	8	16	24		8.3	6.9	13	=	16	-
Conductivity	uS/cm	NG	NG	350	350	500	390	410	760	870	970	-	950	880	270	180	520		340	-	370	=	300	-
Chloride (CI)	mg/L	< 250 (AO)	250	24	21	13	23	24	19	15	13	-	13	13	5	6	45		32	34	22	=	16	-
Sulphate (SO4)	mg/L	<u><</u> 500 (AO)	NG	<2.0	<2.0	<2.0	<2.0	<2.0	8.3	7.5	6.2	-	6.0	7.0	18	12	48		18	17	29	=	22	-
Hardness (CaCO3)	mg/L	NG	NG	150	160	210	98	87	370	460	500	-	440	440	76	58	140		120	-	120	=	91	-
Ion Balance (% Difference)	%	NG	NG	31.1	1.75	10.3	27.0	35.0	1.50	0.520	3.19	-	1.80	1.86	0.725	2.51	3.37	DRY	5.14	-	0.640	÷	3.48	-
Langelier Index (@ 20C)	N/A	NG	NG	-1.50	-1.17	-0.859	-1.60	-1.81	0.574	1.22	0.706	-	0.682	0.582	-1.06	-1.37	-0.591	DKT	-1.04	-	-0.615	=	-0.743	-
Langelier Index (@ 4C)	N/A	NG	NG	-1.75	-1.42	-1.11	-1.85	-2.06	0.325	0.972	0.458	-	0.434	0.334	-1.31	-1.62	-0.840		-1.29	-	-0.864	÷	-0.993	-
Nitrate (N)	mg/L	10 (MAC)	NG	< 0.050	< 0.050	< 0.050	< 0.050	<0.050	0.14	< 0.050	< 0.050	-	< 0.050	< 0.050	< 0.05	0.09	3.2		2.9	-	0.43	=	0.26	-
Nitrate + Nitrite	mg/L	NG	NG	< 0.050	7.58	< 0.050	< 0.050	< 0.050	0.14	< 0.050	< 0.050	-	< 0.050	< 0.050	< 0.05	0.06	3.2		2.9	2.9	0.43	-	0.26	-
Nitrite (N)	mg/L	1 (MAC)	NG	< 0.010	7.83	< 0.010	< 0.010	<0.010	< 0.010	< 0.010	<0.010	-	< 0.010	< 0.010	0.01	< 0.01	0.034		< 0.010	< 0.010	<0.010	-	< 0.010	-
Nitrogen (Ammonia Nitrogen)	mg/L	NG	NG	2.4	2.1	0.96	2.7	3.4	0.13	< 0.050	0.062	-	< 0.050	< 0.050	0.07	0.32	0.18		0.11	-	0.089	0.088	0.12	-
Orthophosphate (P)	mg/L	NG	NG	0.011	0.016	0.024	0.015	0.018	0.021	0.022	0.028	-	0.025	< 0.010	< 0.01	< 0.01	<0.010		0.014	0.014	0.013	-	< 0.010	-
рН	pН	7-10.5	NG	6.26	6.41	6.43	6.47	6.37	7.43	7.93	7.34	-	7.40	7.33	6.85	6.8	6.95		6.79	-	7.02	=	7.04	-
Reactive Silica (SiO2)	mg/L	NG	NG	18	25	28	15	15	24	27	28	-	29	27	8.9	8.8	5.8		7.8	7.7	7.2	-	5.9	-
Saturation pH (@ 20C)	N/A	NG	NG	7.76	7.58	7.29	8.06	8.18	6.85	6.71	6.63	-	6.72	6.75	7.91	8.17	7.54		7.82	-	7.63	-	7.78	-
Saturation pH (@ 4C)	N/A	NG	NG	8.01	7.83	7.53	8.31	8.43	7.10	6.96	6.88	-	6.97	7.00	8.16	8.42	7.79		8.07	-	7.88	=	8.03	-
Total Alkalinity (Total as CaCO3)	mg/L	NG	NG	130	180	270	96	83	420	500	600	-	510	480 (1)	110	75	140		99	98	130	-	120 (2)	-
Total Organic Carbon (C)	mg/L	NG	NG	<50 (1)	63(1)	63 (1)	56 (1)	64 (2)	<5.0 (1)	<5.0(2)	2.8	2.8	2.3	2.7	6.9	<500	<25 (1)		<250 (1)	-	11 (1)	-	<50 (1)	<50 (2)
Turbidity	NTU	1 (MAC) ³	NG	>1000	>1000	>1000	>1000	>1000	440	27	27	-	88	60	24	>1000	>1000		>1000	-	>1000	-	>1000	

Notes:

AO - Aesthetic Objective

MAC - Maximum Acceptable Concentration

NG - no guideline

value - exceeds Health Canada DWQG
- exceeds NSE EQS

- (2) Elevated reporting limit due to sample matrix.
- (3) Analysis performed on decanted sample due to sediment content.

¹ 2017 Health Canada Canadian Water Quality Guidelines for Community (Drinking) Water (HCDWQ)

 $^{^2}$ 2013 NSE Tier 1 Environmental Quality Standards (EQS) for potable water at a residential site with coarse-grained soil

³ Guideline applies to individual filter turbidity for municipal systems using surface water or groundwater under the direct influence of surface water.

⁽¹⁾ Reporting limit was increased due to turbidity.

		Health Canada											Sampl Dat											
PARAMETER	UNITS	Drinking Water	NSE Tier 1 EQS ²					M	W2D							MW3S					MW3	BD		
		Guidelines ¹		20-Mar-16	15-Jul-16	Field-Dup 15-Jul-16	1-Nov-16	MW-DUP 1-Nov-16	Lab-Dup - Dup 1	31-Jan-17	MW-DUP 31-Jan-2017	26-Apr-17	MW-DUP 26-Apr-2017	20-Mar-16	15-Jul-16	1-Nov-16	31-Jan-17	25-Apr-17	20-Mar-16	Lab-Dup 20-Mar-16	15-Jul-16	1-Nov-16	31-Jan-17	25-Apr-17
Field pH	рН	7-10.5	NG	7.9	6.83	-	6.5	-	-	6.25	-	7.31	-	6.61	6.4	6.31	5.9	6.23	6.62	=	6.3	6.2	6.04	5.94
Field Conductivity	uS/cm	NG	NG	124	188	-	334	-	-	287	-	184	-	309	533	731	918	314	218	=	304	500	474	190
Field Temperature	°C	NG	NG	8.29	13.7	-	11.58	-	-	5.36	-	8.51	-	6.48	16.6	12.5	6.11	8.8	8.14	=	13	12.17	7.12	9.67
Anion Sum	me/L	NG	NG	2.61	2.69	2.76	2.96	2.86	-	2.92	2.93	3.04	2.99	7.17	7.87	7.80	5.00	6.64	3.36	=	4.39	4.74	4.38	3.96
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	NG	NG	100	100	110	120	110	-	120	120	120	120	330	370	370	200	290	130	-	180	200	190	170
Calculated TDS	mg/L	<u><</u> 500 (AO)	NG	150	160	160	170	160	-	170	170	170	170	370	390	380	290	340	200	=	250	260	230	230
Carb. Alkalinity (calc. as CaCO3)	mg/L	NG	NG	<1.0	<1.0	<1.0	<1.0	<1.0	-	<1.0	<1.0	1.3	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	=	<1.0	<1.0	<1.0	<1.0
Cation Sum	me/L	NG	NG	2.56	2.67	2.65	2.80	2.81	-	2.83	2.82	2.88	2.90	6.64	6.67	6.35	5.68	6.04	3.27	=	4.29	4.49	3.50	4.07
Colour	TCU	<u><</u> 15 (AO)	NG	<5.0	6.2	<5.0	7.0	<5.0	-	<5.0	<5.0	<5.0	<5.0	<5.0	5.2	6.9	6.7	<5.0	7.5	10	< 5.0	28	18	< 5.0
Conductivity	uS/cm	NG	NG	230	240	240	260	270	-	290	280	280	270	600	610	620	440	540	310	=	380	420	420	340
Chloride (CI)	mg/L	< 250 (AO)	250	13	11	11	11	10	-	11	12	11	11	16	16	14	27	21	21	21	19	18	18	16
Sulphate (SO4)	mg/L	500 (AO)	NG	11	12	12	13	13	-	12	13	15	14	4.2	2.8	3.7	15	11	8.9	9.3	8.1	7.1	6.3	8.2
Hardness (CaCO3)	mg/L	NG	NG	95	100	100	110	110	-	110	110	110	110	290	300	290	240	270	110	=	160	170	130	150
Ion Balance (% Difference)	%	NG	NG	0.970	0.370	2.03	2.78	0.880	-	1.57	1.91	2.70	1.53	3.84	8.25	10.3	6.37	4.73	1.36	=	1.15	2.71	11.2	1.37
Langelier Index (@ 20C)	N/A	NG	NG	-0.0910	-0.0240	0.0130	-0.166	-0.0380	-	-0.0450	-0.0990	0.160	-0.101	-0.221	0.208	-0.117	-0.211	-0.331	-1.01	=	-0.410	-0.589	-0.835	-0.972
Langelier Index (@ 4C)	N/A	NG	NG	-0.341	-0.275	-0.237	-0.416	-0.288	-	-0.295	-0.350	-0.0900	-0.352	-0.470	-0.0410	-0.366	-0.461	-0.580	-1.26	=	-0.660	-0.839	-1.08	-1.22
Nitrate (N)	mg/L	10 (MAC)	NG	0.17	< 0.050	< 0.050	< 0.050	< 0.050	-	< 0.050	0.069	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	0.072	0.11	-	< 0.050	< 0.050	< 0.050	< 0.050
Nitrate + Nitrite	mg/L	NG	NG	0.19	< 0.050	< 0.050	< 0.050	< 0.050	-	< 0.050	0.080	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	0.072	0.11	0.12	< 0.050	< 0.050	<0.050	< 0.050
Nitrite (N)	mg/L	1 (MAC)	NG	0.021	< 0.010	< 0.010	0.013	< 0.010	-	< 0.010	0.011	< 0.010	< 0.010	< 0.010	<0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	<0.010	< 0.010
Nitrogen (Ammonia Nitrogen)	mg/L	NG	NG	0.13	< 0.050	< 0.050	< 0.050	0.097	-	< 0.050	< 0.050	< 0.050	< 0.050	0.29	0.19	0.099	0.56	0.25	0.10	-	< 0.050	0.11	< 0.050	< 0.050
Orthophosphate (P)	mg/L	NG	NG	0.046	0.028	0.031	0.041	0.039	-	0.040	0.040	0.028	0.031	0.017	0.019	0.026	0.020	< 0.010	0.017	0.019	0.016	0.021	0.024	0.019
рН	рН	7-10.5	NG	7.92	7.93	7.95	7.73	7.86	-	7.85	7.80	8.05	7.79	6.90	7.25	6.96	7.17	6.87	6.84	-	7.13	6.87	6.82	6.65
Reactive Silica (SiO2)	mg/L	NG	NG	18	19	18	19	19	-	20	19	19	19	21	21	20	22	18	26	26	26	26	27	25
Saturation pH (@ 20C)	N/A	NG	NG	8.01	7.95	7.94	7.89	7.90	-	7.89	7.90	7.89	7.89	7.12	7.04	7.08	7.38	7.20	7.85	-	7.54	7.46	7.65	7.62
Saturation pH (@ 4C)	N/A	NG	NG	8.26	8.20	8.19	8.14	8.15	-	8.14	8.15	8.14	8.14	7.37	7.29	7.33	7.63	7.45	8.10	-	7.79	7.71	7.90	7.87
Total Alkalinity (Total as CaCO3)	mg/L	NG	NG	100	110	110	120	110	-	120	120	120 (2)	120 (2)	330	370	370	200	290 (2)	130	130	190	200	190	170 (2)
Total Organic Carbon (C)	mg/L	NG	NG	0.74	<5.0(1)	<5.0(1)	<5.0 (1)	<25 (1)	-	<5.0 (1)	<5.0 (1)	<5.0 (1)	<5.0 (1)	<25 (1)	<25(1)	<50 (1)	<50 (1)	<25 (1)	<5.0 (1)	-	2.3 (2)	<5.0 (1)	1.6	<5.0 (1)
Turbidity	NTU	1 (MAC) ³	NG	230	650	900	>1000	>1000	>1000	>1000	>1000	970	390	>1000	>1000	>1000	>1000	>1000	150	-	550	200	200	170

Notes:

AO - Aesthetic Objective

MAC - Maximum Acceptable Concentration

NG - no guideline

- exceeds Health Canada DWQG - exceeds Health Cana value - exceeds NSE EQS

¹ 2017 Health Canada Canadian Water Quality Guidelines for Community (Drinking) Water (HCDWQ)

- (1) Reporting limit was increased due to turbidity.
- (2) Elevated reporting limit due to sample matrix.
- (3) Analysis performed on decanted sample due to sediment content.

 $^{^{2}}$ 2013 NSE Tier 1 Environmental Quality Standards (EQS) for potable water at a residential site with coarse-grained soil

³ For municipal treatment systems only

		Health Canada											S	Sample ID Date											
PARAMETER	UNITS	Drinking Water	NSE Tier 1 EQS ²			MW4S					MW4D					MW	/5					MV	/6S		
		Guidelines ¹		20-Mar-16	15-Jul-16	1-Nov-16	31-Jan-17	26-Apr-17	20-Mar-16	15-Jul-16	1-Nov-16	31-Jan-17	26-Apr-17	20-Mar-16	15-Jul-16	Lab-Dup 15-Jul-16	1-Nov-16	31-Jan-17	26-Apr-17	20-Mar-16	15-Jul-16	1-Nov-16	Lab-Dup 1- Nov-16	31-Jan-17	26-Apr-17
Field pH	pН	7-10.5	NG	5.89	5.47	5.36	6.35	5.39	5.72	6.33	5.71	6.13	5.65	7.54	6.7	-	5.8	6.17	6.18	6.19	6.2	6.38	-	6.02	6.4
Field Conductivity	uS/cm	NG	NG	72	59	118	153	89	58	78	137	173	118	139	194	-	515	697	157	239	701	1397	-	728	474
Field Temperature	°C	NG	NG	6.23	15.5	13.67	5.07	8.05	9.49	16.3	12.67	7.47	9.78	10.75	17.6	-	16.6	7.25	11.71	6.03	13.61	11.53	-	5.55	8.11
Anion Sum	me/L	NG	NG	1.40	0.620	0.880	1.48	1.20	0.820	0.840	0.900	1.31	1.44	2.11	2.15	-	3.08	2.78	2.24	5.06	10.1	15.2	-	6.14	6.06
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	NG	NG	25	10	14	17	12	16	14	17	16	14	85	87	-	120	120	94	170	430	680	-	250	250
Calculated TDS	mg/L	<u><</u> 500 (AO)	NG	87	52	62	89	77	59	60	65	86	96	130	150	-	210	170	140	320	530	740	-	400	380
Carb. Alkalinity (calc. as CaCO3)	mg/L	NG	NG	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	<1.0	<1.0	<1.0	<1.0	1.1	<1.0	-	<1.0	<1.0
Cation Sum	me/L	NG	NG	1.14	0.680	0.760	1.09	0.960	0.750	0.760	0.780	1.16	1.33	2.02	2.60	-	3.91	2.69	2.38	6.30	10.1	13.7	-	8.88	7.70
Colour	TCU	≤ 15 (AO)	NG	<5.0	<5.0	<5.0	<5.0	<5.0	37	0.14	8.7	20	130 (2)	9.1	27	26	590	310	<130 (2)	730	140	11	10	170	680 (2)
Conductivity	uS/cm	NG	NG	130	62	99	160	130	77	82	90	150	160	180	190	-	320	270	200	510	610	1200	-	550	570
Chloride (CI)	mg/L	< 250 (AO)	250	22	5	13	34	25	5.8	8.1	8.1	23	29	11	12	13	22	16	13	58	51	44	42	40	40
Sulphate (SO4)	mg/L	≤ 500 (AO)	NG	13	12	10	7.5	8.0	15	16	16	15	15	3.8	3.4	3.3	<2.0	<2.0	<2.0	<2.0	2.7	13	12	<2.0	<2.0
Hardness (CaCO3)	mg/L	NG	NG	40	23	25	36	32	23	22	20	34	42	62	90	-	110	73	72	170	440	600	-	290	230
Ion Balance (% Difference)	%	NG	NG	10.2	4.62	7.32	15.2	11.1	4.46	5.00	7.14	6.07	3.97	2.18	9.47	-	11.9	1.65	3.03	10.9	0.250	5.23	-	18.2	11.9
Langelier Index (@ 20C)	N/A	NG	NG	-2.95	-3.44	-3.60	-3.29	-3.50	-3.03	-2.76	-3.24	-2.86	-3.33	-1.11	-1.41	-	-1.70	-1.49	-1.64	-1.33	0.636	0.489	-	-0.899	-0.959
Langelier Index (@ 4C)	N/A	NG	NG	-3.20	-3.69	-3.85	-3.54	-3.75	-3.28	-3.01	-3.49	-3.11	-3.58	-1.36	-1.66	-	-1.95	-1.74	-1.89	-1.58	0.388	0.242	-	-1.15	-1.21
Nitrate (N)	mg/L	10 (MAC)	NG	0.18	0.40	0.31	0.39	1.2	0.31	0.14	0.078	0.25	0.19	<0.050	0.064	-	<0.050	<0.050	<0.050	0.37	<0.050	<0.050	-	<0.050	<0.050
Nitrate + Nitrite	mg/L	NG	NG	0.21	0.40	0.31	0.41	1.2	0.31	0.14	0.078	0.25	0.19	<0.050	0.064	0.071	<0.050	<0.050	<0.050	0.39	<0.050	<0.050	< 0.050	<0.050	<0.050
Nitrite (N)	mg/L	1 (MAC)	NG	0.025	<0.010	<0.010	0.014	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.015	<0.010	<0.010	<0.010	<0.010	<0.010
Nitrogen (Ammonia Nitrogen)	mg/L	NG	NG	0.27	0.23	0.17	0.37	0.26	<0.050	< 0.050	<0.050	<0.050	<0.050	0.61	1.5	-	2.8	1.1	1.2	4.3	1.9	1.5	-	4.8	5.9
Orthophosphate (P)	mg/L	NG	NG	<0.010	0.011	0.015	0.011	<0.010	0.010	0.011	0.014	0.013	<0.010	0.015	0.018	0.016	0.095	0.071	0.031	0.020	0.023	0.031	0.036	0.024	0.011
pH	pН	7-10.5	NG	6.01	6.12	5.77	5.85	5.81	6.34	6.68	6.18	6.33	5.84	7.11	6.64	-	6.12	6.51	6.45	6.28	7.44	7.00	-	6.31	6.35
Reactive Silica (SiO2)	mg/L	NG	NG	7.2	12	12	6.7	7.3	11	12	14	13	13	22	25	25	30	25	24	25	31	29	29	29	30
Saturation pH (@ 20C)	N/A	NG	NG	8.96	9.55	9.37	9.14	9.31	9.37	9.44	9.41	9.19	9.17	8.23	8.05	-	7.82	8.00	8.10	7.61	6.81	6.51	-	7.20	7.31
Saturation pH (@ 4C)	N/A	NG	NG	9.21	9.80	9.62	9.39	9.56	9.62	9.69	9.66	9.44	9.42	8.48	8.30	-	8.07	8.25	8.35	7.86	7.05	6.76	-	7.45	7.56
Total Alkalinity (Total as CaCO3)	mg/L	NG	NG	25	10	14	17	12	16	14	17	16	14	85	85	85	120	120	94	170	430	690	670	250	250 (2)
Total Organic Carbon (C)	mg/L	NG	NG	<25 (1)	<50(1)	<250 (1)	<50 (1)	53 (2)	<5.0 (1)	0.78	0.70	1.3	1.3	<25 (1)	89(1)	-	57 (1)	25 (1)	26 (2)	58 (1)	25(1)	42 (3)	-	60 (1)	110 (1)
Turbidity	NTU	1 (MAC) ³	NG	>1000	>1000	>1000	>1000	>1000	120	200	140	96	>1000	>1000	>1000	-	430	360	>1000	>1000	>1000	>1000	-	>1000	>1000

Notes:

AO - Aesthetic Objective

MAC - Maximum Acceptable Concentration

NG - no guideline

<u>value</u> - exceeds NSE EQS

- exceeds Health Canada DWQG

¹ 2017 Health Canada Canadian Water Quality Guidelines for Community (Drinking) Water (HCDWQ)

 $^{^{2}}$ 2013 NSE Tier 1 Environmental Quality Standards (EQS) for potable water at a residential site with coarse-grained soil

³ For municipal treatment systems only

⁽¹⁾ Reporting limit was increased due to turbidity.

⁽²⁾ Elevated reporting limit due to sample matrix.

⁽³⁾ Analysis performed on decanted sample due to sediment content.

		Health Canada												S	Sample ID Date										
PARAMETER	UNITS	Drinking Water	NSE Tier 1 EQS ²			MW6D					MW	17					N	/W8					MW9		
		Guidelines ¹		20-Mar-16	15-Jul-16	1-Nov-16	31-Jan-17	26-Apr-17	20-Mar-16	Lab-Dup 20 Mar-16	15-Jul-16	1-Nov-16	31-Jan-17	26-Apr-17	20-Mar-16	15-Jul-16	1-Nov-16	31-Jan-17	Lab-Dup 31-Jan-17	26-Apr-17	20-Mar-16	15-Jul-16	1-Nov-16	31-Jan-17	25-Apr-17
Field pH	рН	7-10.5	NG	6.82	6.73	7.16	6.77	7.2	7.06	-	6.58	6.8	6.42	7.27	6.79	6.14	6.11	5.99	-	6.99	6.34	5.88	5.29	6.3	6.35
Field Conductivity	uS/cm	NG	NG	136	136	222	197	70	161	-	207	359	309	220	201	218	452	257	-	154	119	150	241	129	66
Field Temperature	°C	NG	NG	8.64	12.66	12.13	6.78	8.89	6.5	-	13.88	12.41	6.24	8.1	6.98	14.86	12.05	4.45	-	7.95	5.68	18.12	12.6	5.51	8.37
Anion Sum	me/L	NG	NG	2.05	1.84	1.92	1.94	1.83	2.61	-	3.47	2.87	3.52	3.60	4.06	3.60	3.96	2.61	-	2.43	2.03	1.66	1.81	1.12	1.54
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	NG	NG	51	55	63	60	55	99	-	150	120	150	150	120	150	160	110	-	100	50	27	34	13	20
Calculated TDS	mg/L	< 500 (AO)	NG	130	120	120	120	120	150	-	250	160	190	200	250	210	220	160	-	140	130	100	110	70	96
Carb. Alkalinity (calc. as CaCO3)	mg/L	NG	NG	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	1.7	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Cation Sum	me/L	NG	NG	1.94	1.79	1.67	1.70	1.62	2.49	-	6.22	2.69	3.02	3.39	4.17	3.46	3.65	2.69	-	2.37	1.91	1.43	1.66	0.900	1.26
Colour	TCU	≤ 15 (AO)	NG	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	-	15	<5.0	5.3	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Conductivity	uS/cm	NG	NG	190	170	180	200	170	230	-	300	270	350	320	390	310	360	240	-	220	190	160	190	120	160
Chloride (CI)	mg/L	< 250 (AO)	250	26	17	15	17	16	17	-	13	13	14	14	49	16	22	12	11	10	22	24	25	20	26
Sulphate (SO4)	mg/L	< 500 (AO)	NG	13	13	11	11	13	6.3	-	6.5	8.0	6.2	8.8	13	6	5.5	5.4	5.6	6.9	18	21	20	13	19
Hardness (CaCO3)	mg/L	NG	NG	49	39	28	37	40	91	-	270	100	120	140	120	130	140	95	-	81	59	44	53	23	36
Ion Balance (% Difference)	%	NG	NG	2.76	1.38	6.96	6.59	6.09	2.35	-	28.4	3.24	7.65	3.00	1.34	1.98	4.07	1.51	-	1.25	3.05	7.44	4.32	10.9	10.0
Langelier Index (@ 20C)	N/A	NG	NG	-1.24	-1.02	-1.25	-1.13	-1.15	-0.966	-	0.744	-0.218	-0.336	-0.247	-0.943	-0.166	-0.651	-1.33	-	-1.56	-1.83	-2.41	-2.54	-3.63	-3.28
Langelier Index (@ 4C)	N/A	NG	NG	-1.49	-1.27	-1.50	-1.38	-1.40	-1.22	-	0.495	-0.468	-0.586	-0.497	-1.19	-0.416	-0.901	-1.58	-	-1.81	-2.08	-2.66	-2.79	-3.88	-3.53
Nitrate (N)	mg/L	10 (MAC)	NG	0.43	<0.050	< 0.050	0.089	< 0.050	0.13	-	<0.050	0.091	0.15	0.17	< 0.050	< 0.050	<0.050	<0.050	-	<0.050	0.25	0.057	< 0.050	0.18	0.13
Nitrate + Nitrite	mg/L	NG	NG	0.43	< 0.050	< 0.050	0.089	< 0.050	0.13	-	< 0.050	0.091	0.15	0.17	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	0.25	0.057	< 0.050	0.18	0.13
Nitrite (N)	mg/L	1 (MAC)	NG	< 0.010	<0.010	<0.010	<0.010	< 0.010	< 0.010	-	<0.010	<0.010	<0.010	<0.010	< 0.010	< 0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	< 0.010	<0.010	<0.010
Nitrogen (Ammonia Nitrogen)	mg/L	NG	NG	0.13	0.12	0.20	0.13	0.13	0.076	0.097	0.21	0.16	0.065	0.11	0.052	< 0.050	0.086	< 0.050	-	<0.050	<0.050	<0.050	< 0.050	<0.050	< 0.050
Orthophosphate (P)	mg/L	NG	NG	0.013	0.015	0.019	0.018	< 0.010	0.026	-	0.033	0.058	0.031	0.027	0.022	0.029	0.034	0.023	0.022	0.038	<0.010	0.012	0.016	0.011	<0.010
рН	рН	7-10.5	NG	7.27	7.56	7.42	7.43	7.41	7.07	-	8.09	7.64	7.38	7.39	6.86	7.47	6.92	6.60	-	6.48	6.76	6.52	6.20	5.89	5.91
Reactive Silica (SiO2)	mg/L	NG	NG	21	22	21	22	21	23	-	18	21	21	21	26	24	25	21	21	19	14	13	13	6.6	11
Saturation pH (@ 20C)	N/A	NG	NG	8.51	8.58	8.67	8.56	8.56	8.04	-	7.34	7.85	7.72	7.64	7.81	7.64	7.57	7.93	-	8.04	8.59	8.92	8.74	9.53	9.18
Saturation pH (@ 4C)	N/A	NG	NG	8.76	8.83	8.92	8.81	8.82	8.29	-	7.59	8.10	7.97	7.89	8.06	7.89	7.82	8.18	-	8.29	8.84	9.18	8.99	9.78	9.43
Total Alkalinity (Total as CaCO3)	mg/L	NG	NG	51	55	63	61	55	99	-	150	120	150	150 (2)	120	150	160	110	110	100 (2)	50	27	34	13	20
Total Organic Carbon (C)	mg/L	NG	NG	<25 (1)	<50(1)	<25 (1)	<50 (1)	<50 (1)	<5.0 (1)		29 (1)	<50 (1)	<5.0 (1)	<25 (1)	4.2 (1)	<50 (1)	<50 (1)	5.8 (1)		<25 (1)	<50 (1)	<5.0 (1)	2.6	<5.0 (1)	2.8
Turbidity	NTU	1 (MAC) ³	NG	250	>1000	>1000	>1000	>1000	130	-	550	>1000	>1000	>1000	210	>1000	>1000	>1000	-	870	>1000	750	630	>1000	470

Notes:

AO - Aesthetic Objective

MAC - Maximum Acceptable Concentration

NG - no guideline

value - exceeds Health Canada DWQG <u>value</u> - exceeds NSE EQS

¹ 2017 Health Canada Canadian Water Quality Guidelines for Community (Drinking) Water (HCDWQ)

 $^{^{2}}$ 2013 NSE Tier 1 Environmental Quality Standards (EQS) for potable water at a residential site with coarse-grained soil

³ For municipal treatment systems only

⁽¹⁾ Reporting limit was increased due to turbidity.

⁽²⁾ Elevated reporting limit due to sample matrix.

⁽³⁾ Analysis performed on decanted sample due to sediment content.

		Health Canada												Ç	Sample ID Date												
PARAMETER	UNITS	Drinking Water	NSE Tier 1 EQS ²					MW10								MW11							М	N12			
		Guidelines ¹		20-Mar-16	MW-DUP 20-Mar-16	Lab-Dup 20- Mar-16	15-Jul-16	1-Nov-16	Lab-Dup 1 Nov-16	31-Jan-17	26-Apr-17	Lab-Dup 26-Apr-17	4-Nov-05	20-Mar-16	Lab-Dup 20-Mar-16	15-Jul-16	1-Nov-16	31-Jan-17	26-Apr-17	4-Nov-05	20-Mar-16	Lab-Dup 20-Mar-16	15-Jul-16	1-Nov-16	31-Jan-17	26-Apr-17	Lab-Dup 26 Apr-17
Field pH	рН	7-10.5	NG	7.01	-	-	6.33	6.36	-	6.38	6.12	-	-	5.97	-	5.25	5.6	5.84	6.7	-	6.19	-	6.26	5.8	6.6	6.61	-
Field Conductivity	uS/cm	NG	NG	697	-	-	510	867	-	365	147	-	-	94	-	92	153	339	90	-	196	-	339	308	150	71	-
Field Temperature	°C	NG	NG	6.86	-	-	16.24	14.22	-	5.63	8.82	=	-	4.75	-	16.14	12.63	4.22	7.57	-	5.85	-	16.8	12.63	4.95	8.35	-
Anion Sum	me/L	NG	NG	11.0	11.1	-	6.62	6.21	-	3.49	3.83	=	4.5	1.67	-	1.17	1.15	3.16	2.39	2.77	2.02	-	1.32	1.18	1.04	0.970	-
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	NG	NG	380	380	-	190	96	-	120	150	-	98	50	-	32	30	29	32	104	22	-	11	7.5	13	18	-
Calculated TDS	mg/L	500 (AO)	NG	610	610	-	370	400	-	220	230	-	269	100	-	83	81	190	140	248	150	-	170	85	86	77	-
Carb. Alkalinity (calc. as CaCO3)	mg/L	NG	NG	<1.0	<1.0	-	<1.0	<1.0	-	<1.0	<1.0	-	<1.0	<1.0	-	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	<1.0	<1.0	<1.0	<1.0	-
Cation Sum	me/L	NG	NG	10.5	10.5	-	5.84	6.06	-	3.70	4.23	-	4.76	1.58	-	1.10	1.05	2.63	2.08	5.63	2.82	-	4.40	1.14	1.56	1.34	-
Colour	TCU	≤ 15 (AO)	NG	78	90	-	140	210	-	620	560 (2)	-	6	5.2	-	9.6	<5.0	<5.0	<5.0	87	130	-	91	5.3	<5.0	8.8	-
Conductivity	uS/cm	NG	NG	990	990	-	580	670	-	340	350	-	460	170	170	110	120	350	240	340	210	-	150	160	120	99	99
Chloride (CI)	mg/L	< 250 (AO)	250	110	110	-	85	90	-	26	22	-	75	11	-	6.3	8.0	73	50	21	53	-	39	34	15	12	-
Sulphate (SO4)	mg/L	< 500 (AO)	NG	22	22	-	15	84	-	14	13	-	20	9.3	-	16	14	7.9	13	5.0	4.0	-	<2.0	2.9	17	13	-
Hardness (CaCO3)	mg/L	NG	NG	280	280	-	220	120	-	71	110	-	150	59	-	28	27	100	77	53	19	-	29	21	14	8.1	-
Ion Balance (% Difference)	%	NG	NG	2.51	2.77	-	6.26	1.22	-	2.92	4.96	-	2.83	2.77	-	3.08	4.55	9.15	6.94	34	16.5	-	53.9	1.72	20.0	16.0	-
Langelier Index (@ 20C)	N/A	NG	NG	0.0970	0.139	-	-0.443	-1.18	-	-1.18	-0.857	-	-1.65	-2.38	-	-2.35	-3.00	-2.46	-2.58	-1.91	-3.48	-	-3.48	-4.47	-3.91	-3.81	-
Langelier Index (@ 4C)	N/A	NG	NG	-0.150	-0.108	-	-0.692	-1.43	-	-1.43	-1.11	-	-1.9	-2.63	-	-2.61	-3.26	-2.71	-2.83	-2.16	-3.73	-	-3.73	-4.72	-4.16	-4.07	-
Nitrate (N)	mg/L	10 (MAC)	NG	< 0.050	<0.050	-	0.067	0.39	-	0.093	< 0.050	-	<0.05	2.1	-	0.44	0.36	5.2	1.1	< 0.05	<0.050	-	0.063	<0.050	<0.050	0.069	-
Nitrate + Nitrite	mg/L	NG	NG	< 0.050	< 0.050	-	0.067	0.39	-	0.093	< 0.050	-	< 0.05	2.1	-	0.44	0.36	5.2	1.1	< 0.05	< 0.050	-	0.063	< 0.050	<0.050	0.069	-
Nitrite (N)	mg/L	1 (MAC)	NG	<0.010	<0.010	-	<0.010	<0.010	-	< 0.010	< 0.010	-	< 0.01	<0.010	-	< 0.010	<0.010	<0.010	<0.010	<0.01	< 0.010	-	< 0.010	<0.010	<0.010	<0.010	-
Nitrogen (Ammonia Nitrogen)	mg/L	NG	NG	3.3	3.1	3.2	2.3	0.59	-	0.29	0.54	-	0.1	0.074	-	0.081	< 0.050	<0.050	< 0.050	6.2	1.8	-	2.6	2.7	1.1	1.0	-
Orthophosphate (P)	mg/L	NG	NG	0.015	0.015	-	0.058	0.030	-	0.076	0.10	-	< 0.01	0.064	-	0.024	0.027	0.017	0.016	<0.01	< 0.010	-	0.010	0.016	0.011	<0.010	-
рН	рН	7-10.5	NG	7.15	7.18	-	6.94	6.69	-	6.74	6.81	-	6.2	6.05	-	6.67	6.08	6.03	6.03	6.33	5.83	5.89	5.99	5.26	5.73	5.92	5.92
Reactive Silica (SiO2)	mg/L	NG	NG	18	18	-	17	13	-	8.4	8.3	-	20	8.2	-	17	17	10	12	18	7.3	-	10	17	7.6	7.7	-
Saturation pH (@ 20C)	N/A	NG	NG	7.05	7.04	-	7.38	7.87	-	7.92	7.66	-	7.85	8.43	-	9.03	9.08	8.49	8.61	8.24	9.31	-	9.46	9.73	9.64	9.74	-
Saturation pH (@ 4C)	N/A	NG	NG	7.30	7.29	-	7.63	8.12	-	8.17	7.91	-	8.1	8.68	-	9.28	9.33	8.74	8.86	8.49	9.56	-	9.71	9.98	9.89	9.99	-
Total Alkalinity (Total as CaCO3)	mg/L	NG	NG	380	380	-	190	96	-	120	150 (2)	-	98	50	-	32	30	29	32	100	22	-	11	7.5	13	18	-
Total Organic Carbon (C)	mg/L	NG	NG	52 (1)	49 (1)	-	29(2)	32 (1)	-	37 (1)	36 (1)	-	1.9	<50 (1)	-	<50(1)	<50 (1)	9.9 (1)	<25 (1)	< 0.5	25 (1)	-	23 (1)	<50 (1)	12 (1)	10 (1)	-
Turbidity	NTU	1 (MAC) ³	NG	580	930		24	>1000	>1000	170	230	230	590	>1000	-	>1000	>1000	>1000	>1000	>1000	490	-	>1000	>1000	>1000	470	-

Notes:

AO - Aesthetic Objective

MAC - Maximum Acceptable Concentration

NG - no guideline

value - exceeds Health Canada DWQG

value - exceeds NSE EQS

¹ 2017 Health Canada Canadian Water Quality Guidelines for Community (Drinking) Water (HCDWQ)

 $^{^{2}}$ 2013 NSE Tier 1 Environmental Quality Standards (EQS) for potable water at a residential site with coarse-grained soil

³ For municipal treatment systems only

⁽¹⁾ Reporting limit was increased due to turbidity.

⁽²⁾ Elevated reporting limit due to sample matrix.

⁽³⁾ Analysis performed on decanted sample due to sediment content.

													SAMPLE ID									
PARAMETER	UNITS	Health Canada Drinking Water Guidelines ¹	NSE Tier 1 EQS ²			MW1S						MW1D							MW2S			
		Guidellines		20-Mar-16	15-Jul-16	1-Nov-16	31-Jan-17	26-Apr-17	20-Mar-16	15-Jul-16	1-Nov-16	Lab-Dup 1-Nov-16	31-Jan-17	Lab-Dup 31- Jan-17	26-Apr-17	4-Nov-05	11-Jan-06	20-Mar-16	15-Jul-16	1-Nov-16	31-Jan-17	26-Apr-17
Aluminum	μg/L	100 (OG) ³	NG	110	36	14	39	47	6.4	<5.0	<5.0	-	<5.0	-	<5.0	<10	77	68		14	70	49
Antimony	μg/L	6 (MAC)	6	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	<1.0	-	<1.0	<2.0	<2.0	<1.0		<1.0	<1.0	<1.0
Arsenic	μg/L	10 (MAC)	10	1.5	2.1	1.4	<1.0	1.4	2.7	7.9	7.6	÷	5.3	-	5.0	<2.0	<2.0	<1.0		<1.0	<1.0	<1.0
Barium	μg/L	1000 (MAC)	1000	67	50	43	42	43	260	320	290	÷	290	-	300	<5.0	13	67		28	40	29
Beryllium	μg/L	NG	4	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	=	<1.0	-	<1.0	<2.0	<2.0	<1.0		<1.0	<1.0	<1.0
Bismuth	μg/L	NG	NG	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	=	<2.0	=	<2.0	<2.0	<2	<2.0		<2.0	<2.0	<2.0
Boron	μg/L	5000 (MAC)	5000	<50	<50	<50	<50	<50	<50	<50	<50	-	<50	-	<50	<u>6800</u>	3300	180		350	210	200
Cadmium	μg/L	5 (MAC)	5	0.13	0.20	0.20	0.13	0.11	0.029	< 0.010	<0.010	-	< 0.010	-	0.045	< 0.3	< 0.3	0.037		0.056	0.034	0.034
Calcium	μg/L	NG	NG	33000	37000	50000	22000	20000	97000	120000	120000	-	110000	-	110000	24000	20000	53000		37000	44000	34000
Chromium	μ g/L	50 (MAC)	50	3.9	2.1	<1.0	1.8	1.8	<1.0	<1.0	<1.0	-	<1.0	-	<1.0	<2.0	<2.0	<1.0		<1.0	<1.0	<1.0
Cobalt	μ g/L	NG	10	<u>50</u>	<u>35</u>	<u>25</u>	<u>53</u>	<u>54</u>	2.0	1.5	0.75	-	0.70	-	0.71	<1	6	1.3		2.4	1.5	1.5
Copper	μg/L	≤1000 (AO)	NG	4.0	5.9	23	<2.0	<2.0	<2.0	<2.0	<2.0	-	<2.0	-	17	<2.0	<2.0	13		5.4	10	23
Iron	μg/L	≤300 (AO)	NG	76000	17000	68	54000	70000	<50	140	720	-	<50	-	<50	<50	2700	74		<50	71	58
Lead	μ g/L	-	10	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	<0.50	< 0.50	< 0.50	-	< 0.50	-	< 0.50	<0.5	3	< 0.50		<0.50	< 0.50	< 0.50
Lead (Total)	μ g/L	10 (MAC)	NG	27	26	66	120	55	3.4	1.1	< 0.50	< 0.50	0.75	-	2.7	-	-	7.2		330	17	43
Magnesium	μ g/L	NG	NG	15000	15000	21000	10000	9300	32000	39000	47000	-	39000	-	40000	3900	1800	2400	DRY	6200	2200	1600
Manganese	μg/L	≤50 (AO)	NG	8200	11000	14000	9400	8200	420	660	750	-	630	-	530	5600	2000	1100	DICI	1100	620	610
Mercury	μ g/L	1 (MAC)	1	< 0.013	0.027	< 0.013	0.013	< 0.013	<0.013	< 0.013	< 0.013	< 0.013	< 0.013	< 0.013	< 0.013	-	-	< 0.013		0.035	< 0.013	0.017
Molybdenum	μ g/L	NG	70	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	-	<2.0	-	<2.0	<2.0	<2.0	<2.0		<2.0	<2.0	<2.0
Nickel	μ g/L	NG	100	20	14	14	11	12	7.2	9.4	2.7	-	3.0	-	3.3	<2.0	3	<2.0		3.5	<2.0	<2.0
Phosphorus	μ g/L	NG	NG	<100	<100	<100	<100	<100	<100	<100	<100	-	<100	-	<100	<100	<100	<100		<100	<100	<100
Potassium	μ g/L	NG	NG	7100	6200	5200	5100	5000	11000	11000	11000	=	11000	=	11000	8700	7000	17000		9800	15000	13000
Selenium	μ g/L	50 (MAC)	10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	=	<1.0	=	<1.0	<2.0	<2.0	<1.0		<1.0	<1.0	<1.0
Silver	μ g/L	NG	100	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	-	<0.10	-	<0.10	< 0.5	<0.5	<0.10		<0.10	<0.10	<0.10
Sodium	μ g/L	< 200,000 (AO)	200,000	8400	7300	7600	6100	6000	26000	29000	33000	=	31000	-	29000	25000	13000	40000		12000	27000	21000
Strontium	µg/L	NG	4400	270	300	390	240	220	370	450	470	-	430	-	420	84	49	160		150	130	91
Thallium	μ g/L	NG	2	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	-	<0.10	-	<0.10	<0.1	<0.1	<0.10		<0.10	<0.10	<0.10
Tin	μ g/L	NG	4400	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	-	<2.0	-	<2.0	<2.0	<2.0	<2.0		<2.0	<2.0	<2.0
Titanium	μ g/L	NG	NG	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	-	<2.0	-	<2.0	<2.0	<2.0	<2.0		<2.0	<2.0	<2.0
Uranium	μ g/L	20 (MAC)	20	0.41	0.30	0.91	0.29	0.24	3.1	5.0	4.1	-	3.8	-	3.6	<0.1	<0.1	0.44		0.12	0.30	0.24
Vanadium	μ g/L	NG	6.2	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	-	<2.0	-	<2.0	<2.0	<2.0	<2.0		<2.0	<2.0	<2.0
Zinc	μ g/L	≤5000 (AO)	5000	9.9	5.1	<5.0	<5.0	11	250	31	6.8	-	14	-	58	<5.0	14	<5.0		<5.0	<5.0	5.7

Notes:

AO - Aesthetic Objective

MAC - Maximum Acceptable Concentration

- exceeds Health Canada DWQG
- exceeds NSE EQS

OG - Operational Guideline

NG - no guideline

¹ 2017 Health Canada Canadian Water Quality Guidelines for Community (Drinking) Water (HCDWQ)

² 2013 NSE Tier 1 Environmental Quality Standards (EQS) for potable water at a residential site with coarse-grained soil

³ For municipal treatment systems only; does not apply to naturally occuring aluminum in groundwater

		Health												SAMF	PLE ID										
PARAMETER	UNITS	Canada Drinking Water	NSE Tier 1 EQS ²					MV	/2D							MV	/3S					MW	V3D		
		Guidelines ¹		20-Mar-16	15-Jul-16	MW-DUP 15-Jul-16	1-Nov-16	MW-DUP 1-Nov-16	31-Jan-17	Lab-Dup 31-Jan-17	MW-DUP 31-Jan-17	26-Apr-17	MW-DUP 26-Apr-17	20-Mar-16	15-Jul-16	1-Nov-16	31-Jan-17	25-Apr-17	Lab-Dup 25-Apr-17	20-Mar-16	Lab-Dup 20-Mar-16	15-Jul-16	1-Nov-16	31-Jan-17	25-Apr-17
Aluminum	μ g/L	100 ³	NG	19	<5.0	<5.0	5.1	5.4	<5.0	<5.0	5.5	6.9	<5.0	7.0	6.7	6.4	7.2	6.3	6.0	9.5	10	<5.0	6.0	<5.0	8.3
Antimony	μ g/L	6 (MAC)	6	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Arsenic	μ g/L	10 (MAC)	10	<u>14</u>	8.8	9.1	6.9	6.6	9.7	9.6	9.5	10	10	1.4	<1.0	<1.0	<1.0	1.1	1.1	4.1	4.1	6.4	9.4	2.2	9.0
Barium	μ g/L	1000 (MAC)	1000	24	31	30	31	31	39	39	38	33	32	21	20	17	18	16	15	18	18	23	23	13	18
Beryllium	μ g/L	NG	4	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bismuth	μ g/L	NG	NG	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Boron	μ g/L	5000 (MAC)	5000	850	1000	1000	1100	1100	970	970	970	1100	1100	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
Cadmium	μ g/L	5 (MAC)	5	< 0.010	< 0.010	< 0.010	<0.010	<0.010	< 0.010	<0.010	< 0.010	<0.010	< 0.010	0.084	0.13	0.25	0.11	0.094	0.083	0.014	0.014	< 0.010	< 0.010	0.016	< 0.010
Calcium	μ g/L	NG	NG	23000	25000	25000	26000	26000	26000	26000	26000	26000	26000	63000	68000	62000	55000	58000	57000	26000	26000	40000	43000	30000	36000
Chromium	μ g/L	50 (MAC)	50	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Cobalt	μ g/L	NG	10	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	<u>12</u>	7.9	5.3	7.1	6.4	6.2	4.6	4.6	6.4	5.5	3.4	6.3
Copper	μg/L	≤1000 (AO)	NG	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	2.4	5.3	5.4	4.2	3.4	3.1	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Iron	μg/L	≤300 (AO)	NG	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	310	310	660	1100	73	700
Lead	μ g/L	-	10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	<0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	< 0.50	< 0.50	< 0.50	<0.50	< 0.50
Lead (Total)	μ g/L	10 (MAC)	NG	1.2	2	7.9	1.8	3.5	3.9	-	4.8	12	13	2.1	1.3	73	34	32	-	1	-	1.3	2.4	2.2	2.9
Magnesium	μ g/L	NG	NG	9200	10000	10000	11000	11000	11000	11000	11000	12000	12000	32000	32000	32000	26000	29000	29000	11000	11000	15000	15000	13000	15000
Manganese	μ g/L	≤50 (AO)	NG	12	100	110	61	61	200	190	200	64	66	8000	11000	8700	7900	7800	7700	250	250	450	520	240	420
Mercury	μ g/L	1 (MAC)	1	< 0.013	< 0.013	< 0.013	< 0.013	< 0.013	< 0.013	-	< 0.013	< 0.013	< 0.013	< 0.013	< 0.013	< 0.013	0.022	< 0.013		< 0.013	-	< 0.013	< 0.013	< 0.013	< 0.013
Molybdenum	μ g/L	NG	70	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Nickel	μ g/L	NG	100	2.4	2.9	3.3	3.7	3.5	2.4	2.3	2.3	<2.0	<2.0	11	10	8.0	6.9	7.0	6.8	7.4	7.8	12	8.7	7.6	12
Phosphorus	μ g/L	NG	NG	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100
Potassium	μ g/L	NG	NG	3700	3200	3300	3000	3000	3000	3000	3000	2900	2800	7900	5400	3600	3900	3100	3100	3800	3700	3700	4000	2800	3600
Selenium	μ g/L	50 (MAC)	10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Silver	μ g/L	NG	100	< 0.10	<0.10	< 0.10	<0.10	<0.10	<0.10	<0.10	< 0.10	<0.10	< 0.10	<0.10	< 0.10	<0.10	<0.10	< 0.10	<0.10	<0.10	<0.10	< 0.10	<0.10	<0.10	<0.10
Sodium	μg/L	< 200,000 (AO)	200,000	13000	12000	11000	12000	12000	12000	12000	12000	13000	13000	16000	11000	12000	15000	14000	14000	21000	21000	22000	21000	21000	22000
Strontium	μ g/L	NG	4400	130	150	150	160	160	160	160	160	160	160	410	410	390	350	360	350	150	150	210	220	170	190
Thallium	μg/L	NG	2	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	<0.10	<0.10	< 0.10	<0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	<0.10	<0.10	< 0.10	< 0.10	< 0.10	<0.10	<0.10
Tin	μ g/L	NG	4400	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Titanium	μ g/L	NG	NG	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Uranium	μ g/L	20 (MAC)	20	0.37	0.76	0.78	0.78	0.80	1.1	1.1	1.1	1.2	1.2	0.61	0.96	0.89	0.60	0.60	0.59	0.14	0.12	0.37	0.42	0.16	0.20
Vanadium	μ g/L	NG	6.2	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Zinc	μ g/L	≤5000 (AO)	5000	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	5.5	<5.0	6.1	<5.0	<5.0	<5.0	<5.0	<5.0	91	90	12	9.6	8.0	15

Notes:

NG - no guideline

AO - Aesthetic Objective MAC - Maximum Acceptable Concentration

- exceeds Health Canada DWQG - exceeds Health Cana <u>value</u> - exceeds NSE EQS

¹2017 Health Canada Canadian Water Quality Guidelines for Community (Drinking) Water (HCDWQ)

² 2013 NSE Tier 1 Environmental Quality Standards (EQS) for potable water at a residential site with coarse-grained soil

³ For municipal treatment systems only

		Health												SAMPLE ID										
PARAMETER	UNITS	Canada Drinking Water	NSE Tier 1 EQS ²			MW4S					MW	'4D					MW5					MW6S		
		Guidelines ¹		20-Mar-16	15-Jul-16	1-Nov-16	31-Jan-17	26-Apr-17	20-Mar-16	15-Jul-16	Lab-Dup 15-Jul-16	1-Nov-16	31-Jan-17	26-Apr-17	20-Mar-16	15-Jul-16	1-Nov-16	31-Jan-17	26-Apr-17	20-Mar-16	15-Jul-16	1-Nov-16	31-Jan-17	26-Apr-17
Aluminum	μ g/L	100 ³	NG	82	31	28	97	100	39	24	24	33	36	67	14	120	440	370	86	210	21	8.6	120	86
Antimony	μg/L	6 (MAC)	6	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Arsenic	µg/L	10 (MAC)	10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.5	<1.0	<1.0	2.0	<u>12</u>	<u>13</u>	4.7	<u>11</u>	<u>14</u>	1.8	3.9	7.4	7.4
Barium	µg/L	1000 (MAC)	1000	20	15	13	27	32	11	12	11	10	16	23	33	64	78	47	50	57	77	53	62	55
Beryllium	μg/L	NG	4	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bismuth	μg/L	NG	NG	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Boron	µg/L	5000 (MAC)	5000	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
Cadmium	µg/L	5 (MAC)	5	0.11	0.048	0.065	0.18	0.14	0.025	0.032	0.031	0.043	0.061	0.084	< 0.010	0.028	0.060	0.013	<0.010	0.088	0.15	0.061	0.11	0.15
Calcium	μg/L	NG	NG	9500	5500	6500	9300	8600	5400	5500	5500	4900	8400	10000	16000	24000	31000	20000	20000	39000	110000	150000	70000	54000
Chromium	µg/L	50 (MAC)	50	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2.0	1.2	<1.0	1.9	<1.0	<1.0	3.2	2.6
Cobalt	µg/L	NG	10	<u>38</u>	7.1	6.4	<u>33</u>	<u>26</u>	<u>12</u>	4.3	4.4	3.9	3.5	3.1	1.0	5.1	8.0	4.6	4.6	<u>11</u>	9.9	2.7	<u>13</u>	<u>16</u>
Copper	μg/L	≤1000 (AO)	NG	3.8	<2.0	<2.0	3.1	12	<2.0	<2.0	<2.0	<2.0	<2.0	7.8	<2.0	3.8	7.1	2.1	<2.0	4.1	13	<2.0	<2.0	<2.0
Iron	μg/L	≤300 (AO)	NG	55	<50	<50	54	79	930	220	230	450	380	560	100	340	17000	10000	4700	40000	130	77	39000	45000
Lead	µg/L	-	10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	1.9	0.67	<0.50	0.55	< 0.50	< 0.50	<0.50	< 0.50
Lead (Total)	µg/L	10 (MAC)	NG	22	210	290	190	230	5.9	0.6	-	0.5	0.52	2.3	9.6	8.6	2.5	4.4	14	20	8.5	97	190	600
Magnesium	μg/L	NG	NG	3900	2300	2200	3100	2500	2200	2100	2100	1900	3200	4000	5400	7600	7500	5300	5600	17000	41000	57000	27000	23000
Manganese	μg/L	≤50 (AO)	NG	7000	1200	1800	7100	5000	600	380	380	390	900	2100	390	750	1400	970	980	4600	6500	2900	5700	5200
Mercury	µg/L	1 (MAC)	1	< 0.013	0.062	0.065	0.062	0.037	< 0.013	< 0.013	-	< 0.013	0.015	< 0.013	< 0.013	0.015	< 0.013	< 0.013	< 0.013	< 0.013	0.38	0.077	0.050	0.062
Molybdenum	μg/L	NG	70	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Nickel	μg/L	NG	100	9.6	3.4	4.4	6.5	6.0	6.5	4.8	4.7	3.6	3.6	4.7	<2.0	4.3	9.5	4.8	4.3	11	11	4.1	10	13
Phosphorus	µg/L	NG	NG	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	130	100	<100	<100	<100	<100	<100	<100
Potassium	µg/L	NG	NG	1900	1200	1800	1900	2200	1000	810	810	910	990	1100	5600	7000	13000	9700	6800	6300	8800	5600	6500	6000
Selenium	µg/L	50 (MAC)	10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Silver	µg/L	NG	100	<0.10	< 0.10	<0.10	< 0.10	< 0.10	<0.10	<0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	<0.10	<0.10	<0.10	< 0.10	< 0.10	<0.10	<0.10	<0.10
Sodium	µg/L	< 200,000 (AO)	200,000	6300	4000	4400	6700	5800	5600	6600	6800	7800	10000	10000	14000	12000	14000	12000	12000	24000	22000	33000	29000	21000
Strontium	µg/L	NG	4400	61	37	38	35	34	40	44	44	37	69	86	82	120	140	94	96	250	440	470	330	250
Thallium	μ g/L	NG	2	< 0.10	<0.10	<0.10	< 0.10	<0.10	<0.10	<0.10	<0.10	< 0.10	<0.10	<0.10	< 0.10	<0.10	<0.10	<0.10	<0.10	< 0.10	<0.10	<0.10	<0.10	<0.10
Tin	μg/L	NG	4400	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Titanium	μg/L	NG	NG	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	7.2	6.2	<2.0	4.2	<2.0	<2.0	3.1	2.8
Uranium	μ g/L	20 (MAC)	20	< 0.10	<0.10	<0.10	< 0.10	<0.10	<0.10	<0.10	<0.10	< 0.10	<0.10	<0.10	< 0.10	<0.10	0.18	<0.10	<0.10	0.71	2.3	8.3	2.4	1.5
Vanadium	μ g/L	NG	6.2	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	2.6	<2.0	<2.0	<2.0	<2.0	<2.0	2.9	2.4
Zinc	μg/L	≤5000 (AO)	5000	<5.0	<5.0	<5.0	<5.0	20	11	7.3	6.9	5.9	5.4	19	<5.0	11	59	36	13	8.7	<5.0	<5.0	6.6	7.7

Notes:

AO - Aesthetic Objective MAC - Maximum Acceptable Concentration NG - no guideline - exceeds Health Canada DWQG

<u>value</u> - exceeds NSE EQS

¹2017 Health Canada Canadian Water Quality Guidelines for Community (Drinking) Water (HCDWQ)

² 2013 NSE Tier 1 Environmental Quality Standards (EQS) for potable water at a residential site with coarse-grained soil

³ For municipal treatment systems only

													SAMP	LE ID									
PARAMETER	UNITS	Health Canada Drinking Water Guidelines ¹	NSE Tier 1 EQS ²			MW6D					MW7					MW8					MW9		
		Guidelliles		20-Mar-16	15-Jul-16	1-Nov-16	31-Jan-17	26-Apr-17	20-Mar-16	15-Jul-16	1-Nov-16	31-Jan-17	26-Apr-17	20-Mar-16	15-Jul-16	1-Nov-16	31-Jan-17	26-Apr-17	20-Mar-16	15-Jul-16	1-Nov-16	31-Jan-17	25-Apr-17
Aluminum	μg/L	100 ³	NG	5.4	<5.0	5.6	<5.0	<5.0	7.1	8.8	5.8	<5.0	<5.0	7.1	<5.0	<5.0	5.1	<5.0	8.3	20	23	77	71
Antimony	μg/L	6 (MAC)	6	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Arsenic	μg/L	10 (MAC)	10	1.6	<1.0	<1.0	<1.0	<1.0	1.2	2.4	2.4	1.7	1.8	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Barium	μg/L	1000 (MAC)	1000	8.6	3.4	2.1	2.6	1.8	13	35	12	14	16	32	25	24	16	13	16	22	21	20	19
Beryllium	μg/L	NG	4	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bismuth	μg/L	NG	NG	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Boron	μg/L	5000 (MAC)	5000	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
Cadmium	μg/L	5 (MAC)	5	<0.010	<0.010	0.032	<0.010	<0.010	0.020	0.034	0.015	0.021	0.022	0.076	0.036	0.066	0.057	0.045	0.058	0.10	0.14	0.14	0.10
Calcium	μ g/L	NG	NG	14000	11000	7700	10000	11000	21000	78000	29000	31000	37000	33000	38000	41000	25000	21000	12000	9700	12000	4800	7300
Chromium	μ g/L	50 (MAC)	50	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Cobalt	μ g/L	NG	10	0.74	< 0.40	< 0.40	< 0.40	<0.40	0.61	3.5	< 0.40	< 0.40	0.74	6.4	4.7	3.8	4.3	3.7	<u>53</u>	<u>20</u>	<u>11</u>	4.2	8.1
Copper	μg/L	≤1000 (AO)	NG	<2.0	<2.0	<2.0	<2.0	4.3	<2.0	5.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Iron	μg/L	≤300 (AO)	NG	300	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
Lead	μg/L	-	10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50	0.94	<0.50	<0.50	<0.50	< 0.50
Lead (Total)	μg/L	10 (MAC)	NG	5.9	25	39	21	34	1.4	110	220	20	62	0.93	56	120	16	8.8	79	<0.50	< 0.50	0.58	<0.50
Magnesium	μg/L	NG	NG	3600	2800	2100	2600	3000	9000	18000	7900	10000	11000	10000	8800	8800	7700	7000	7100	4700	5500	2800	4200
Manganese	μg/L	≤50 (AO)	NG	110	62	32	38	41	100	1900	170	140	220	890	990	1000	820	520	2000	2600	1700	3100	2500
Mercury	μg/L	1 (MAC)	1	<0.013	0.023	< 0.013	<0.013	< 0.013	<0.013	0.27	0.028	0.013	0.022	<0.013	0.043	0.042	<0.013	<0.013	0.55	0.018	<0.013	<0.013	0.013
Molybdenum	μg/L	NG	70	2.1	3.5	2.9	2.9	2.2	<2.0	2.9	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Nickel	μg/L	NG	100	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	9.2	<2.0	<2.0	<2.0	6.4	4.4	3.5	5.1	3.9	21	9.9	6.6	2.3	5.7
Phosphorus	μ g/L	NG	NG	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100
Potassium	μ g/L	NG	NG	1200	320	370	570	320	2700	7900	3400	2600	2800	6800	2600	2500	1900	1600	3500	1200	1100	1100	970
Selenium	μ g/L	50 (MAC)	10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Silver	μg/L	NG	100	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Sodium	μg/L	< 200,000 (AO)	200,000	21000	23000	25000	22000	18000	14000	14000	12000	13000	13000	35000	18000	18000	17000	16000	15000	12000	13000	9300	12000
Strontium	μg/L	NG	4400	62	46	34	44	43	84	260	96	110	120	180	170	160	140	120	89	60	70	27	51
Thallium	μg/L	NG	2	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Tin	μg/L	NG	4400	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Titanium	μg/L	NG	NG	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Uranium	μg/L	20 (MAC)	20	0.20	0.16	0.25	0.16	<0.10	0.23	0.48	0.69	0.52	0.85	0.14	0.12	0.22	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Vanadium	μg/L	NG	6.2	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Zinc	μg/L	≤5000 (AO)	5000	11	<5.0	<5.0	<5.0	<5.0	6.5	<5.0	<5.0	<5.0	<5.0	13	<5.0	<5.0	5.1	<5.0	5.9	5.8	5.3	<5.0	<5.0

Notes:

AO - Aesthetic Objective MAC - Maximum Acceptable Concentration NG - no guideline

exceeds Health Canada DWQG <u>value</u> - exceeds NSE EQS

¹ 2017 Health Canada Canadian Water Quality Guidelines for Community (Drinking) Water (HCDWQ)

² 2013 NSE Tier 1 Environmental Quality Standards (EQS) for potable water at a residential site with coarse-grained soil

³ For municipal treatment systems only

		Haalib Canada											SAMPLE ID									
PARAMETER	UNITS	Health Canada Drinking Water	NSE Tier 1 EQS ²			MV	/10					MW	/11						MW12			
		Guidelines ¹		20-Mar-16	MW-DUP 20-Mar-16	15-Jul-16	1-Nov-16	31-Jan-17	26-Apr-17	4-Nov-05	20-Mar-16	15-Jul-16	1-Nov-16	31-Jan-17	26-Apr-17	4-Nov-05	20-Mar-16	Lab-Dup 20-Mar-16	15-Jul-16	1-Nov-16	31-Jan-17	26-Apr-17
Aluminum	μg/L	100 ³	NG	75	55	75	300	730	460	24	140	30	30	68	34	47	140	150	89	74	51	53
Antimony	μg/L	6 (MAC)	6	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<2	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Arsenic	μg/L	10 (MAC)	10	5.0	4.8	8.9	4.6	<u>11</u>	5.2	<2	<1.0	<1.0	<1.0	<1.0	<1.0	<u>49</u>	6.5	6.4	<u>30</u>	1.2	1.1	1.5
Barium	μg/L	1000 (MAC)	1000	91	88	40	110	46	38	46	32	9.2	7.7	23	19	81	32	32	48	49	26	15
Beryllium	μ g/L	NG	4	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<2	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bismuth	μg/L	NG	NG	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Boron	μg/L	5000 (MAC)	5000	95	95	<50	130	<50	62	27	<50	<50	<50	<50	<50	120	<50	<50	<50	<50	<50	<50
Cadmium	μg/L	5 (MAC)	5	<0.010	0.017	0.038	0.18	0.16	<0.10 (1)	<0.3	0.087	0.045	0.050	0.23	0.17	<0.3	0.056	0.061	<0.010	0.24	0.056	0.015
Calcium	μ g/L	NG	NG	73000	73000	59000	39000	24000	37000	34000	16000	6400	5900	27000	18000	14000	5200	5200	7700	5400	3800	2200
Chromium	μ g/L	50 (MAC)	50	<1.0	<1.0	1.7	1.7	2.1	1.4	<2	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0	2.0	1.9	2.9	<1.0	<1.0	1.1
Cobalt	μ g/L	NG	10	<u>19</u>	<u>19</u>	<u>52</u>	<u>14</u>	<u>11</u>	9.7	<u>15</u>	1.3	1.1	0.93	1.9	1.5	<u>56</u>	<u>13</u>	<u>13</u>	<u>28</u>	<u>31</u>	<u>12</u>	7.2
Copper	μg/L	≤1000 (AO)	NG	4.4	4.3	2.0	42	24	8.0	3.0	3.2	<2.0	<2.0	2.1	<2.0	4.0	5.6	5.7	<2.0	33	2.1	<2.0
Iron	μ g/L	≤300 (AO)	NG	290	190	7400	1300	6700	12000	260	<50	<50	<50	<50	<50	63000	46000	45000	84000	82	15000	12000
Lead	μ g/L	-	10	<0.50	< 0.50	<0.50	1.1	2.6	2.0	<0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.5	0.58	<0.50	<0.50	<0.50	<0.50	<0.50
Lead (Total)	μ g/L	10 (MAC)	NG	2.8	3.9	0.76	23	5.0	5.3	-	70	44	100	40	52	-	2.2	-	19	38	36	9.4
Magnesium	μ g/L	NG	NG	25000	25000	18000	6100	2800	4400	16000	4400	3000	3100	8600	7700	4.5	1600	1600	2400	1800	1000	640
Manganese	μ g/L	≤50 (AO)	NG	5200	5200	19000	4300	1600	1500	1300	3900	1100	970	8400	5200	2900	880	870	1400	1300	680	420
Mercury	μ g/L	1 (MAC)	1	< 0.013	<0.013	< 0.013	< 0.013	0.033	0.017	=	0.75	0.83	0.83	0.36	0.11	-	< 0.013	-	0.028	0.020	0.017	<0.013
Molybdenum	μ g/L	NG	70	2.4	2.4	<2.0	<2.0	<2.0	<2.0	<2	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Nickel	μ g/L	NG	100	12	12	12	7.7	7.6	6.7	12	<2.0	<2.0	<2.0	<2.0	<2.0	19	3.4	3.1	8.6	15	5.5	3.5
Phosphorus	μ g/L	NG	NG	<100	<100	100	<100	140	150	<100	270	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100
Potassium	μ g/L	NG	NG	48000	48000	9300	41000	30000	23000	6400	1100	810	810	930	810	17000	2500	2600	3900	4500	2600	2400
Selenium	μ g/L	50 (MAC)	10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<2	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Silver	μ g/L	NG	100	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.5	<0.10	<0.10	<0.10	<0.10	<0.10	<0.5	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Sodium	μg/L	< 200,000 (AO)	200,000	77000	78000	16000	57000	29000	22000	36000	8500	12000	11000	12000	12000	32000	14000	13000	12000	9400	14000	14000
Strontium	µg/L	NG	4400	350	350	330	160	83	120	280	57	46	45	74	80	220	46	45	64	50	40	23
Thallium	μg/L	NG	2	<0.10	<0.10	<0.10	0.12	<0.10	<0.10	<0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
lin	μg/L	NG	4400	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	3	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Titanium	μg/L	NG	NG	2.5	2.5	<2.0	7.7	23	17	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Uranium	μg/L	20 (MAC)	20	1.8	2.1	0.22	0.60	0.55	0.45	<0.1	<0.10	<0.10	<0.10	<0.10	<0.10	0.3	0.21	0.21	0.37	0.30	0.20	0.26
Vanadium	μ g/L	NG	6.2	<2.0	<2.0	<2.0	<2.0	5.6	4.6	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	3.9	<2.0	<2.0	<2.0
Zinc	μ g/L	≤5000 (AO)	5000	8.3	7.5	15	47	110	18	25.0	20	<5.0	<5.0	5.4	<5.0	27	38	36	13	110	17	10

Notes:

AO - Aesthetic Objective MAC - Maximum Acceptable Concentration NG - no guideline

- exceeds Health Canada DWQG <u>value</u> - exceeds NSE EQS

¹2017 Health Canada Canadian Water Quality Guidelines for Community (Drinking) Water (HCDWQ)

² 2013 NSE Tier 1 Environmental Quality Standards (EQS) for potable water at a residential site with coarse-grained soil

³ For municipal treatment systems only

PARAMETER UNITS CCME FAL NSE Tier 1 EOS 2-Feb-16 Lab Dup 2-Feb-16 14-Mar-16 15-Jul-16 31-Oct-16 31-Jan-17 26-Apr-17 2-Feb-16 14-Mar-16 14-Jul-16 31-Oct-16 14-Mar-16 14-Jul-16 14-Mar-16 14-Jul-16 14-Jul-16 14-Mar-16 14-Jul-16 14-Jul-16 14-Mar-16 14-Jul-16 14-Mar-16 14-Jul-16 14-Mar-16 14-Jul-16 14-Mar-16 14-Jul-16 14-Jul-16 14-Mar-16 14-Mar	.78 4.6 65 43	6.29	Feb-16	4-Mar-16 Lab Du 14-Mar-	Oup 15 Jul 16	SW3 , Lab Dup				
Field PH PH 6.5-9.0 NG	.78 4.6 65 43	6.29	Feb-16 14			Lab Dun				
Field Conductivity uS/cm NG NG 63 - 83 DRY 197 71 52 46 38 56 155 - 65 Field Temperature °C NG NG 2.85 - 3.24 9.35 2.02 6.77 2.91 3.41 13.29 10.23 - 3.36 Field Dissolved Oxygen mg/L varies ³ NG 12.44 - 12.7 5.55 22.61 11.35 10.48 10.19 7.5 5.1 - 11.5	65 43		_		1-10	6 15-Jul-16	1-Nov-16	30-Jan-17	25-Apr-17	Lab-DUP 25-Apr-17
Field Temperature °C NG NG 2.85 - 3.24 DRY 9.35 2.02 6.77 2.91 3.41 13.29 10.23 - 3.36 Field Dissolved Oxygen mg/L varies 3 NG 12.44 - 12.7 5.55 22.61 11.35 10.48 10.19 7.5 5.1 - 11.5		0.2		5.77 -	6.35	<u> </u>	4.81	5.28	5.81	-
Field Imperature *C NG NG 2.85 - 3.24 9.35 2.02 6.17 2.91 3.41 13.29 10.23 - 3.36 Field Dissolved Oxygen mg/L varies 3 NG 12.44 - 12.7 5.55 22.61 11.35 10.48 10.19 7.5 5.1 - 11.5	.36 5.58	93	-	93 -	115	-	312	107	86	-
55		2.56	-	5.03 -	16.76	-	9.02	2.21	9.94	-
Anion Sum me/l NG NG 0.700 - 0.630 1.31 0.420 0.520 0.440 0.460 0.700 0.200	1.5 9.08	10.27	-	13.53 -	5.77	-	4.93	12.69	8.87	-
PARION SUM 1.01 0.770 - 0.030 1.31 0.420 0.030 0.030 0.440 0.440 0.400 - 0.700 - 0.300	380 0.420	1.50	-	1.46 -	1.35	-	2.53	1.01	1.19	-
Bicarb. Alkalinity (calc. as CaCO3) mg/L NG NG <1.0 - <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	1.0 <1.0	39	-	39 -	32	-	9.3	24	31	-
Calculated TDS mg/L NG NG 57 - 49 100 35 42 42 37 43 63 - 30	30 33	99	-	95 -	98	-	180	70	76	-
Carb. Alkalinity (calc. as CaCO3) mg/L NG NG <1.0 - <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	1.0 <1.0	<1.0	-	<1.0 -	<1.0	-	<1.0	<1.0	<1.0	-
Carbanaceous BOD mg/L NG NG <5.0		<5.0	-		-	-	-	-	-	-
Cation Sum me/L NG NG 0.870 - 0.780 1.56 0.620 0.690 0.720 0.640 0.720 1.14 - 0.530	530 0.580	1.68	-	1.66 -	1.57	-	2.29	1.20	1.33	-
Colour TCU Narrative NG 510 590 610 1000 400 580 (1) 310 260 390 390 400 180	80 220 (1)	460	-	410 -	380	-	150	330	430 (1)	-
Conductivity US/cm NG NG 98 - 79 170 75 79 72 60 74 120 - 65	65 69	150	-	140 140	0 130	-	280	110	120	-
Chloride (CI) mg/L 120 NG 24 24 18 23 15 16 16 13 14 18 19 13	13 15	22	-	21 -	16	-	20	16	18	-
Sulphate (SO4) mg/L NG NG 5.5 5.3 5.4 32 <2.0 3.4 3.3 2.5 3.4 13 13 <2.0	2.0 <2.0	3.6	-	3.3 -	12	-	85	2.8	3.3	-
Hardness (CaCO3) mg/L NG NG 5.3 - 4.0 15 3.9 4.9 5.2 6.3 11 21 - 7.2	7.2 8.4	25	-	26 -	24	-	59	24	27	-
lon Balance (% Difference)	6.5 16.0	5.66	-	6.41 -	7.53	-	4.98	8.60	5.56	-
Langelier Index (@ 20C)	NC NC	-2.19	-	-1.88 -	-2.38	-	-3.19	-2.62	-2.27	-
Langelier Index (@ 4C)	NC NC	-2.45	-	-2.13 -	-2.63	-	-3.44	-2.87	-2.52	-
Nitrate (N) mg/L 3 NG 0.056 - 0.051 <0.050 0.050 0.077 0.065 0.13 0.057 <0.050 - <0.050	.050 0.067	0.18	-	0.17 -	0.18	-	0.084	0.087	0.092	-
Nitrate + Nitrite mg/L NG NG 0.056 0.057 0.051 0.050 <0.050 0.050 0.077 0.065 0.13 0.057 <0.050 <0.050 <0.050	.050 0.067	0.18	-	0.17 -	0.18	-	0.084	0.087	0.092	-
Nitrite (N) mg/L 0.06 NG <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.01	.010 <0.010	< 0.010	- «	<0.010 -	< 0.010	-	< 0.010	< 0.010	<0.010	-
Nitrogen (Ammonia Nitrogen) mg/L Varies 4 NG <0.050 - 0.17 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	.050 <0.050	0.14	-	0.11 -	0.12	-	< 0.050	0.091	0.093	-
Orthophosphate (P) mg/L NG NG 0.031 0.032 0.028 0.033 0.017 0.020 0.030 0.023 0.023 0.018 0.017 0.013	0.014	0.044	-	0.033 -	0.058	-	0.028	0.026	0.028	-
Phenol mg/L 0.004 0.004 0.0085 (2) - <0.0005 0.0026 (3)		0.0052 (3)	- <	<0.0025 -	-	-	-	-	-	-
pH pH 6.5-9.0 NG 5.38 - 5.61 4.67 5.05 5.41 5.89 5.86 5.98 5.07 - 5.08	.08 5.43	6.74	-	7.04 7.05	5 6.65	-	6.03	6.53	6.72	-
Phosphorous mg/L $Framework^5$ NG 0.072 0.069 0.069		0.13	0.13		-	-	-	-	-	-
Reactive Silica (SiO2) mg/L NG NG 5.1 5.1 5.2 7.9 4.7 5.6 4.6 4.5 9.8 7.8 7.8 4.4	1.4 5.8	7.0	-	5.4 -	11	-	14	7.8	4.5	-
Saturation pH (@ 20C) N/A NG NG NC - NC	NC NC	8.94	-	8.92 -	9.03	-	9.22	9.15	8.98	-
Saturation pH (@ 4C) N/A NG NG NC	NC NC	9.19	-	9.17 -	9.28	1 -	9.47	9.40	9.23	-
Total Alkalinity (Total as CaCO3) mg/L NG NG <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	5.0 <5.0	39	-	39 -	32	1 -	9.3	24	31	-
Tannins/Lignins mg/L NG NG 7.4 · · · · · · · · · · · · · · · · · · ·		6.2	-		-	-	-	-	-	-
Total Chemical Oxygen Demand mg/L NG NG 110		110	-		-	-	-	-	-	-
Total Kjeldahl Nitrogen mg/L NG NG 3.4 (4) 2.0 (4)		2.9 (4)	-		-	-	-	-	-	-
Total Organic Carbon (C) mg/L NG NG 21 (2) 21 (1) 55 (1) 19 (1) 20 (1) 12 (2) 15 (1) 20 (1) 34 (1) 12 (1)	2 (1) 13 (1)	22 (2)		22 (1) -	30 (1)	-	19 (1)	18 (1)	33 (1)	33 (1)
Total Suspended Solids mg/L NG NG <1.0 <1.0 3.8 28 3.2 - 2 <2.0 - 3.2		26	-		380	360	220	13	370	-
Turbidity NTU Narrative NG 6.0 - 4.2 5.2 1.8 5.1 3.9 2.8 6.5 7.7 7.8 1.6	3.2 <2.0				37	$\overline{}$	160			

Notes:

NG - no guideline

- exceeds CCME guidelines

value
- exceeds NSE EQS

for warm water biota: early life stages = 6 mg/L

for warm water biota: other life stages = 5.5 mg/L

for cold water biota: early life stages = 9.5 mg/L for cold water biota: other life stages = 6.5 mg/L

- (1) Elevated reporting limit due to sample matrix.
- (2) Reporting limit was increased due to turbidity.
- (3) The sample was decanted due to sediment.
- (4) Elevated reporting limit due to blank performance.

ultra-oligotrophic <4

oligotrophic 4-10

mesotrophic 10-20

meso-eutrophic 20-35

eutrophic 35-100

³ 1999 (Update 2015) CCME Canadian Water Quality Guidelines for the Protection of Freshwater Aquatic Life.

² 2013 NSE Tier 1 Environmental Quality Standards (EQS) for fresh water surface water

 $^{^{\}rm 3}$ Lowest acceptable dissolved oxygen concentration:

 $^{^4\,\}text{Ammonia-calculations as per http://st-ts.ccme.ca/en/index.html?lang=en\&factsheet=5\#aql_fresh_concentration.}$

⁵ Canadian Guidance Framework for Phosphorus is for developing phosphorus guidelines (does not provide guidance on other freshwater nutrients). It provides Trigger Ranges for Total Phosphorus (μg/L) (see Guidance Framework for Phosphorus factsheet):

														:	SAMPLE ID											
PARAMETER	UNITS	CCME FAL ¹	NSE Tier 1 EQS ²			SI	W4					S'	W5					SI	V6					SW7		
				14-Mar-16	15-Jul-16	Lab Dup 15 Jul-16	31-Oct-16	31-Jan-17	26-Apr-17	14-Mar-16	14-Jul-16	1-Nov-16	30-Jan-17	25-Apr-17	Lab-DUP 25-Apr-17	14-Mar-16	15-Jul-16	31-Oct-16	Lab-DUP 1-Nov-16	31-Jan-16	26-Apr-17	14-Mar-16	14-Jul-16	31-Oct-16	30-Jan-17	25-Apr-17
Field pH	pН	6.5-9.0	NG	5.42	6.19	-	5.35	5.85	6.17	6.8	6.06	4.97	5.42	5.33	-	7.22		5.56	-	5.77	6.14	5.19	6.43	4.7	6.23	5.49
Field Conductivity	uS/cm	NG	NG	143	236	-	577	112	115	139	144	245	102	77	-	990	DDV	246	-	120	86	36	61	140	62	42
Field Temperature	°C	NG	NG	4.36	15.32	-	10.11	2.4	8.35	4.4	19.4	7.74	2.17	9.65	-	7.24	DRY	10.14	-	1.52	10.02	3.59	14.85	9.96	3.02	5.72
Field Dissolved Oxygen	mg/L	varies 3	NG	12.17	10.2	-	5.74	21.46	10.95	9.7	7.07	5.2	16.65	13.21	-	14.5		6.9	-	24.15	11.49	10.19	8.4	7.54	12.96	11.19
Anion Sum	me/L	NG	NG	1.21	2.82	-	4.41	0.870	1.41	1.30	1.46	1.96	0.830	1.02	-	1.43		1.79	-	1.05	1.07	0.410	0.550	0.760	0.380	0.450
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	NG	NG	<1.0	27	-	7.7	<1.0	9.2	34	41	10	19	24	-	25		10	-	16	16	<1.0	5.8	<1.0	<1.0	<1.0
Calculated TDS	mg/L	NG	NG	80	170	-	280	60	89	85	100	140	59	61	-	89		120	-	70	64	34	48	64	29	35
Carb. Alkalinity (calc. as CaCO3)	mg/L	NG	NG	<1.0	<1.0	-	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	<1.0		<1.0	-	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Carbanaceous BOD	mg/L	NG	NG	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-
Cation Sum	me/L	NG	NG	1.32	2.93	-	5.01	1.05	1.52	1.46	1.96	1.91	1.05	1.12	-	1.51		1.78	-	1.22	1.10	0.590	0.790	1.16	0.510	0.550
Colour	TCU	Narrative	NG	420	31	-	11	230	220 (1)	360	400	120	270	320 (1)	-	230		38	-	160	110 (1)	250	320	400	180	240 (1)
Conductivity	uS/cm	NG	NG	130	280	-	490	130	170	130	150	220	100	110	-	140		210	-	130	120	58	74	120	64	69
Chloride (CI)	mg/L	120	NG	40	77	-	140	30	40	19	20	15	16	17	-	29		20	-	25	24	13	13	18	13	14
Sulphate (SO4)	mg/L	NG	NG	3.4	5.3	-	21	<2.0	3.5	2.9	3.5	63	<2.0	2.6	-	3.1		49	-	<2.0	3.0	2.5	3.6	13	<2.0	2.1
Hardness (CaCO3)	mg/L	NG	NG	12	44	-	76	11	17	23	34	49	21	23	-	22		36	-	21	15	5.3	13	23	7.0	8.5
Ion Balance (% Difference)	%	NG	NG	4.35	1.91	-	6.37	9.38	3.75	5.80	14.6	1.29	11.7	4.67	-	2.72		0.280	-	7.49	1.38	18.0	17.9	20.8	14.6	10.0
Langelier Index (@ 20C)	N/A	NG	NG	NC	-1.82	-	-2.85	NC	-3.35	-2.03	-1.28	-3.05	-2.76	-2.28	-	-1.97		-2.61	-	-2.46	-2.58	NC	-3.91	NC	NC	NC
Langelier Index (@ 4C)	N/A	NG	NG	NC	-2.07	-	-3.10	NC	-3.61	-2.29	-1.53	-3.30	-3.02	-2.53	-	-2.22		-2.86	-	-2.71	-2.83	NC	-4.16	NC	NC	NC
Nitrate (N)	mg/L	3	NG	0.31	0.084	-	0.14	0.41	0.41	0.35	0.095	0.23	0.19	< 0.050	-	0.31		0.062	-	0.21	0.096	< 0.050	< 0.050	0.062	< 0.050	0.057
Nitrate + Nitrite	mg/L	NG	NG	0.31	0.084	-	0.14	0.41	0.41	0.35	0.095	0.23	0.19	< 0.050	-	0.31	DDV	0.062	-	0.21	0.096	< 0.050	< 0.050	0.062	< 0.050	0.057
Nitrite (N)	mg/L	0.06	NG	< 0.010	< 0.010	-	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	<0.010	-	< 0.010	DRY	< 0.010	-	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Nitrogen (Ammonia Nitrogen)	mg/L	Varies 4	NG	< 0.050	0.068	-	0.10	< 0.050	< 0.050	0.078	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	0.058		< 0.050	-	< 0.050	< 0.050	0.14	< 0.050	< 0.050	< 0.050	< 0.050
Orthophosphate (P)	mg/L	NG	NG	0.018	0.011	-	0.012	0.013	0.011	0.032	0.030	0.014	0.020	0.015	-	0.022		0.013	-	0.018	0.011	0.016	0.020	0.017	0.011	0.011
Phenol	mg/L	0.004	0.004	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-
рН	pН	6.5-9.0	NG	6.00	7.13	-	6.43	5.82	6.43	7.00	7.52	6.19	6.55	6.88	-	7.21		6.75	-	6.93	6.94	6.16	6.21	5.29	5.54	5.52
Phosphorous	mg/L	Framework ⁵	NG	-	-	-	-	-	-	-	-	-	-	-	-	-		-	<100	-	-	-	-	-	-	-
Reactive Silica (SiO2)	mg/L	NG	NG	5.1	6.8	-	8.2	4.7	3.9	5.4	6.6	9.5	7.1	0.69	-	4.7		7.5	-	6.4	2.3	4.6	11	8.3	4.5	6.1
Saturation pH (@ 20C)	N/A	NG	NG	NC	8.96	-	9.28	NC	9.78	9.03	8.79	9.24	9.32	9.16	-	9.18		9.36	-	9.39	9.52	NC	10.1	NC	NC	NC
Saturation pH (@ 4C)	N/A	NG	NG	NC	9.21	-	9.53	NC	10.0	9.28	9.05	9.49	9.57	9.41	-	9.43		9.62	-	9.64	9.77	NC	10.4	NC	NC	NC
Total Alkalinity (Total as CaCO3)	mg/L	NG	NG	<5.0	27	-	7.7	<5.0	9.2	34	41	10	19	24	-	26		10	-	16	16	<5.0	5.8	<5.0	<5.0	<5.0
Tannins/Lignins	mg/L	NG	NG	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-
Total Chemical Oxygen Demand	mg/L	NG	NG	-	-	-	-	-	-	-	-	-	-	-	-	-		=	-	-	-	-	-	-	-	-
Total Kjeldahl Nitrogen	mg/L	NG	NG	-	-	-	-	-	-	-	-	-	-	-	-	-		=	-	-	-	-	-	-	-	-
Total Organic Carbon (C)	mg/L	NG	NG	14 (1)	6.7	-	9.8 (1)	11 (1)	12 (1)	19 (1)	30 (1)	13 (1)	22 (1)	23 (1)	-	13 (1)		8.9	9.1	14 (1)	11 (1)	14 (1)	19 (1)	31 (1)	13	12 (1)
Total Suspended Solids	mg/L	NG	NG	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	=	-	-	-	-	-	-
Turbidity	NTU	Narrative	NG	2.7	49	47	40	1.3	4.0	13	12	3.5	6.2	9.2	-	4.7		1.9		1.6	6.3	2.0	3.4	1.6	1.1	1.1
N	_	<u>'</u>	•															1			1					

Notes:

NG - no guideline

- exceeds CCME guidelines
- exceeds NSE EQS

for warm water biota: early life stages = 6 mg/L

for warm water biota: other life stages = 5.5 mg/L

for cold water biota: early life stages = 9.5 mg/L for cold water biota: other life stages = 6.5 mg/L

- (1) Elevated reporting limit due to sample matrix.
- (2) Reporting limit was increased due to turbidity.
- (3) The sample was decanted due to sediment.
- (4) Elevated reporting limit due to blank performance.

ultra-oligotrophic <4

oligotrophic 4-10

mesotrophic 10-20

meso-eutrophic 20-35

eutrophic 35-100

³ 1999 (Update 2015) CCME Canadian Water Quality Guidelines for the Protection of Freshwater Aquatic Life.

² 2013 NSE Tier 1 Environmental Quality Standards (EQS) for fresh water surface water

³ Lowest acceptable dissolved oxygen concentration:

 $^{^4\,\}text{Ammonia-calculations as per http://st-ts.ccme.ca/en/index.html?lang=en\&factsheet=5\#aql_fresh_concentration.}$

⁵ Canadian Guidance Framework for Phosphorus is for developing phosphorus guidelines (does not provide guidance on other freshwater nutrients).
It provides Trigger Ranges for Total Phosphorus (µg/L) (see Guidance Framework for Phosphorus factsheet):

															SAMPLE ID											
PARAMETER	UNITS	CCME FAL ¹	NSE Tier 1 EQS ²			SW8								SW	9								SV	V10		
				14-Mar-16	14-Jul-16	1-Nov-16	30-Jan-1	25-Apr-17	14-Mar-16	SW-DUP 14-Mar-16	14-Jul-16	SW-DUP1 14-Jul-16	31-Oct-16	SW-DUP1 31-Oct-16	30-Jan-17	Lab-Dup 30-Jan-17	SW-DUP1 30-Jan-17	Lab-Dup SW-DUP1	25-Apr-17	SW-DUP1 25-Apr-17	16-Mar-16	Lab Dup 16-Mar-16	14-Jul-16	1-Nov-16	30-Jan-17	25-Apr-17
Field pH	рН	6.5-9.0	NG	6.75			4.25	5.19	6.99	-	6.71	-	5.64	-	4.66	-	-	-	5.99	-	3.25	-			3.53	
Field Conductivity	uS/cm	NG	NG	69	DDV	DDV	63	62	232	-	347	-	367	-	82	-	-	-	106	-	37	-	DRY	DDV	81	DRY
Field Temperature	°C	NG	NG	9.83	DRY	DRY	0.69	11.96	6.27	-	17.45	-	9.32	-	1.32	-	-	-	13.98	-	3.37	-	DRY	DRY	3.46	DRY
Field Dissolved Oxygen	mg/L	varies 3	NG	10.13			19.4	8.85	8.38	-	2.05	-	7.3	-	17.56	-	-	-	6.56	-	8.4	-			12.5	1
Anion Sum	me/L	NG	NG	1.05			0.360	0.620	3.77	3.75	3.94	4.04	3.00	3.05	0.810	-	0.750	-	1.20	1.19	0.280	-			0.350	
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	NG	NG	34			<1.0	6.6	130	130	150	150	55	56	25	-	25	-	35	34	<1.0	-			<1.0	1
Calculated TDS	mg/L	NG	NG	63			29	38	590	280	250	240	200	200	50	-	48	-	180	210	20	-			25	1
Carb. Alkalinity (calc. as CaCO3)	mg/L	NG	NG	<1.0			<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	<1.0	-	<1.0	<1.0	<1.0	-			<1.0	1
Carbanaceous BOD	mg/L	NG	NG	-			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-	1
Cation Sum	me/L	NG	NG	1.28			0.640	0.740	18.3	6.14	4.90	4.60	3.17	3.22	0.940	-	0.970	-	5.28	6.41	0.320	-			0.490]
Colour	TCU	Narrative	NG	290			190	200 (1)	880	780	490	560	540	520	150	-	150	-	350 (1)	340 (1)	190	-			220]
Conductivity	uS/cm	NG	NG	100			66	79	380	380	390	390	310	310	94	-	91	-	130	130	54	-			77]
Chloride (CI)	mg/L	120	NG	11			13	14	27	28	34	37	48	49	9.1	-	8.7	-	17	17	9.8	-			12]
Sulphate (SO4)	mg/L	NG	NG	2.2			<2.0	4.1	13	12	<2.0	<2.0	27	27	2.1	-	<2.0	-	<2.0	<2.0	<2.0	-			<2.0]
Hardness (CaCO3)	mg/L	NG	NG	37			15	17	280	110	110	100	41	43	20	-	21	-	100	130	4.1	-			5.3]
Ion Balance (% Difference)	%	NG	NG	9.87			28.0	8.82	65.8	24.2	10.9	6.48	2.76	2.71	7.43	-	12.8	-	63.0	68.7	6.67	-			16.7]
Langelier Index (@ 20C)	N/A	NG	NG	-1.51			NC	-3.64	0.134	-0.397	-0.434	-0.414	-2.30	-2.22	-2.11	-	-2.25	-	-1.44	-1.33	NC	-			NC]
Langelier Index (@ 4C)	N/A	NG	NG	-1.77			NC	-3.89	-0.113	-0.646	-0.683	-0.663	-2.55	-2.47	-2.36	-	-2.50	-	-1.69	-1.58	NC	-			NC]
Nitrate (N)	mg/L	3	NG	< 0.050			< 0.050	< 0.050	0.12	0.23	0.052	0.062	< 0.050	< 0.050	< 0.050	-	< 0.050	-	0.099	0.15	0.051	-			< 0.050]
Nitrate + Nitrite	mg/L	NG	NG	< 0.050	DDV	DRY	< 0.050	< 0.050	0.12	0.23	0.052	0.062	< 0.050	< 0.050	< 0.050	-	< 0.050	-	0.099	0.15	0.051	-	DRY	DRY	< 0.050	DRY
Nitrite (N)	mg/L	0.06	NG	< 0.010	DRY	DKY	< 0.010	< 0.010	< 0.010	<0.010	<0.010	<0.010	<0.010	<0.010	< 0.010	-	<0.010	-	<0.010	< 0.010	<0.010	-	DRY	DKY	<0.010	DRY
Nitrogen (Ammonia Nitrogen)	mg/L	Varies 4	NG	< 0.050			< 0.050	< 0.050	0.20	0.16	0.60	0.67	0.055	0.10	<0.050	< 0.050	< 0.050	-	0.13	0.19	< 0.050	< 0.050			< 0.050	1
Orthophosphate (P)	mg/L	NG	NG	0.31			0.012	0.013	0.33	0.17	0.061	0.068	0.074	0.073	0.040	-	0.041	-	0.11	0.099	0.012	-			0.010	1
Phenol	mg/L	0.004	0.004	-			-	-	< 0.0025	< 0.0005	-	-	-	-	-	-	-	-	-	-	-	-			-	1
рН	рН	6.5-9.0	NG	7.24			5.58	6.22	7.64	7.44	7.37	7.41	6.36	6.40	7.05	-	6.90	-	6.97	6.98	5.31	-			4.10	
Phosphorous	mg/L	Framework ⁵	NG	-			-	-	-	-	-	-	-	290	-	-	-	-	-	-	-	-			-	1
Reactive Silica (SiO2)	mg/L	NG	NG	0.56			2.4	< 0.50	3.5	2.1	7.9	7.9	8.1	7.9	1.1	-	1.1	-	0.79	0.80	3.5	-			3.9	1
Saturation pH (@ 20C)	N/A	NG	NG	8.76			NC	9.86	7.51	7.84	7.80	7.82	8.65	8.62	9.16	-	9.15	-	8.40	8.31	NC	-			NC	1
Saturation pH (@ 4C)	N/A	NG	NG	9.01			NC	10.1	7.75	8.09	8.05	8.07	8.90	8.87	9.41	-	9.40	-	8.65	8.56	NC	-			NC	1
Total Alkalinity (Total as CaCO3)	mg/L	NG	NG	34			<5.0	6.6	140	130	150	150	55	56	25	-	25	-	35	34	<5.0	-			<5.0	1
Tannins/Lignins	mg/L	NG	NG	-	1		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-	1
Total Chemical Oxygen Demand	mg/L	NG	NG	-	1		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-	
Total Kjeldahl Nitrogen	mg/L	NG	NG	-			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-	1
Total Organic Carbon (C)	mg/L	NG	NG	15 (1)			19	17 (1)	72 (1)	41 (1)	43 (1)	49 (1)	28 (1)	29 (1)	18 (1)	-	13 (2)	13 (2)	39 (2)	<50 (2)	16 (1)	-			22 (1)	
Total Suspended Solids	mg/L	NG	NG	-	1		-	-	=	-	-	=	-	-	-	-	-	-	-	-	-	-			-	1
Turbidity	NTU	Narrative	NG	16			2.5	87	170	>1000	55	64	19	27	13	-	33	-	120	120	110	-			1.4	

Notes:

NG - no guideline

value - exceeds CCME guidelines exceeds NSE EQS

for warm water biota: early life stages = 6 mg/L

for warm water biota: other life stages = 5.5 mg/L

for cold water biota: early life stages = 9.5 mg/L for cold water biota: other life stages = 6.5 mg/L

- (1) Elevated reporting limit due to sample matrix.
- (2) Reporting limit was increased due to turbidity.
- (3) The sample was decanted due to sediment.
- (4) Elevated reporting limit due to blank performance.

ultra-oligotrophic <4

oligotrophic 4-10

mesotrophic 10-20

meso-eutrophic 20-35

eutrophic 35-100

³ 1999 (Update 2015) CCME Canadian Water Quality Guidelines for the Protection of Freshwater Aquatic Life.

² 2013 NSE Tier 1 Environmental Quality Standards (EQS) for fresh water surface water

³Lowest acceptable dissolved oxygen concentration:

 $^{^4\,\}text{Ammonia-calculations as per http://st-ts.ccme.ca/en/index.html?lang=en\&factsheet=5\#aql_fresh_concentration.}$

⁵ Canadian Guidance Framework for Phosphorus is for developing phosphorus guidelines (does not provide guidance on other freshwater nutrients). It provides Trigger Ranges for Total Phosphorus (µg/L) (see Guidance Framework for Phosphorus factsheet):

															SAMF	PLE ID										
PARAMETER	UNITS	CCME FAL ¹	NSE Tier 1 EQS ²			SV	V11					SW12				SV	V13				SW14			S	W15	
				16-Mar-16	14-Jul-16	1-Nov-16	Lab-DUP 1-Nov-16	30-Jan-17	25-Apr-17	16-Mar-16	15-Jul-16	1-Nov-16	31-Jan-17	26-Apr-17	14-Jul-16	31-Oct-16	30-Jan-17	25-Apr-17	15-Jul-16	Lab Dup 15 Jul-16	5- 31-Oct-16	31-Jan-17	26-Apr-17	15-Jul-16 31-Oct-16	31-Jan-17	26-Apr-17
Field pH	рН	6.5-9.0	NG	4.26		3.73	-	4.17	4.32	4.88				4.65	4.7	3.99	7.42	5.9	5.87	-	5.52	6.04	6.07	5.49	5.81	5.8
Field Conductivity	uS/cm	NG	NG	54	DRY	189	-	70	33	25	DRY	DDV	EDOZENI	41	50	126	58	32	175	-	372	110	98	251	141	111
Field Temperature	°C	NG	NG	2.98	DKY	9.51	-	3.13	5.15	4.26	DRY	DRY	FROZEN	10.02	18.81	9.5	1.3	10.76	16.48	-	9.64	1.93	8.05	9.11	2.43	7.77
Field Dissolved Oxygen	mg/L	varies 3	NG	9.92		4.92	-	14.6	7.35	11.32				4.4	4.89	3.87	18.9	10.99	4.43	-	7.17	21.19	11.74	5.27	20.86	10.82
Anion Sum	me/L	NG	NG	0.660		1.35	-	0.380	0.560	0.280				0.400	0.370	0.470	0.270	0.280	1.88	-	2.87	0.770	1.20	2.00	1.19	1.52
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	NG	NG	<1.0		<1.0	-	<1.0	<1.0	<1.0				<1.0	<1.0	<1.0	<1.0	<1.0	9.4	-	5.5	<1.0	6.4	6.7	<1.0	5.3
Calculated TDS	mg/L	NG	NG	50		100	-	32	43	21				32	34	43	17	18	110	-	170	55	76	120	75	89
Carb. Alkalinity (calc. as CaCO3)	mg/L	NG	NG	<1.0		<1.0	-	<1.0	<1.0	<1.0				<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Carbanaceous BOD	mg/L	NG	NG	-		-	-	-	-	-				-	-	-	-	-	-	-	-	-	-	-	-	-
Cation Sum	me/L	NG	NG	0.780		1.51	-	0.580	0.670	0.350				0.650	0.550	0.790	0.370	0.370	1.81	-	2.55	0.960	1.28	1.86	1.26	1.40
Colour	TCU	Narrative	NG	740		1100	-	440	720 (1)	220				530 (1)	420	320	19	43	61	-	66	190	200 (1)	16	10	10
Conductivity	uS/cm	NG	NG	84		170	170	72	82	36				63	66	100	45	45	200	-	310	120	150	210	150	170
Chloride (CI)	mg/L	120	NG	19		22	-	14	16	9.7				14	13	15	9.5	9.8	55	-	81	26	35	56	39	46
Sulphate (SO4)	mg/L	NG	NG	5.5		33	-	<2.0	4.6	<2.0				<2.0	<2.0	2.1	<2.0	<2.0	6.0	-	22	<2.0	3.4	14	4.6	5.5
Hardness (CaCO3)	mg/L	NG	NG	3.2		12	-	2.3	3.4	4.5				7.4	4.9	12	5.6	5.6	23	-	41	9.6	13	44	18	22
Ion Balance (% Difference)	%	NG	NG	8.33		5.59	-	20.8	8.94	11.1				23.8	19.6	25.4	15.6	13.9	1.90	-	5.90	11.0	3.23	3.63	2.86	4.11
Langelier Index (@ 20C)	N/A	NG	NG	NC		NC	-	NC	NC	NC				NC	NC	NC	NC	NC	-3.49	-	-3.50	NC	-3.78	-3.44	NC	-3.95
Langelier Index (@ 4C)	N/A	NG	NG	NC		NC	-	NC	NC	NC				NC	NC	NC	NC	NC	-3.74	-	-3.75	NC	-4.03	-3.69	NC	-4.20
Nitrate (N)	mg/L	3	NG	0.069		0.37	-	< 0.050	0.11	< 0.050				< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	-	< 0.050	0.29	0.32	No Access <0.050	< 0.050	0.056
Nitrate + Nitrite	mg/L	NG	NG	0.069	DDV	0.37	-	< 0.050	0.11	< 0.050	DDV	DDV	EDOZENI	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	-	< 0.050	0.29	0.32	< 0.050	< 0.050	0.056
Nitrite (N)	mg/L	0.06	NG	< 0.010	DRY	< 0.010	-	< 0.010	<0.010	< 0.010	DRY	DRY	FROZEN	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	-	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Nitrogen (Ammonia Nitrogen)	mg/L	Varies 4	NG	0.061		0.076	-	< 0.050	< 0.050	< 0.050				0.23	0.065	0.091	< 0.050	< 0.050	0.11	0.13	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Orthophosphate (P)	mg/L	NG	NG	0.029		0.035	-	0.016	0.020	0.011				0.015	0.015	0.014	< 0.010	< 0.010	0.011	-	0.013	0.011	0.010	0.012	< 0.010	< 0.010
Phenol	mg/L	0.004	0.004	-		-	-	-	-	-				-	-	-	-	-	-	-	-	-	-	-	-	-
рН	рН	6.5-9.0	NG	4.94		4.40	4.36	5.12	5.07	5.20				4.70	4.98	4.93	6.05	6.29	6.22	-	6.22	5.93	6.28	6.10	5.87	5.98
Phosphorous	mg/L	Framework ⁵	NG	-		-	-	-	-	-				-	-	<100	-	-	-	-	<100	-	-	<100	-	-
Reactive Silica (SiO2)	mg/L	NG	NG	5.4		7.7	-	3.7	5.0	3.5				3.4	8.4	9.0	< 0.50	0.61	5.8	-	8.6	4.9	4.0	7.6	4.6	4.3
Saturation pH (@ 20C)	N/A	NG	NG	NC		NC	-	NC	NC	NC				NC	NC	NC	NC	NC	9.71	-	9.72	NC	10.1	9.54	NC	9.93
Saturation pH (@ 4C)	N/A	NG	NG	NC		NC	-	NC	NC	NC				NC	NC	NC	NC	NC	9.96	-	9.97	NC	10.3	9.79	NC	10.2
Total Alkalinity (Total as CaCO3)	mg/L	NG	NG	<5.0	1	<5.0	-	<5.0	<5.0	<5.0	1			<5.0	<5.0	<5.0	<5.0	<5.0	9.4	-	5.5	<5.0	6.4	6.7	<5.0	5.3
Tannins/Lignins	mg/L	NG	NG	-	1	-	-	-	-	-	1			-	-	-	-	-	-	-	-	-	-	-	-	-
Total Chemical Oxygen Demand	mg/L	NG	NG	-		-	-	-	-	-				-	-	-	-	-	-	-	-	-	-	-	-	-
Total Kjeldahl Nitrogen	mg/L	NG	NG	-		-	-	-	-	-				-	-	-	-	-	-	-	-	-	-	-	-	-
Total Organic Carbon (C)	mg/L	NG	NG	27 (1)		58 (1)	-	20 (1)	25 (1)	16 (1)				34 (1)	23 (1)	31(1)	3.3	5.5	7.9	-	6.9	11 (1)	12 (1)	3.2	3.0	3.2
Total Suspended Solids	mg/L	NG	NG	-		-	-	-	-	-				-	-	-	-	-	1.2	-	8.2	<1.0	25		-	-
Turbidity	NTU	Narrative	NG	14		3.7	-	2.0	2.7	3.2				22	2.6	1.2	0.50	4.2	1.4	-	0.9	0.85	2.6	1.1	0.29	6.9

Notes:

NG - no guideline

- exceeds CCME guidelines

value
- exceeds NSE EQS

for warm water biota: early life stages = 6 mg/L

for warm water biota: other life stages = 5.5 mg/L

for cold water biota: early life stages = 9.5 mg/L for cold water biota: other life stages = 6.5 mg/L

- (1) Elevated reporting limit due to sample matrix.
- (2) Reporting limit was increased due to turbidity.
- (3) The sample was decanted due to sediment.
- (4) Elevated reporting limit due to blank performance.

ultra-oligotrophic <4

oligotrophic 4-10

mesotrophic 10-20

meso-eutrophic 20-35

eutrophic 35-100

³ 1999 (Update 2015) CCME Canadian Water Quality Guidelines for the Protection of Freshwater Aquatic Life.

² 2013 NSE Tier 1 Environmental Quality Standards (EQS) for fresh water surface water

³ Lowest acceptable dissolved oxygen concentration:

 $^{^4\,\}text{Ammonia-calculations as per http://st-ts.ccme.ca/en/index.html?lang=en\&factsheet=5\#aql_fresh_concentration.}$

⁵ Canadian Guidance Framework for Phosphorus is for developing phosphorus guidelines (does not provide guidance on other freshwater nutrients). It provides Trigger Ranges for Total Phosphorus (μg/L) (see Guidance Framework for Phosphorus factsheet):

																SAMP	PLE ID												
PARAMETER	UNITS	CCME FAL ¹	NSE Tier 1 EQS ²			SW16				В	BACKGROU	ND						E	BACK2								P1A		
				15-Jul-16	2-Nov-16	31-Jan-17	Lab-Dup 30-Jan-17	26-Apr-17	16-Mar-16	14-Jul-16	1-Nov-16	30-Jan-17	25-Apr-17	14-Jul-16	SW-DUP2 14-Jul-16	Lab Dup 14-Jul-16	1-Nov-16	SW-DUP2 1-Nov-16	30-Jan-17	SW-DUP2 30-Jan-17	SW-DUP2 30-Jan-17	25-Apr-17	SW-DUP2 25-Apr-17	Lab Dup 25-Apr-17	19-Mar-16	15-Jul-16	1-Nov-16	30-Jan-17	25-Apr-17
Field pH	pН	6.5-9.0	NG		4.48	5.99	-	5.27	5.73					5.68	-	-	5.27	-	5.64	-	-	6.5	-	-	6.03		4.92	4.88	5.24
Field Conductivity	uS/cm	NG	NG		124	73	-	56	33	DRY	DRY	DRY	DRY	73	-	-	137	-	73	-	-	62	-	-	78	NR	291	111	88
Field Temperature	°C	NG	NG		8.27	0.91	-	7.08	5.19	DIVI	DIXI	DICI	DICT	18.12	-	-	9.14	-	3	-	-	10.29	-	-	6.33	INIX	10.24	3.18	8.77
Field Dissolved Oxygen	mg/L	varies 3	NG		4.43	20.28	-	6.27	12.85					8.77	-	-	8.47	-	19.29	-	-	11.29	-	-	10.45		3.1	10.16	4.5
Anion Sum	me/L	NG	NG		0.670	0.540		0.700	0.320					0.810	0.770		1.27	1.46	0.520	0.510	-	0.640	0.580	-	1.07	0.820	2.13	0.900	1.11
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	NG	NG		5.3	<1.0	-	5.3	<1.0					11	11	-	5.2	5.3	<1.0	<1.0	-	<1.0	<1.0	-	25	20	11	19	30
Calculated TDS	mg/L	NG	NG		46	40	-	46	22					60	58	-	87	93	37	38	-	43	40	-	110	210	160	61	85
Carb. Alkalinity (calc. as CaCO3)	mg/L	NG	NG		<1.0	<1.0	-	<1.0	<1.0					<1.0	<1.0	-	<1.0	<1.0	<1.0	<1.0	-	<1.0	<1.0	-	<1.0	<1.0	<1.0	<1.0	<1.0
Carbanaceous BOD	mg/L	NG	NG		-	-	-	-	-					-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Cation Sum	me/L	NG	NG		0.8	0.740	-	0.820	0.330					0.870	0.850	-	1.23	1.2	0.610	0.620	-	0.750	0.760	-	2.82	7.23	2.40	0.980	1.87
Colour	TCU	Narrative	NG		120	110	-	140 (1)	46					230	220	230	99	85	90	89	93	130 (1)	120 (1)	130 (1)	470	340	400	400	540 (1)
Conductivity	uS/cm	NG	NG		90	83	83	88	49					91	87	87	140	160	78	77	-	88	89	89	110	95	240	100	120
Chloride (CI)	mg/L	120	NG		16	19	-	21	11					16	15	15	26	34	18	18	18	21	21	21	17	13	22	16	16
Sulphate (SO4)	mg/L	NG	NG		5.4	<2.0	-	<2.0	<2.0					5.5	5.2	5.1	21.0	20.0	<2.0	<2.0	<2.0	2.2	<2.0	<2.0	3.7	2.4	61.0	2.5	2.5
Hardness (CaCO3)	mg/L	NG	NG		17	12	-	15	3.4					18	18	-	27	26	9.4	9.5	-	11	11	-	40	170	57	17	32
Ion Balance (% Difference)	%	NG	NG		8.84	15.6	-	7.89	1.54					3.57	4.94	-	1.60	9.77	7.96	9.73	-	7.91	13.4	-	45.0	79.6	5.96	4.26	25.5
Langelier Index (@ 20C)	N/A	NG	NG		-4.34	NC	-	-4.13	NC					-2.98	-3.00	-	-3.74	-4.16	NC	NC	-	NC	NC	-	-2.48	-2.22	-3.62	-3.17	-2.79
Langelier Index (@ 4C)	N/A	NG	NG		-4.60	NC	-	-4.39	NC					-3.23	-3.25	-	-3.99	-4.41	NC	NC	-	NC	NC	-	-2.73	-2.47	-3.87	-3.42	-3.04
Nitrate (N)	mg/L	3	NG	No Access	< 0.050	< 0.050	-	0.060	< 0.050					0.30	0.31	-	< 0.050	< 0.050	0.084	0.11	-	< 0.050	< 0.050	-	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Nitrate + Nitrite	mg/L	NG	NG		< 0.050	< 0.050	-	0.060	< 0.050					0.30	0.31	0.32	< 0.050	< 0.050	0.084	0.11	0.061	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Nitrite (N)	mg/L	0.06	NG		< 0.010	< 0.010	-	<0.010	< 0.010	DRY	DRY	DRY	DRY	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Nitrogen (Ammonia Nitrogen)	mg/L	Varies 4	NG		< 0.050	< 0.050	-	< 0.050	0.078					0.085	< 0.050	-	< 0.050	0.061	< 0.050	< 0.050	-	< 0.050	< 0.050	-	0.22	1.1	0.37	0.18	0.26
Orthophosphate (P)	mg/L	NG	NG		0.011	0.011	-	0.011	0.011					0.025	0.024	0.024	0.015	0.015	0.011	0.011	< 0.010	< 0.010	<0.010	0.012	0.025	0.019	0.034	0.026	0.030
Phenol	mg/L	0.004	0.004		-	-	-	-	< 0.0005					-	-	=	-	-	=	-	-	=	-	-	-	-	=	-	-
рН	pH	6.5-9.0	NG		5.72	5.63	5.63	5.94	5.70					6.76	6.75	6.78	6.2	5.78	5.49	5.32	-	6.16	5.86	5.96	6.43	6.15	5.56	6.24	6.13
Phosphorous	mg/L	Framework ⁵	NG		<100	-	-	-	-					-	_	_	<100	<100	-	-	-	-	-	-	-	-	140	-	-
Reactive Silica (SiO2)	mg/L	NG	NG		4.9	4.5	_	4.0	4.1					12	12	12	12	12	6.0	6.0	6.0	2.9	2.6	2.7	5.6	8.9	15.0	7.8	2.8
Saturation pH (@ 20C)	N/A	NG	NG		10.1	NC	_	10.1	NC					9.74	9.74	-	9.94	9.94	NC	NC	-	NC	NC	-	8.91	8.37	9.18	9.41	8.92
Saturation pH (@ 4C)	N/A	NG	NG		10.3	NC NC	_	10.1	NC					9.99	10.0	-	10.2	10.2	NC	NC NC	_	NC	NC NC	-	9.16	8.62	9.43	9.66	9.17
Total Alkalinity (Total as CaCO3)	mg/L	NG	NG		5.3	<5.0	_	5.3	<5.0					11	11	10	5.2	5	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	25	20	11	19	30
Tannins/Lignins	mg/L	NG	NG				_	-	-5.0						-	-		-		-		-5.0	-5.0		-	-	-		-
Total Chemical Oxygen Demand	mg/L	NG	NG			-	_							-	-	-	<u> </u>	-	-	-	<u> </u>	_	-			-	_		-
Total Kjeldahl Nitrogen	mg/L	NG	NG				_	_						_		-	+ -		-	-	 	_	_	_	-	-	_		-
Total Organic Carbon (C)	mg/L	NG	NG		13 (1)	10	_	13 (2)	9.7					12 (1)	11 (1)	-	11	11	7.4	8.7	_	11	11	-	<50 (1)	120 (2)	33 (1)	34 (1)	52 (1)
Total Suspended Solids	mg/L	NG	NG		- 15 (1)	-	_	-						130	<5.0	-	<1.0	3.2	2.2	<1.0	_	<1.0	<1.0	-	-	-	-	-	-
Turbidity	NTU	Narrative	NG		1	0.54	_	14	0.25					16	7.0		0.78	2.0	1.2	1.1	_	0.75	1.2	1.4	330	>1000	17	7.6	47
i di bidity	IVIU	IACHIGING	IVU		<u>'</u>	0.04	-	14	0.23					10	7.0		0.70	۷.۷	1.2	1.1	-	0.73	1.2	1.4	550	/1000	1.7	7.0	7/

Notes:

NG - no guideline

value - exceeds CCME guidelines
value - exceeds NSE EQS

for warm water biota: early life stages = 6 mg/L

for warm water biota: other life stages = 5.5 mg/L for cold water biota: early life stages = 9.5 mg/L

for cold water blota: other life stages = 6.5 mg/L

- (1) Elevated reporting limit due to sample matrix.
- (2) Reporting limit was increased due to turbidity.
- (3) The sample was decanted due to sediment.
- (4) Elevated reporting limit due to blank performance.

ultra-oligotrophic <4

oligotrophic 4-10

mesotrophic 10-20

meso-eutrophic 20-35

eutrophic 35-100

³ 1999 (Update 2015) CCME Canadian Water Quality Guidelines for the Protection of Freshwater Aquatic Life.

² 2013 NSE Tier 1 Environmental Quality Standards (EQS) for fresh water surface water

³Lowest acceptable dissolved oxygen concentration:

 $^{^4\,\}text{Ammonia-calculations as per http://st-ts.ccme.ca/en/index.html?lang=en\&factsheet=5\#aql_fresh_concentration.}$

⁵ Canadian Guidance Framework for Phosphorus is for developing phosphorus guidelines (does not provide guidance on other freshwater nutrients).

It provides Trigger Ranges for Total Phosphorus (μg/L) (see Guidance Framework for Phosphorus factsheet):

														SAN	MPLE ID										
PARAMETER	UNITS	CCME FAL ¹	NSE Tier 1 EQS ²				P1B						P2A					P2B					P3		
				19-Mar-16	Lab-Dup 19-Mar-16	14-Jul-16	1-Nov-16	30-Jan-17	Lab-Dup 30-Jan-17	25-Apr-17	19-Mar-16	14-Jul-16	1-Nov-16	30-Jan-17	25-Apr-17	19-Mar-16	14-Jul-16	1-Nov-16	30-Jan-17	25-Apr-17	19-Mar-16	14-Jul-16	1-Nov-16	30-Jan-17	25-Apr-17
Field pH	pН	6.5-9.0	NG	5.15	-		4.91	4.79	-	4.74	6.5			5.14	5.82	6.03		5.18	4.73	5.9	6.64		5.21	4.55	5.46
Field Conductivity	uS/cm	NG	NG	33	-	DRY	192	86	-	64	90	DDV	DRY	160	187	84	DRY	231	51	53	87	NR	207	77	67
Field Temperature	°C	NG	NG	5.4	-	DRY	9.29	1.62	-	11.33	4.84	DRY	DRY	1.92	10.86	5.59	DRY	9.92	1.41	10.49	3.82	NK	10	2.47	13.31
Field Dissolved Oxygen	mg/L	varies 3	NG	17.49	-		4.3	12.3	-	3.76	8.93			13.28	6.74	7.23		3.7	15.44	4.03	7.23		3.25	13.2	5.57
Anion Sum	me/L	NG	NG	0.380	-		1.28	0.610	-	0.590	1.36			1.21	2.38	0.790		1.63	0.460	0.520	1.34	0.850	1.15	0.550	0.770
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	NG	NG	<1.0	-	1	6.9	<1.0	-	<1.0	46			37	80	15	Ī	8.8	7.7	<1.0	37	9.2	11	7.4	10
Calculated TDS	mg/L	NG	NG	45	-	1	150	43	-	46	84			75	150	63	Ī	140	32	40	88	120	82	45	95
Carb. Alkalinity (calc. as CaCO3)	mg/L	NG	NG	<1.0	-	1	<1.0	<1.0	-	<1.0	<1.0			<1.0	<1.0	<1.0	Ī	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Carbanaceous BOD	mg/L	NG	NG	-	-	1	-	-	-	-	-			-	-	-	Ī	-	-	-	-	-	-	-	-
Cation Sum	me/L	NG	NG	1.31	-	1	3.44	0.700	-	0.990	1.52			1.38	2.71	1.29	Ī	2.76	0.620	0.800	1.56	3.70	1.45	1.01	3.02
Colour	TCU	Narrative	NG	120	-	1	210	210	-	310 (1)	250			190	310 (1)	330	Ī	440	160	540 (1)	560	500	570	220	360 (1)
Conductivity	uS/cm	NG	NG	60	60	1	150	89	-	88	130			140	240	80	Ī	200	59	82	140	110	170	79	91
Chloride (CI)	mg/L	120	NG	14	-	1	13	21	-	21	13			17	25	16	Ī	27	11	18	18	20	25	14	18
Sulphate (SO4)	mg/L	NG	NG	<2.0	-	1	36.0	<2.0	-	<2.0	2.9			<2.0	3.3	2.0	Ī	33.0	<2.0	<2.0	4.7	4.6	9.8	<2.0	2.9
Hardness (CaCO3)	mg/L	NG	NG	36	-		100	9.4	-	17	30			30	54	19		34	12	12	18	110	25	21	88
Ion Balance (% Difference)	%	NG	NG	55.0	-		45.8	6.87	-	25.3	5.56			6.56	6.48	24.0		25.7	14.8	21.2	7.59	62.6	11.5	29.5	59.4
Langelier Index (@ 20C)	N/A	NG	NG	NC	-	1	-4.07	NC	-	NC	-1.54			-1.98	-1.57	-3.03	Ī	-3.80	-3.96	NC	-2.19	-3.08	-3.70	-3.85	-2.92
Langelier Index (@ 4C)	N/A	NG	NG	NC	-	1	-4.32	NC	-	NC	-1.79			-2.24	-1.82	-3.29	Ī	-4.05	-4.21	NC	-2.44	-3.33	-3.95	-4.10	-3.17
Nitrate (N)	mg/L	3	NG	< 0.050	-	1	0.12	0.050	-	< 0.050	< 0.050			< 0.050	< 0.050	< 0.050	Ī	< 0.050	< 0.050	0.081	< 0.050	0.050	< 0.050	< 0.050	< 0.050
Nitrate + Nitrite	mg/L	NG	NG	< 0.050	-	DD./	0.21	0.050	-	< 0.050	< 0.050	0.007	DDV/	<0.050	< 0.050	< 0.050	557	< 0.050	< 0.050	0.081	< 0.050	0.062	< 0.050	< 0.050	< 0.050
Nitrite (N)	mg/L	0.06	NG	<0.010	-	DRY	0.10	< 0.010	-	< 0.010	< 0.010	DRY	DRY	< 0.010	<0.010	< 0.010	DRY	< 0.010	<0.010	<0.010	< 0.010	0.011	<0.010	< 0.010	<0.010
Nitrogen (Ammonia Nitrogen)	mg/L	Varies 4	NG	0.40	-		4.1	0.46	0.47	0.41	0.052			< 0.050	< 0.050	0.072		0.14	< 0.050	< 0.050	0.081	0.37	0.078	0.39	0.15
Orthophosphate (P)	mg/L	NG	NG	< 0.010	-	1	0.038	0.014	-	0.016	0.091			0.044	0.032	0.045	İ	0.052	0.022	0.040	0.13	0.035	0.072	0.022	0.031
Phenol	mg/L	0.004	0.004	-	-	1	-	-	-	-	-			-	-	-	Ī	-	-	-	-	-	-	-	-
рН	рН	6.5-9.0	NG	5.26	-	1	5.07	4.87	-	5.18	7.21			6.87	6.72	6.42	ĺ	5.79	6.02	5.98	6.93	5.84	5.84	5.84	6.01
Phosphorous	mg/L	Framework ⁵	NG NG	-	-	1	5300	-	-	-	-			-	-	-	Ī	1100	-	-	-		310	-	-
Reactive Silica (SiO2)	mg/L	NG	NG	4.1	-	1	22.0	7.0	-	4.0	2.4			3.7	5.2	3.4	İ	5.7	2.2	2.8	2.2	12	5.6	3.5	1.2
Saturation pH (@ 20C)	N/A	NG	NG	NC	-	1	9.14	NC	-	NC	8.75			8.85	8.29	9.46	İ	9.59	9.98	NC	9.12	8.92	9.55	9.68	8.93
Saturation pH (@ 4C)	N/A	NG	NG	NC	-	1	9.39	NC	-	NC	9.00			9.10	8.54	9.71	†	9.84	10.2	NC	9.37	9.17	9.80	9.93	9.18
Total Alkalinity (Total as CaCO3)	mg/L	NG	NG	<5.0	-	1	6.9	<5.0	-	<5.0	46			37	80	15	†	8.8	7.7	<5.0	37	9.2	11.0	7.4	10
Tannins/Lignins	mg/L	NG	NG	-	-	1	-	-	-	-	-			-	-	-	İ	-	-	-	-	-	-	-	-
Total Chemical Oxygen Demand	mg/L	NG	NG	-	-	1	-	-	-	-	-			-	-	-	İ	-	-	-	-	-	-	-	-
Total Kjeldahl Nitrogen	mg/L	NG	NG	-	-	1	-	-	-	-	-			-	-	-	Ť	-	-	-	-	-	-	-	-
Total Organic Carbon (C)	mg/L	NG	NG	<50 (1)	-	1	40 (2)	16 (1)	-	20 (1)	15 (1)			15 (1)	34 (1)	19 (1)	İ	42 (2)	15	22 (1)	24 (1)	59 (2)	42 (2)	<250 (1)	<50 (2)
Total Suspended Solids	mg/L	NG	NG	-	-	1	-	-	-	-	-			-	-	-	İ	-	-	-	-	-	-		-
Turbidity	NTU	Narrative	NG	>1000	-	1	>1000	65	-	330	20			2.7	25	54	İ	510	3.6	2.7	40	>1000	390	550	390
		1	1	1	·	<u> </u>			<u> </u>									1							

Notes:

NG - no guideline

value - exceeds CCME guidelines exceeds NSE EQS

for warm water biota: early life stages = 6 mg/L

for warm water biota: other life stages = 5.5 mg/L

for cold water biota: early life stages = 9.5 mg/L for cold water biota: other life stages = 6.5 mg/L

- (1) Elevated reporting limit due to sample matrix.
- (2) Reporting limit was increased due to turbidity.
- (3) The sample was decanted due to sediment.
- (4) Elevated reporting limit due to blank performance.

ultra-oligotrophic <4

oligotrophic 4-10

mesotrophic 10-20

meso-eutrophic 20-35

eutrophic 35-100

³ 1999 (Update 2015) CCME Canadian Water Quality Guidelines for the Protection of Freshwater Aquatic Life.

² 2013 NSE Tier 1 Environmental Quality Standards (EQS) for fresh water surface water

³Lowest acceptable dissolved oxygen concentration:

 $^{^4\,\}text{Ammonia-calculations as per http://st-ts.ccme.ca/en/index.html?lang=en\&factsheet=5\#aql_fresh_concentration.}$

⁵ Canadian Guidance Framework for Phosphorus is for developing phosphorus guidelines (does not provide guidance on other freshwater nutrients). It provides Trigger Ranges for Total Phosphorus (µg/L) (see Guidance Framework for Phosphorus factsheet):

												SAI	MPLE ID								
PARAMETER	UNITS	CCME FAL ¹	NSE Tier 1 EQS ²			SV	V1					S	SW2					S	SW3		
				2-Feb-16	14-Mar-16	14-Jul-16	31-Oct-16	31-Jan-17	26-Apr-17	2-Feb-16	14-Mar-16	14-Jul-16	31-Oct-16	30-Jan-17	25-Apr-17	2-Feb-16	14-Mar-16	15-Jul-16	1-Nov-16	30-Jan-17	25-Apr-17
Aluminum	μg/L	5 or 100 ³	5	<u>550</u>	<u>580</u>		<u>1900</u>	<u>580</u>	<u>720</u>	<u>450</u>	<u>380</u>	<u>620</u>	<u>920</u>	<u>440</u>	<u>370</u>	<u>530</u>	<u>610</u>	<u>2000</u>	<u>790</u>	<u>810</u>	<u>1600</u>
Antimony	μg/L	NG	20	<1.0	<1.0		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Arsenic	μ g/L	5	5	<1.0	1.1		1.8	<1.0	1.3	<1.0	<1.0	1.1	1.1	<1.0	<1.0	1.3	1.7	<u>5.5</u>	2.2	2.3	4.7
Barium	μg/L	NG	1000	3.0	2.2		8.6	2.1	3.1	3.0	2.6	4.2	8.4	2.7	2.8	9.5	8.9	26	25	9.2	21
Beryllium	μg/L	NG	5.3	<1.0	<1.0		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bismuth	μ g/L	NG	NG	<2.0	<2.0		<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Boron	μ g/L	1500	1200	<50	<50		<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	61	90	<50	<50
Cadmium	μg/L	0.04 - 0.37 4	0.01	<u>0.21</u>	<u>0.15</u>		<u>0.098</u>	<u>0.036</u>	<u>0.034</u>	<u>0.11</u>	<u>0.069</u>	<u>0.046</u>	<u>0.082</u>	<u>0.026</u>	<u>0.028</u>	<u>0.063</u>	<u>0.037</u>	<u>0.090</u>	<u>0.061</u>	<u>0.041</u>	<u>0.071</u>
Calcium	μ g/L	NG	NG	1100	860		3100	810	950	1000	1200	2200	4100	1300	1400	6500	6900	8100	17000	6400	8000
Chromium	μ g/L	8.9	NG	1.1	1.1		1.8	1.1	1.2	<1.0	46	1.0	1.1	<1.0	1.5	1.5	1.8	3.4	1.8	1.9	4.7
Cobalt	μ g/L	NG	10	1.2	0.93		1.2	< 0.40	0.45	0.73	0.63	0.59	0.81	< 0.40	< 0.40	1.4	1.4	3.0	1.3	0.78	2.9
Copper	μ g/L	2 - 4 ⁵	2	<u>7.3</u>	<u>5.8</u>		<u>4.1</u>	<2.0	<2.0	<u>4.5</u>	<u>3.7</u>	<2.0	<2.0	<2.0	<2.0	<u>6.6</u>	<u>4.1</u>	<u>7.9</u>	<u>3.5</u>	<u>3.8</u>	<u>4.7</u>
Iron	μ g/L	300	300	<u>820</u>	<u>780</u>		<u>1300</u>	<u>590</u>	<u>800</u>	<u>560</u>	<u>650</u>	<u>670</u>	<u>670</u>	<u>370</u>	<u>310</u>	<u>2200</u>	<u>2700</u>	<u>10000</u>	<u>2600</u>	<u>2700</u>	<u>7200</u>
Lead	μ g/L	1 - 7 ⁶	1	<u>13</u>	<u>10</u>		<u>8.4</u>	<u>2.8</u>	<u>3.4</u>	<u>5.9</u>	<u>3.2</u>	<u>2.8</u>	<u>3.3</u>	<u>1.5</u>	<u>1.4</u>	<u>1.5</u>	<u>1.3</u>	<u>7.6</u>	<u>2.2</u>	<u>1.7</u>	<u>5.4</u>
Magnesium	μ g/L	NG	NG	620	440		1800	460	600	660	820	1400	2900	970	1100	2000	2200	2300	5400	2000	2400
Manganese	μg/L	NG	820	13	12	DRY	40	11	17	16	17	25	43	15	14	160	180	480	340	120	560
Mercury	μg/L	0.026	0.026	<u>0.028</u>	<u>0.035</u>		<u>0.047</u>	<u>0.028</u>	<u>0.028</u>	0.022	0.017	0.025	0.015	0.018	0.015	0.020	<0.013	<u>0.072</u>	0.017	0.023	<u>0.033</u>
Molybdenum	μg/L	73	73	<2.0	<2.0		<2.0	<2.0	<2.0	<2.0	5.5	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Nickel	μg/L	25 - 150 ⁷	25	7.4	5.7		5.6	<2.0	2.0	3.5	19	2.4	2.8	<2.0	<2.0	4.4	4.1	4.9	2.6	3.1	4.6
Phosphorus	μg/L	NG	NG	<100	130		<100	<100	<100	100	130	<100	<100	<100	<100	160	170	400	140	<100	250
Potassium	μ g/L	NG	NG	5800	5100		9200	3900	4000	5500	4200	2600	3900	1900	1400	14000	11000	12000	13000	7100	7600
Selenium	μ g/L	1	1	<1.0	<1.0		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Silver	μ g/L	0.25	0.1	<0.10	<0.10		<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Sodium	μ g/L	NG	NG	13000	12000		22000	9600	9800	10000	8700	9800	14000	7600	7900	17000	17000	15000	18000	11000	11000
Strontium	μ g/L	NG	21000	7.4	6.1		23	5.6	7.6	6.7	7.4	14	29	8.7	9.4	31	34	40	87	29	41
Thallium	μ g/L	0.8	0.8	<0.10	<0.10		<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Tin	μ g/L	NG	NG	<2.0	<2.0		<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Titanium	μ g/L	NG	NG	12	11		29	11	16	8.4	5.0	8.9	11	5.1	4.5	10	11	44	17	15	36
Uranium	μg/L	15	300	< 0.10	<0.10		<0.10	<0.10	<0.10	< 0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.15	0.10	0.24	<0.10	<0.10	0.21
Vanadium	μg/L	NG	6	2.4	2.4		3.2	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	5.2	<2.0	<2.0	3.4
Zinc	μg/L	30	30	11	8.5		12	<5.0	5.2	11	7.5	7.0	11	<5.0	<5.0	21	17	30	<u>43</u>	<u>36</u>	<u>44</u>

Notes:

NG - no guideline

value - exceeds CCME guidelines
- exceeds NSE EQS
- detection limit exceeds one or both guidelines

At [CaCO3] = > 280 mg/L, cadmium guideline = $0.37 \mu g/L$

 5 At [CaCO $_3$] = 0 to 120 mg/L, copper guideline = 2 ug/L. At [CaCO3] = 120 to 180 mg/L, copper guideline = 3 ug/L. At [CaCO3] = > 180 mg/L, copper guideline = 4 ug/L. If hardness unknown, the CWOG is 2 ug/L ⁶ At [CaCO₃] = 0 to ≤60 mg/L, lead guideline = 1 ug/L

At [CaCO₃] = >60 to \leq 180 mg/L, lead guideline = $e^{\{1.273[ln(hardness)].4.705\}}$

At $[CaCO_3] = >180 \text{ mg/L}$, lead guideline = 7 ug/L

³ 1999 (Update 2015) CCME Canadian Water Quality Guidelines for the Protection of Freshwater Aquatic Life.

² 2013 NSE Tier 1 Environmental Quality Standards (EQS) for fresh water surface water

 $^{^3}$ Aluminium Guideline for pH < 6.5 = 5 ug/L Aluminium Guideline for pH \geq 6.5 = 100 ug/L

 $^{^4}$ At [CaCO3] = > 0 to < 17 mg/L, cadmium guideline = 0.04 µg/L At [CaCO3] = \geq 17 to \leq 280 mg/L, cadmium guideline (µg/L) = 10^(0.83(log(hardness)) - 2.46}

⁷ At [CaCO₃] ≤60 mg/L, nickel guideline = 25 ug/L. At [CaCO₃] >60 to ≤180 mg/L, nickel guideline (μ g/L) = $e^{(0.76[ln(hardness)]+1.06)}$ At [CaCO₃] >180 mg/L, nickel guideline = 150 μ g/L If hardness unknown, the CWQG is 25 ug/L

												SAMPLE ID									
PARAMETER	UNITS	CCME FAL ¹	NSE Tier 1 EQS ²		S	W4					SW5							SW6			
				14-Mar-16	15-Jul-16	31-Oct-16	31-Jan-17	26-Apr-17	14-Mar-16	14-Jul-16	1-Nov-16	Lab-Dup 1-Nov-16	30-Jan-17	25-Apr-17	14-Mar-16	15-Jul-16	31-Oct-16	Lab-Dup 1-Nov-16	31-Jan-17	Lab-Dup 31-Jan-17	26-Apr-17
Aluminum	μg/L	5 or 100 ³	5	<u>490</u>	<u>800</u>	<u>4600</u>	<u>460</u>	<u>440</u>	<u>580</u>	<u>530</u>	<u>230</u>	-	<u>570</u>	<u>570</u>	<u>350</u>		<u>130</u>	<u>140</u>	<u>400</u>	=	<u>450</u>
Antimony	μ g/L	NG	20	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	<1.0	<1.0	<1.0		<1.0	<1.0	<1.0	-	<1.0
Arsenic	μ g/L	5	5	<1.0	3.2	<u>13</u>	<1.0	<1.0	1.3	4.7	1.0	-	1.4	1.6	<1.0		<1.0	<1.0	<1.0	-	1.1
Barium	μ g/L	NG	1000	4.3	13	48	3.8	6.1	7.7	5.6	18	-	6.6	9.1	6.3		6.8	7.1	5.7	-	5.9
Beryllium	μ g/L	NG	5.3	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	=	<1.0	<1.0	<1.0		<1.0	<1.0	<1.0	÷	<1.0
Bismuth	μ g/L	NG	NG	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	-	<2.0	<2.0	<2.0		<2.0	<2.0	<2.0	-	<2.0
Boron	μ g/L	1500	1200	<50	<50	210	<50	<50	<50	<50	71	=	<50	<50	<50		<50	51	<50	Ξ	<50
Cadmium	μ g/L	0.04 - 0.37 4	0.01	<u>0.091</u>	<u>0.032</u>	<u>0.22</u>	<u>0.023</u>	<u>0.025</u>	<u>0.048</u>	<u>0.018</u>	<u>0.056</u>	-	<u>0.030</u>	<u>0.029</u>	<u>0.033</u>		< 0.010	<0.010	<u>0.019</u>	-	<u>0.019</u>
Calcium	μ g/L	NG	NG	2800	9900	18000	2500	3900	5900	8700	13000	-	5300	5900	5600		9800	10000	5300	-	3900
Chromium	μ g/L	8.9	NG	<1.0	1.4	7.9	4.2	<1.0	1.5	1.9	<1.0	-	1.5	1.6	1.1		<1.0	<1.0	1.1	-	1.3
Cobalt	μ g/L	NG	10	0.84	4.2	<u>17</u>	< 0.40	1.2	1.1	2.7	1.4	-	0.45	0.82	< 0.40		< 0.40	< 0.40	< 0.40	-	0.63
Copper	μg/L	2 - 4 5	2	<u>4.7</u>	<2.0	<u>7.1</u>	<u>2.2</u>	<u>2.3</u>	<u>4.8</u>	<u>2.7</u>	<u>3.0</u>	-	<u>3.4</u>	<u>3.1</u>	<u>3.9</u>		<2.0	<2.0	<u>3.1</u>	-	<u>3.2</u>
Iron	μg/L	300	300	<u>970</u>	<u>5500</u>	<u>19000</u>	<u>660</u>	<u>990</u>	<u>2400</u>	<u>10000</u>	<u>860</u>	-	<u>1600</u>	<u>2100</u>	<u>1200</u>		220	230	<u>810</u>	-	<u>950</u>
Lead	μ g/L	1 to 7 ⁶	1	<u>5.1</u>	<u>2.6</u>	<u>18</u>	<u>1.3</u>	<u>1.7</u>	<u>1.3</u>	<u>2.2</u>	< 0.50	-	0.80	0.98	0.57		< 0.50	<0.50	< 0.50	-	0.68
Magnesium	μ g/L	NG	NG	1300	4600	7600	1200	1800	2000	3000	4100	-	1800	2000	1900		2700	2800	1800	-	1300
Manganese	μ g/L	NG	820	23	400	<u>1200</u>	15	68	120	280	420	-	46	120	16	DRY	4.8	4.6	11	-	54
Mercury	μ g/L	0.026	0.026	0.015	< 0.013	0.015	0.018	0.015	< 0.013	<0.013	<0.013	< 0.013	0.017	0.017	< 0.013		< 0.013	-	0.015	0.015	< 0.013
Molybdenum	μ g/L	73	73	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	=	<2.0	<2.0	<2.0		<2.0	<2.0	<2.0	÷	<2.0
Nickel	μ g/L	25 - 150 ⁷	25	3.9	2.5	7.4	2.1	<2.0	3.7	3.0	<2.0	=	2.2	2.6	2.9		<2.0	<2.0	<2.0	Ξ	<2.0
Phosphorus	μ g/L	NG	NG	110	120	430	<100	<100	200	280	<100	-	<100	130	130		<100	<100	<100	-	<100
Potassium	μ g/L	NG	NG	3600	1300	2500	2700	2400	11000	9900	11000	-	5500	5600	7400		7900	8000	4500	-	2900
Selenium	μ g/L	1	1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	<1.0	<1.0	<1.0		<1.0	<1.0	<1.0	-	<1.0
Silver	μ g/L	0.25	0.1	<0.10	<0.10	<0.10	< 0.10	<0.10	<0.10	<0.10	< 0.10	-	<0.10	<0.10	<0.10		<0.10	<0.10	<0.10	-	<0.10
Sodium	μ g/L	NG	NG	22000	42000	63000	17000	25000	15000	15000	14000	-	10000	10000	19000		20000	20000	15000	-	16000
Strontium	μ g/L	NG	21000	18	74	130	16	26	29	40	68	-	26	31	29		53	54	27	-	20
Thallium	μ g/L	0.8	0.8	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	-	<0.10	<0.10	<0.10		<0.10	<0.10	<0.10	-	<0.10
Tin	μ g/L	NG	NG	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	-	<2.0	<2.0	<2.0		<2.0	<2.0	<2.0	-	<2.0
Titanium	μ g/L	NG	NG	7.9	14	95	6.5	7.8	14	13	3.2	-	11	11	7.5		3.4	3.8	6.4	-	11
Uranium	μ g/L	15	300	<0.10	<0.10	0.32	<0.10	<0.10	0.10	<0.10	<0.10	-	<0.10	<0.10	<0.10		<0.10	<0.10	<0.10	-	<0.10
Vanadium	μ g/L	NG	6	<2.0	2.9	<u>18</u>	<2.0	<2.0	<2.0	<2.0	<2.0	-	<2.0	<2.0	<2.0		<2.0	<2.0	<2.0	-	<2.0
Zinc	μ g/L	30	30	6.6	5.7	25	<5.0	<5.0	16	6.5	30	-	21	20	14		<5.0	<5.0	15	-	14

Notes:

NG - no guideline

value - exceeds CCME guidelines
- exceeds NSE EQS
- detection limit exceeds one or both guidelines

 3 Aluminium Guideline for pH < 6.5 = 5 ug/L Aluminium Guideline for pH \geq 6.5 = 100 ug/L 4 At [CaCO3] = > 0 to < 17 mg/L, cadmium guideline = 0.04 μg/L

At [CaCO3] = ≥ 17 to ≤ 280 mg/L, cadmium guideline (μg/L) = $10^{(0.83(og[hardness])-2.46})$ At [CaCO3] = > 280 mg/L, cadmium guideline = 0.37 μg/L

 5 At [CaCO $_3$] = 0 to 120 mg/L, copper guideline = 2 ug/L. At [CaCO3] = 120 to 180 mg/L, copper guideline = 3 ug/L. At [CaCO3] = > 180 mg/L, copper guideline = 4 ug/L. If hardness unknown, the CWQG is 2 ug/L

 7 At [CaCO₃] ≤60 mg/L, nickel guideline = 25 ug/L. At [CaCO₃] >60 to ≤180 mg/L, nickel guideline (μg/L) = $e^{(0.76[lin(hardnesS)]+1.06)}$ At [CaCO₃] >180 mg/L, nickel guideline = 150 μg/L lf hardness unknown, the CWOG is 25 ug/L

 6 At [CaCO $_{3}$] = 0 to \leq 60 mg/L, lead guideline = 1 ug/L

At [CaCO $_3$] = >60 to ≤180 mg/L, lead guideline = $e^{(1.273[ln(hardness)].4.705)}$

At $[CaCO_3] = >180 \text{ mg/L}$, lead guideline = 7 ug/L

³ 1999 (Update 2015) CCME Canadian Water Quality Guidelines for the Protection of Freshwater Aquatic Life.

² 2013 NSE Tier 1 Environmental Quality Standards (EQS) for fresh water surface water

													SAMF	PLE ID									
PARAMETER	UNITS	CCME FAL ¹	NSE Tier 1 EQS ²			SW7					SW8							S	SW9				
				14-Mar-16	14-Jul-16	31-Oct-16	30-Jan-17	25-Apr-17	14-Mar-16	14-Jul-16	1-Nov-16	30-Jan-17	25-Apr-17	14-Mar-16	SW-DUP 14-Mar-16	14-Jul-16	SW-DUP1 14-Jul-16	31-Oct-16	SW-DUP1 31-Oct-16	30-Jan-17	SW-DUP1 30-Jan-17	25-Apr-17	SW-DUP1 25-Apr-17
Aluminum	μg/L	5 or 100 ³	5	<u>340</u>	<u>600</u>	<u>800</u>	<u>380</u>	<u>360</u>	<u>600</u>			<u>850</u>	<u>1200</u>	<u>67000</u>	<u>14000</u>	<u>2400</u>	<u>780</u>	<u>1300</u>	<u>1400</u>	<u>760</u>	<u>790</u>	<u>23000</u>	<u>28000</u>
Antimony	μg/L	NG	20	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0			<1.0	<1.0	1.1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Arsenic	μg/L	5	5	<1.0	1.2	1.2	<1.0	<1.0	1.5			<1.0	<1.0	<u>120</u>	<u>25</u>	<u>19</u>	<u>12</u>	<u>11</u>	<u>11</u>	1.9	2.0	<u>55</u>	<u>66</u>
Barium	μg/L	NG	1000	2.0	4.2	7.4	2.3	3.0	5.3			6.0	7.8	410	75	29	21	17	19	5.5	5.8	220	290
Beryllium	μg/L	NG	5.3	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0			<1.0	<1.0	3.9	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.1	1.4
Bismuth	μg/L	NG	NG	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0			<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Boron	μg/L	1500	1200	<50	<50	<50	<50	<50	<50			<50	<50	120	92	<50	<50	60	59	<50	<50	<50	<50
Cadmium	μg/L	0.04 - 0.37 4	0.01	<u>0.064</u>	<u>0.044</u>	<u>0.071</u>	<u>0.016</u>	<u>0.026</u>	<u>0.043</u>			<u>0.054</u>	<u>0.052</u>	<u>2.1</u>	<u>0.60</u>	<u>0.12</u>	<u>0.053</u>	<u>0.088</u>	<u>0.096</u>	<u>0.038</u>	<u>0.038</u>	<u>1.3</u>	<u>1.9</u>
Calcium	μg/L	NG	NG	930	2600	4400	1200	1600	11000			3600	4200	71000	28000	27000	26000	9900	10000	5600	5800	27000	35000
Chromium	μg/L	8.9	NG	<1.0	1.4	1.1	<1.0	<1.0	1.6			1.1	2.4	94	25	4.6	2.1	2.9	3.5	1.5	1.5	40	46
Cobalt	μg/L	NG	10	0.41	0.49	0.58	< 0.40	< 0.40	0.59			1.3	0.95	<u>93</u>	<u>17</u>	<u>23</u>	<u>20</u>	3.8	4.1	0.94	1.1	75	100
Copper	μg/L	2 - 4 ⁵	2	<u>2.4</u>	<2.0	<2.0	<2.0	<2.0	<u>5.5</u>			<2.0	<u>3.4</u>	<u>200</u>	<u>66</u>	<u>13</u>	<u>7.6</u>	<u>9.3</u>	<u>9.8</u>	<u>6.5</u>	<u>7.0</u>	<u>130</u>	<u>160</u>
Iron	μg/L	300	300	<u>340</u>	<u>770</u>	<u>690</u>	<u>320</u>	260	<u>1100</u>			<u>750</u>	<u>1500</u>	<u>270000</u>	<u>32000</u>	<u>15000</u>	<u>11000</u>	<u>6400</u>	<u>7700</u>	<u>1300</u>	<u>1300</u>	<u>68000</u>	<u>84000</u>
Lead	μg/L	1 to 7 ⁶	1	<u>3.0</u>	<u>2.5</u>	<u>2.6</u>	<u>1.1</u>	<u>1.4</u>	<u>2.3</u>			0.62	<u>1.1</u>	<u>160</u>	<u>37</u>	<u>6.1</u>	<u>2.4</u>	<u>3.4</u>	<u>3.8</u>	<u>1.3</u>	<u>1.3</u>	<u>110</u>	<u>140</u>
Magnesium	μg/L	NG	NG	730	1600	2800	970	1100	2400			1400	1700	25000	10000	10000	9500	4000	4100	1500	1600	8600	9800
Manganese	μg/L	NG	820	12	19	44	15	14	33	DRY	DRY	64	60	<u>4300</u>	710	<u>2100</u>	<u>2000</u>	400	430	84	98	<u>10000</u>	<u>14000</u>
Mercury	μg/L	0.026	0.026	< 0.013	0.023	0.013	0.015	0.013	< 0.013			0.015	0.013	<u>0.13</u>	<u>0.065</u>	0.022	0.025	<u>0.033</u>	<u>0.037</u>	0.020	0.023	<u>0.24</u>	<u>0.24</u>
Molybdenum	μg/L	73	73	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0			<2.0	<2.0	24	8.7	8.3	8.2	2.3	2.3	<2.0	<2.0	12	13
Nickel	μg/L	25 - 150 ⁷	25	2.4	2.3	2.5	<2.0	<2.0	<2.0			2.6	3.5	<u>210</u>	<u>41</u>	21	17	4.3	4.5	2.4	2.7	<u>56</u>	<u>69</u>
Phosphorus	μg/L	NG	NG	110	<100	<100	<100	<100	580			<100	<100	11000	3800	600	350	190	290	150	150	8200	10000
Potassium	μg/L	NG	NG	3800	2500	3400	1600	1500	6000			670	1100	55000	48000	31000	30000	28000	27000	6100	6300	11000	12000
Selenium	μg/L	1	1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0			<1.0	<1.0	<u>3.5</u>	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<u>2.1</u>	<u>2.2</u>
Silver	μg/L	0.25	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10			<0.10	< 0.10	<u>0.58</u>	<u>0.20</u>	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<u>0.53</u>	<u>0.58</u>
Sodium	μg/L	NG	NG	8500	10000	14000	7200	7600	8100			6900	7200	37000	35000	31000	31000	32000	32000	7700	7900	12000	12000
Strontium	μg/L	NG	21000	6.1	16	28	8.0	11	47			21	25	430	140	140	140	56	59	25	25	170	230
Thallium	μg/L	0.8	0.8	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10			<0.10	<0.10	0.53	0.14	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.41	0.52
Tin	μg/L	NG	NG	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0			<2.0	<2.0	4.3	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	3.6	4.4
Titanium	μg/L	NG	NG	5.7	9.3	12	4.2	5.2	17			7.4	26	1400	380	62	23	42	51	22	23	690	780
Uranium	μg/L	15	300	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10			<0.10	<0.10	7.2	1.6	0.38	0.26	0.17	0.19	<0.10	0.10	3.1	3.8
Vanadium	μg/L	NG	6	<2.0	<2.0	2.1	<2.0	<2.0	2.1			<2.0	<2.0	<u>150</u>	<u>26</u>	<u>7.5</u>	3.3	<u>7.0</u>	<u>7.5</u>	<2.0	<2.0	<u>62</u>	<u>79</u>
Zinc	μg/L	30	30	6.4	7.3	10	<5.0	<5.0	13			10	9.5	<u>460</u>	<u>120</u>	25	11	15	16	6.9	7.4	<u>280</u>	<u>380</u>

Notes:

NG - no guideline

value - exceeds CCME guidelines

value - exceeds NSE EQS

value - detection limit exceeds one or both guidelines

 5 At [CaCO $_3$] = 0 to 120 mg/L, copper guideline = 2 ug/L. At [CaCO3] = 120 to 180 mg/L, copper guideline = 3 ug/L. At [CaCO3] = > 180 mg/L, copper guideline = 4 ug/L. If hardness unknown, the CWQG is 2 ug/L ⁶ At [CaCO₃] = 0 to ≤60 mg/L, lead guideline = 1 ug/L

At $[CaCO_3] = >60$ to ≤ 180 mg/L, lead guideline = $e^{\{1.273[ln(hardness)].4.705\}}$

At [CaCO₃] = >180 mg/L, lead guideline = 7 ug/L

³ 1999 (Update 2015) CCME Canadian Water Quality Guidelines for the Protection of Freshwater Aquatic Life.

² 2013 NSE Tier 1 Environmental Quality Standards (EQS) for fresh water surface water

³ Aluminium Guideline for pH < 6.5 = 5 ug/L Aluminium Guideline for pH $\ge 6.5 = 100$ ug/L

 $^{^4}$ At [CaCO3] = > 0 to < 17 mg/L, cadmium guideline = 0.04 μg/L

At [CaCO3] = ≥ 17 to ≤ 280 mg/L, cadmium guideline (μg/L) = $10^{(0.83(og[hardness]) - 2.46)}$ At [CaCO3] = > 280 mg/L, cadmium guideline = 0.37 μg/L

⁷ At [CaCO₃] ≤60 mg/L, nickel guideline = 25 ug/L. At [CaCO₃] >60 to ≤180 mg/L, nickel guideline (μg/L) = $e^{(0.76[ln(hardness)]+1.06)}$ At [CaCO₃] >180 mg/L, nickel guideline = 150 μg/L If hardness unknown, the CWQG is 25 ug/L

														SAMPLE ID									
PARAMETER	UNITS	CCME FAL ¹	NSE Tier 1 EQS ²			SW10					SW11					SW12					SW13		
				16-Mar-16	14-Jul-16	1-Nov-16	30-Jan-17	25-Apr-17	16-Mar-16	14-Jul-16	1-Nov-16	30-Jan-17	25-Apr-17	16-Mar-16	15-Jul-16	1-Nov-16	31-Jan-17	26-Apr-17	14-Jul-16	31-Oct-16	30-Jan-17	Lab-Dup 30-Jan-17	25-Apr-17
Aluminum	μg/L	5 or 100 ³	5	<u>520</u>			<u>810</u>		<u>700</u>		1700	<u>560</u>	710	<u>420</u>	ľ			<u>1100</u>	640	<u>820</u>	<u>71</u>	<u>66</u>	<u>180</u>
Antimony	μg/L	NG	20	<1.0			<1.0		<1.0		<1.0	<1.0	<1.0	<1.0				<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Arsenic	μg/L	5	5	<1.0	1		<1.0		1.3		1.8	<1.0	1.3	<1.0				1.4	<1.0	<1.0	<1.0	<1.0	<1.0
Barium	μ g/L	NG	1000	2.6	1		3.9		2.1		6.5	1.4	2.2	2.6				9.6	2.9	5.0	2.3	2.3	3.8
Beryllium	μ g/L	NG	5.3	<1.0	1		<1.0		<1.0		<1.0	<1.0	<1.0	<1.0				<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bismuth	μg/L	NG	NG	<2.0]		<2.0		<2.0		<2.0	<2.0	<2.0	<2.0				<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Boron	μg/L	1500	1200	<50			<50		<50		<50	<50	<50	<50				<50	<50	<50	<50	<50	<50
Cadmium	μg/L	0.04 - 0.37 4	0.01	<u>0.036</u>			<u>0.054</u>		<u>0.18</u>		<u>0.097</u>	<u>0.035</u>	<u>0.042</u>	<u>0.023</u>				<u>0.093</u>	<u>0.030</u>	<u>0.059</u>	<0.010	<0.010	<u>0.016</u>
Calcium	μg/L	NG	NG	480			660		700		2300	460	670	740				1100	800	1800	900	880	880
Chromium	μg/L	8.9	NG	<1.0			<1.0		1.4		2.8	2.1	1.1	<1.0				1.5	1.2	1.8	<1.0	<1.0	<1.0
Cobalt	μ g/L	NG	10	0.46]		0.86		1.1		0.97	< 0.40	<0.40	0.46				1.3	0.65	1.2	<0.40	<0.40	<0.40
Copper	μ g/L	2 - 4 ⁵	2	<2.0			<2.0		<u>6.8</u>		<u>3.2</u>	<2.0	<2.0	<2.0				<u>2.7</u>	<2.0	<2.0	<2.0	<2.0	<2.0
Iron	μ g/L	300	300	<u>470</u>			<u>580</u>		<u>840</u>		<u>930</u>	<u>550</u>	<u>550</u>	<u>970</u>				<u>4000</u>	<u>1000</u>	<u>1100</u>	78	86	<u>350</u>
Lead	μ g/L	1 to 7 ⁶	1	<u>1.2</u>			<u>1.7</u>		<u>12</u>		<u>7.6</u>	<u>3.0</u>	<u>3.8</u>	0.72				<u>2.5</u>	<u>2.3</u>	<u>1.8</u>	<0.50	<0.50	<0.50
Magnesium	μ g/L	NG	NG	700]		880		340		1500	290	420	650				1100	710	1900	820	800	820
Manganese	μ g/L	NG	820	14	DRY	DRY	19	DRY	8.6	DRY	18	5.7	6.1	20	DRY	DRY	FROZEN	36	9.8	20	6.3	6.1	16
Mercury	μ g/L	0.026	0.026	<0.013]		0.018		0.013		<u>0.045</u>	<u>0.032</u>	<u>0.030</u>	<0.013				<u>0.055</u>	0.023	<0.013	<0.013	-	<0.013
Molybdenum	μ g/L	73	73	<2.0]		<2.0		<2.0		<2.0	<2.0	<2.0	<2.0				<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Nickel	μ g/L	25 - 150 ⁷	25	<2.0			<2.0		6.9		4.7	<2.0	2.0	<2.0				3.2	2.7	2.7	<2.0	<2.0	<2.0
Phosphorus	μ g/L	NG	NG	<100			<100		150		<100	<100	<100	160				390	<100	<100	<100	<100	<100
Potassium	μ g/L	NG	NG	100			180		6400		9900	4400	5400	360				1100	1700	2200	400	380	460
Selenium	μ g/L	1	1	<1.0]		<1.0		<1.0		<1.0	<1.0	<1.0	<1.0				<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Silver	μ g/L	0.25	0.1	<0.10]		<0.10		<0.10		<0.10	<0.10	<0.10	<0.10				<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Sodium	μ g/L	NG	NG	4900]		6500		12000		22000	9000	10000	4900				6800	8100	9900	5700	5500	5300
Strontium	μ g/L	NG	21000	6.1]		8.5		4.9		17	3.3	5.2	4.9				11	6.8	16	7.5	7.2	8.6
Thallium	μg/L	0.8	0.8	<0.10]		<0.10		<0.10		<0.10	<0.10	<0.10	<0.10				<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Tin	μg/L	NG	NG	<2.0]		<2.0		<2.0		<2.0	<2.0	<2.0	<2.0				<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Titanium	μg/L	NG	NG	4.6]		6.0		12		25	9.0	12	4.9				12	5.5	6.4	<2.0	<2.0	4.0
Uranium	μg/L	15	300	<0.10]		<0.10		<0.10		<0.10	<0.10	<0.10	<0.10				<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Vanadium	μ g/L	NG	6	<2.0]		<2.0		3.0		2.9	2.4	2.0	<2.0				2.1	<2.0	<2.0	<2.0	<2.0	<2.0
Zinc	μ g/L	30	30	5.7			7.6		10		11	<5.0	<5.0	<5.0				11	<5.0	6.6	<5.0	<5.0	<5.0

Notes:

NG - no guideline

value - exceeds CCME guidelines
- exceeds NSE EQS

value - detection limit exceeds one or both guidelines

 5 At [CaCO $_3$] = 0 to 120 mg/L, copper guideline = 2 ug/L. At [CaCO3] = 120 to 180 mg/L, copper guideline = 3 ug/L. At [CaCO3] = > 180 mg/L, copper guideline = 4 ug/L. If hardness unknown, the CWQG is 2 ug/L

³ 1999 (Update 2015) CCME Canadian Water Quality Guidelines for the Protection of Freshwater Aquatic Life.

² 2013 NSE Tier 1 Environmental Quality Standards (EQS) for fresh water surface water

³ Aluminium Guideline for pH < 6.5 = 5 ug/L Aluminium Guideline for pH \geq 6.5 = 100 ug/L

⁴ At [CaCO3] = > 0 to < 17 mg/L, cadmium guideline = 0.04 μg/L

At [CaCO3] = ≥ 17 to ≤ 280 mg/L, cadmium guideline (μg/L) = $10^{(0.83(og[hardness])-2.46})$ At [CaCO3] = > 280 mg/L, cadmium guideline = 0.37 μg/L

⁷ At [CaCO₃] ≤60 mg/L, nickel guideline = 25 ug/L. At [CaCO3] >60 to ≤180 mg/L, nickel guideline (μg/L) = $e^{[0.76[ln(hardness)]+1.06)}$ At [CaCO3] >180 mg/L, nickel guideline = 150 μg/L If hardness unknown, the CWQG is 25 ug/L

⁶ At [CaCO₃] = 0 to ≤60 mg/L, lead guideline = 1 ug/L

At [CaCO $_3$] = >60 to \leq 180 mg/L, lead guideline = $e^{\{1.273[ln(hardness)]\cdot4.705\}}$

At [CaCO₃] = >180 mg/L, lead guideline = 7 ug/L

															SAMP	PLE ID											
PARAMETER	UNITS	CCME FAL ¹	NSE Tier 1 EQS ²		SI	W14			SV	W15			SV	V16			BACKG	ROUND					BAC	CK2			
				15-Jul-16	31-Oct-16	31-Jan-17	26-Apr-17	15-Jul-16	31-Oct-16	31-Jan-17	26-Apr-17	15-Jul-16	2-Nov-16	31-Jan-17	26-Apr-17	16-Mar-16	14-Jul-16	1-Nov-16	30-Jan-17	14-Jul-16	SW-DUP2 14-Jul-16	1-Nov-16	SW-DUP2 1-Nov-16	30-Jan-17	SW-DUP2 30-Jan-17	25-Apr-17	SW-DUP2 25-Apr-17
Aluminum	μg/L	5 or 100 ³	5	<u>930</u>	<u>240</u>	<u>520</u>	<u>410</u>		<u>120</u>	<u>210</u>	<u>510</u>		<u>220</u>	<u>200</u>	<u>330</u>	<u>510</u>				<u>3600</u>	<u>440</u>	<u>280</u>	<u>310</u>	<u>360</u>	<u>360</u>	<u>310</u>	<u>310</u>
Antimony	μg/L	NG	20	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0	<1.0		<1.0	<1.0	<1.0	<1.0				<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Arsenic	μg/L	5	5	1.2	<1.0	<1.0	<1.0		<1.0	<1.0	<1.0		<1.0	<1.0	<1.0	<1.0				<u>12</u>	2.1	1.2	1.2	<1.0	<1.0	<1.0	<1.0
Barium	μg/L	NG	1000	9.5	15	3.9	4.8		19	6.4	7.7		4.6	2.7	9.4	2.9				36	11	19	20	7.0	7.1	7.2	7.0
Beryllium	μg/L	NG	5.3	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0	<1.0		<1.0	<1.0	<1.0	<1.0				<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bismuth	μg/L	NG	NG	<2.0	<2.0	<2.0	<2.0		<2.0	<2.0	<2.0		<2.0	<2.0	<2.0	<2.0				<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Boron	μg/L	1500	1200	<50	100	<50	<50		<50	<50	<50		<50	<50	<50	<50				<50	<50	<50	<50	<50	<50	<50	<50
Cadmium	μg/L	0.04 - 0.37 4	0.01	<u>0.057</u>	<u>0.071</u>	<u>0.034</u>	<u>0.021</u>		<u>0.082</u>	<u>0.026</u>	<u>0.030</u>		<u>0.020</u>	0.010	<u>0.036</u>	<u>0.024</u>				<u>0.069</u>	<u>0.019</u>	<u>0.041</u>	<u>0.045</u>	<u>0.034</u>	<u>0.028</u>	<u>0.016</u>	<u>0.017</u>
Calcium	μg/L	NG	NG	5100	8600	2100	2800		9700	3800	4800		3300	2400	3200	240				4700	3900	5200	5400	1700	1700	2000	2000
Chromium	μg/L	8.9	NG	2.2	<1.0	<1.0	3.8		<1.0	<1.0	<1.0		1.1	<1.0	<1.0	1.6				7.4	1.0	3.4	<1.0	<1.0	<1.0	1.5	1.6
Cobalt	μg/L	NG	10	3.0	0.45	< 0.40	0.50		4.3	0.71	1.3		< 0.40	< 0.40	0.60	< 0.40				4.4	0.72	1.1	1.1	0.60	0.60	< 0.40	< 0.40
Copper	μg/L	2 - 4 ⁵	2	<u>2.8</u>	<2.0	<u>2.2</u>	<u>2.2</u>		<2.0	<2.0	<2.0		<2.0	<2.0	<u>2.1</u>	<2.0				<u>6.6</u>	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Iron	μg/L	300	300	<u>1500</u>	200	<u>600</u>	<u>750</u>		<u>470</u>	190	<u>790</u>		180	210	<u>460</u>	280				<u>11000</u>	<u>2100</u>	<u>620</u>	<u>630</u>	<u>380</u>	<u>320</u>	<u>340</u>	<u>350</u>
Lead	μg/L	1 to 7 ⁶	1	<u>2.0</u>	< 0.50	0.92	<u>1.1</u>		<0.50	< 0.50	<0.50		0.51	< 0.50	<u>2.1</u>	< 0.50				<u>6.6</u>	1.0	<0.50	< 0.50	0.61	< 0.50	< 0.50	0.50
Magnesium	μg/L	NG	NG	3000	5000	1100	1500		4700	2100	2500		2100	1400	1600	680				4000	2400	4700	4800	1300	1300	1400	1300
Manganese	μg/L	NG	820	230	38	14	22	No Access	500	43	81	No Access	22	11	64	9.6	DRY	DRY	DRY	220	43	40	41	32	31	9.5	11
Mercury	μg/L	0.026	0.026	< 0.013	< 0.013	0.017	0.013		< 0.013	< 0.013	< 0.013		< 0.013	< 0.013	<u>0.055</u>	< 0.013				0.018	< 0.013	< 0.013	<0.013	< 0.013	< 0.013	<0.013	< 0.013
Molybdenum	μg/L	73	73	<2.0	<2.0	<2.0	<2.0		<2.0	<2.0	<2.0		<2.0	<2.0	<2.0	<2.0				<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Nickel	μg/L	25 - 150 ⁷	25	<2.0	<2.0	<2.0	<2.0		2.3	<2.0	<2.0		<2.0	<2.0	<2.0	<2.0				6.3	<2.0	2.9	<2.0	<2.0	<2.0	<2.0	<2.0
Phosphorus	μg/L	NG	NG	<100	<100	<100	<100		<100	<100	<100		<100	<100	390	<100				310	<100	<100	<100	<100	<100	<100	<100
Potassium	μg/L	NG	NG	2000	2500	2800	2600		1400	630	750		960	1200	1700	<100				2400	1600	1600	1600	730	730	1100	1100
Selenium	μg/L	1	1	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0	<1.0		<1.0	<1.0	<1.0	<1.0				<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Silver	μg/L	0.25	0.1	< 0.10	<0.10	<0.10	<0.10		<0.10	< 0.10	<0.10		<0.10	<0.10	<0.10	<0.10				<0.10	< 0.10	<0.10	<0.10	<0.10	<0.10	<0.10	< 0.10
Sodium	μg/L	NG	NG	31000	40000	17000	20000		22000	20000	21000		9900	11000	11000	5600				12000	10000	16000	16000	9200	9500	11000	10000
Strontium	μg/L	NG	21000	38	65	13	19		70	27	32		24	17	24	3.4				29	24	32	34	12	12	13	14
Thallium	μg/L	0.8	0.8	<0.10	<0.10	<0.10	<0.10		<0.10	< 0.10	<0.10		<0.10	<0.10	<0.10	<0.10				<0.10	<0.10	<0.10	<0.10	< 0.10	<0.10	<0.10	<0.10
Tin	μg/L	NG	NG	<2.0	<2.0	<2.0	<2.0		<2.0	<2.0	<2.0		<2.0	<2.0	<2.0	<2.0				<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Titanium	μg/L	NG	NG	20	3.4	5.7	8.1	1	<2.0	<2.0	9.5		<2.0	<2.0	5.5	2.4				170	12	4.0	4.1	5.5	4.4	6.2	5.7
Uranium	μg/L	15	300	<0.10	< 0.10	<0.10	<0.10	1	< 0.10	<0.10	<0.10		<0.10	<0.10	<0.10	<0.10				0.64	<0.10	< 0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Vanadium	μg/L	NG	6	<2.0	<2.0	<2.0	<2.0	1	<2.0	<2.0	<2.0		<2.0	<2.0	<2.0	<2.0				<u>8.7</u>	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Zinc	μg/L	30	30	8.9	11	<5.0	<5.0		26	<5.0	5.7		<5.0	<5.0	5.5	<5.0				27	<5.0	11	9.9	6.4	6.0	<5.0	5.2

Notes:

NG - no guideline

value - exceeds CCME guidelines
- exceeds NSE EQS

value - detection limit exceeds one or both guidelines

³ 1999 (Update 2015) CCME Canadian Water Quality Guidelines for the Protection of Freshwater Aquatic Life.

² 2013 NSE Tier 1 Environmental Quality Standards (EQS) for fresh water surface water

³ Aluminium Guideline for pH < 6.5 = 5 ug/L Aluminium Guideline for pH \geq 6.5 = 100 ug/L

⁴ At [CaCO3] = > 0 to < 17 mg/L, cadmium guideline = 0.04 μ g/L

At [CaCO3] = ≥ 17 to ≤ 280 mg/L, cadmium guideline (μ g/L) = 10<sup>(0.83(log)hardness)) - 2.46}

At [CaCO3] = > 280 mg/L, cadmium guideline = 0.37 μ g/L</sup>

 $^{^5}$ At [CaCO₃] = 0 to 120 mg/L, copper guideline = 2 ug/L. At [CaCO3] = 120 to 180 mg/L, copper guideline = 3 ug/L. At [CaCO3] = > 180 mg/L, copper guideline = 4 ug/L. If hardness unknown, the CWQG is 2 ug/L

⁷ At [CaCO₃] ≤60 mg/L, nickel guideline = 25 ug/L. At [CaCO₃] >60 to ≤180 mg/L, nickel guideline (μ g/L) = e^{0.76[in(hardness)]+1.06} At [CaCO₃] >180 mg/L, nickel guideline = 150 μ g/L If hardness unknown, the CWOG is 25 ug/L

⁶ At [CaCO₃] = 0 to ≤60 mg/L, lead guideline = 1 ug/L

 $[\]label{eq:accomp} \text{At } [\text{CaCO}_3] = > 60 \text{ to } \leq 180 \text{ mg/L}, \text{ lead guideline} = e^{\{1.273[\text{ln}(\text{hardness})]-4.705\}}$

At $[CaCO_3] = >180 \text{ mg/L}$, lead guideline = 7 ug/L

															,	SAMPLE ID)											
PARAMETER	UNITS	CCME FAL ¹	NSE Tier 1 EQS ²			P1A					P1B					P2A					P2B					P3		
				19-Mar-16	15-Jul-16	1-Nov-16	30-Jan-17	25-Apr-17	19-Mar-16	15-Jul-16	1-Nov-16	30-Jan-17	25-Apr-17	19-Mar-16	14-Jul-16	1-Nov-16	30-Jan-17	25-Apr-17	19-Mar-16	14-Jul-16	1-Nov-16	30-Jan-17	25-Apr-17	19-Mar-16	14-Jul-16	1-Nov-16	30-Jan-17	25-Apr-17
Aluminum	μg/L	5 or 100 ³	5	<u>4400</u>	<u>41000</u>	<u>680</u>	<u>640</u>	<u>1200</u>	<u>10000</u>		<u>40000</u>	<u>550</u>	<u>2200</u>	<u>620</u>			<u>390</u>	<u>840</u>	<u>1100</u>		<u>11000</u>	<u>380</u>	<u>410</u>	<u>850</u>	<u>33000</u>	<u>1600</u>	<u>1100</u>	<u>14000</u>
Antimony	μg/L	NG	20	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0	<1.0	<1.0			<1.0	<1.0	<1.0		<1.0	<1.0	<1.0	<1.0	1.2	<1.0	<1.0	<1.0
Arsenic	μg/L	5	5	<u>10</u>	<u>38</u>	4.0	2.2	<u>22</u>	2.4		<u>8.4</u>	<1.0	1.4	1.5			<1.0	2.3	2.4		<u>7.6</u>	<1.0	1.3	1.8	<u>10</u>	1.7	1.1	<u>12</u>
Barium	μ g/L	NG	1000	78	360	26	8.2	49	110		220	5.7	35	6.4			5.1	15	19		59	6.3	8.1	11	140	9.4	6.8	160
Beryllium	μg/L	NG	5.3	<1.0	<10	<1.0	<1.0	<1.0	<1.0		2.3	<1.0	<1.0	<1.0			<1.0	<1.0	<1.0		<1.0	<1.0	<1.0	<1.0	1.7	<1.0	<1.0	<1.0
Bismuth	μg/L	NG	NG	<2.0	<20	<2.0	<2.0	<2.0	<2.0		<2.0	<2.0	<2.0	<2.0			<2.0	<2.0	<2.0		<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Boron	μg/L	1500	1200	<50	<500	130	<50	<50	<50		<50	<50	<50	<50			<50	<50	<50		55	<50	<50	<50	<50	<50	<50	<50
Cadmium	μ g/L	0.04 - 0.37 4	0.01	<u>0.28</u>	<u>2.1</u>	<u>0.088</u>	<u>0.040</u>	<u>0.068</u>	<u>0.46</u>		<u>0.98</u>	<u>0.049</u>	<u>0.24</u>	<u>0.050</u>			<u>0.041</u>	<u>0.060</u>	<u>0.13</u>		<u>0.58</u>	<u>0.038</u>	<u>0.046</u>	<u>0.16</u>	<u>1.1</u>	<u>0.077</u>	<u>0.044</u>	<u>0.81</u>
Calcium	μg/L	NG	NG	11000	52000	14000	4300	8500	8200		24000	1200	3000	8200			8100	15000	4800		6800	2700	2900	4500	30000	5500	5700	25000
Chromium	μ g/L	8.9	NG	7.2	45	2.1	1.5	3.2	4.6		17	<1.0	2.6	1.5			<1.0	2.5	2.2		16	1.2	1.5	1.6	25	2.3	1.4	13
Cobalt	μ g/L	NG	10	4.9	<u>22</u>	2.6	1.1	2.8	5.2		<u>12</u>	1.0	2.2	0.71			0.75	3.2	2.6		6.1	0.66	0.48	1.2	6.9	1.1	0.53	6.0
Copper	μ g/L	2 - 4 5	2	<u>17</u>	<u>84</u>	<u>6.2</u>	2.0	<u>4.9</u>	<u>18</u>		<u>51</u>	<2.0	<u>6.9</u>	<u>6.5</u>			<u>3.6</u>	<u>5.4</u>	<u>13</u>		<u>36</u>	<u>4.6</u>	<u>4.2</u>	<u>11</u>	<u>51</u>	<u>5.7</u>	<u>3.2</u>	<u>35</u>
Iron	μ g/L	300	300	<u>32000</u>	<u>75000</u>	<u>3300</u>	<u>2300</u>	<u>17000</u>	<u>5800</u>		<u>13000</u>	<u>840</u>	<u>4200</u>	<u>1600</u>			<u>1000</u>	<u>10000</u>	<u>3500</u>		<u>18000</u>	<u>1200</u>	<u>2000</u>	<u>1300</u>	<u>14000</u>	<u>1600</u>	<u>930</u>	<u>18000</u>
Lead	μ g/L	1 to 7 ⁶	1	<u>16</u>	<u>140</u>	<u>2.7</u>	<u>1.1</u>	<u>6.6</u>	<u>43</u>		<u>110</u>	0.67	<u>7.5</u>	<u>2.1</u>			0.64	<u>1.7</u>	<u>7.0</u>		<u>27</u>	0.68	0.97	<u>6.5</u>	<u>110</u>	<u>4.3</u>	<u>3.7</u>	<u>47</u>
Magnesium	μ g/L	NG	NG	2900	10000	5300	1600	2600	3800		9700	1500	2300	2300			2400	4100	1700		4200	1300	1200	1700	7800	2700	1700	6200
Manganese	μ g/L	NG	820	630	<u>2800</u>	790	210	510	110	DRY	210	36	52	40	DRY	DRY	86	540	290	DRY	380	140	69	33	330	60	33	380
Mercury	μ g/L	0.026	0.026	<u>0.19</u>	<u>0.19</u>	0.022	0.018	<u>0.028</u>	<u>0.24</u>		<u>0.50</u>	<u>0.030</u>	<u>0.042</u>	<0.013			0.022	<u>0.057</u>	0.017		<u>0.21</u>	0.018	<u>0.030</u>	0.025	<u>0.57</u>	<u>0.20</u>	<u>0.79</u>	<u>0.90</u>
Molybdenum	μg/L	73	73	<2.0	<20	<2.0	<2.0	<2.0	2.1		8.7	<2.0	<2.0	2.4			2.4	3.5	<2.0		3.5	<2.0	<2.0	<2.0	9.2	<2.0	<2.0	4.6
Nickel	μ g/L	25 - 150 ⁷	25	11	<u>49</u>	3.6	2.1	3.7	13		<u>35</u>	<2.0	5.1	2.4			<2.0	3.4	5.1		17	<2.0	<2.0	5.0	<u>31</u>	4.8	2.4	20
Phosphorus	μg/L	NG	NG	1500	5100	140	<100	980	2500		5300	100	1800	350			<100	290	800		1100	240	130	660	5400	310	250	5200
Potassium	μg/L	NG	NG	11000	13000	14000	4800	7500	1600		2200	1100	2000	13000			7700	15000	11000		20000	2400	3500	18000	14000	9300	3900	7600
Selenium	μg/L	1	1	<1.0	<10	<1.0	<1.0	<1.0	<u>1.5</u>	ļ	<u>5.1</u>	<1.0	<1.0	<1.0			<1.0	<1.0	<1.0		1.0	<1.0	<1.0	<1.0	<u>8.0</u>	<1.0	<1.0	<u>2.6</u>
Silver	μg/L	0.25	0.1	0.10	<u>1.1</u>	<u>0.12</u>	<0.10	<0.10	<u>0.15</u>		<u>0.55</u>	<0.10	<0.10	<0.10			<0.10	<0.10	<0.10		<u>0.16</u>	<0.10	<0.10	<0.10	<u>1.2</u>	<0.10	<0.10	<u>0.61</u>
Sodium	μg/L	NG	NG	14000	15000	17000	9500	9600	7000	1	14000	9300	9700	12000			13000	20000	12000		21000	6300	8900	16000	16000	15000	9900	9300
Strontium	μg/L	NG	21000	62	320	74	21	43	86	1	250	12	29	35			33	63	31		47	15	17	23	190	31	23	150
Thallium	μg/L	0.8	0.8	<0.10	<1.0	<0.10	<0.10	<0.10	<0.10	1	<0.10	<0.10	<0.10	<0.10			<0.10	<0.10	<0.10		<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Tin	μg/L	NG	NG	<2.0	<20	<2.0	<2.0	<2.0	<2.0	1	9.3	<2.0	<2.0	<2.0			<2.0	<2.0	<2.0		<2.0	<2.0	<2.0	<2.0	8.4	5.8	2.3	<2.0
Titanium	μg/L	NG	NG	100	520	17	7.7	23	100	1	360	3.1	27	18			7.9	20	38		310	9.5	12	16	390	29	17	230
Uranium	μg/L	15	300	0.55	5.4	0.10	<0.10	0.14	0.77	1	3.3	<0.10	0.12	<0.10			<0.10	<0.10	0.13		0.57	<0.10	<0.10	0.11	3.7	0.18	0.10	1.2
Vanadium	μg/L	NG	6	<u>9.9</u>	<u>56</u>	2.6	<2.0	5.5	<u>10</u>	1	<u>36</u>	<2.0	2.7	<2.0			<2.0	3.1	3.4		<u>31</u>	<2.0	<2.0	<2.0	<u>26</u>	3.1	<2.0	<u>16</u>
Zinc	μ g/L	30	30	<u>87</u>	<u>530</u>	<u>61</u>	22	<u>59</u>	29		<u>47</u>	<5.0	19	12			8.5	12	23		<u>70</u>	12	12	21	<u>120</u>	9.3	11	<u>94</u>

Notes:

NG - no guideline

value - exceeds CCME guidelines
- exceeds NSE EOS

value - detection limit exceeds one or both guidelines

³ Aluminium Guideline for pH < 6.5 = 5 ug/L Aluminium Guideline for pH $\geq 6.5 = 100$ ug/L 4 At [CaCO3] = > 0 to < 17 mg/L, cadmium guideline = 0.04 µg/L $\text{At [CaCO3]} = \geq 17 \text{ to } \leq 280 \text{ mg/L}, \text{ cadmium guideline } (\mu\text{g/L}) = 10^{(0.83(\log(hardness)) - 2.46})$

At [CaCO3] = > 280 mg/L, cadmium guideline = 0.37 μ g/L

 5 At [CaCO $_3$] = 0 to 120 mg/L, copper guideline = 2 ug/L. At [CaCO3] = 120 to 180 mg/L, copper guideline = 3 ug/L. At [CaCO3] = > 180 mg/L, copper guideline = 4 ug/L.

If hardness unknown, the CWQG is 2 ug/L

⁷ At [CaCO₃] ≤60 mg/L, nickel guideline = 25 ug/L. At [CaCO₃] >60 to ≤180 mg/L, nickel guideline (μ g/L) = e^{[0.76[In(hardness)]+1.06]} At [CaCO₃] >180 mg/L, nickel guideline = 150 μ g/L If hardness unknown, the CWQG is 25 ug/L

⁶ At [CaCO₃] = 0 to ≤60 mg/L, lead guideline = 1 ug/L

At [CaCO $_3$] = >60 to ≤180 mg/L, lead guideline = $e^{\{1.273[ln(hardness)]\cdot4.705\}}$

At [CaCO₃] = >180 mg/L, lead guideline = 7 ug/L

³ 1999 (Update 2015) CCME Canadian Water Quality Guidelines for the Protection of Freshwater Aquatic Life.

² 2013 NSE Tier 1 Environmental Quality Standards (EQS) for fresh water surface water

																SAMPLE II	D											
PARAMETER	UNITS	CCME FAL ¹	NSE Tier 1		SI	W1			S	W2			S	SW3				SW14						ВА	CK2			_
FANAMETEN	UNITS	CCIVIE FAL	EQS ²	14-Jul-16	31-Oct-16	31-Jan-17	26-Apr-17	14-Jul-16	31-Oct-16	30-Jan-17	25-Apr-17	15-Jul-16	1-Nov-16	30-Jan-17	25-Apr-17	15-Jul-16	31-Oct-16	Lab-Dup 1-Nov-16	31-Jan-17	26-Apr-17	14-Jul-16	SW-DUP2 14-Jul-16	1-Nov-16	SW-DUP2 1-Nov-16	30-Jan-17	SW-DUP2 30-Jan-17	25-Apr-17	SW-DUP2 25-Apr-17
Aluminum	μg/L	5 or 100 ³	5		<u> 1800</u>	<u>540</u>	<u>590</u>	<u>590</u>	<u>830</u>	<u>380</u>	<u>380</u>	<u>650</u>	<u>320</u>	<u>600</u>	<u>610</u>	<u>230</u>	<u>190</u>	<u>180</u>	<u>460</u>	<u>360</u>	<u>280</u>	<u>290</u>	<u>280</u>	<u>280</u>	<u>320</u>	<u>320</u>	<u>310</u>	<u>310</u>
Antimony	μg/L	NG	20		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Arsenic	μ g/L	5	5		1.7	<1.0	1.1	<1.0	1.0	<1.0	<1.0	2.4	1.1	1.6	2.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.3	1.2	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Barium	μ g/L	NG	1000		8.6	2.0	2.7	3.9	7.8	2.4	3.0	11	21	7.6	8.7	8.0	14	14	3.9	4.5	8.0	7.9	16	16	6.9	6.8	6.7	6.7
Beryllium	μ g/L	NG	5.3		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bismuth	μ g/L	NG	NG		<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Boron	μ g/L	1500	1200		<50	<50	<50	<50	<50	<50	<50	63	93	<50	<50	<50	96	100	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
Cadmium	μ g/L	0.04 - 0.37 4	0.01		<u>0.11</u>	<u>0.032</u>	<u>0.035</u>	0.046	<u>0.072</u>	<u>0.020</u>	<u>0.029</u>	<u>0.038</u>	<u>0.042</u>	<u>0.033</u>	<u>0.037</u>	<u>0.044</u>	<u>0.063</u>	<u>0.062</u>	<u>0.028</u>	<u>0.017</u>	<u>0.016</u>	<u>0.016</u>	<u>0.056</u>	<u>0.031</u>	<u>0.021</u>	<u>0.028</u>	<u>0.015</u>	<u>0.019</u>
Calcium	μg/L	NG	NG		3000	810	1000	2200	4000	1300	1500	6500	16000	6200	7200	4700	8200	8000	2100	2900	3500	3400	4700	4700	1700	1700	2100	2100
Chromium	μ g/L	8.9	NG		1.7	<1.0	<1.0	<1.0	1.1	<1.0	<1.0	1.3	2.7	1.4	2.5	<1.0	<1.0	<1.0	1.5	1.7	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Cobalt	μ g/L	NG	10		1.2	< 0.40	< 0.40	0.47	0.71	< 0.40	< 0.40	0.71	0.93	0.75	1.3	2.1	< 0.40	< 0.40	< 0.40	< 0.40	0.42	< 0.40	0.55	0.55	0.54	0.56	< 0.40	< 0.40
Copper	μg/L	2 - 4 5	2		<u>3.9</u>	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<u>6.0</u>	<u>2.3</u>	<u>3.1</u>	<u>3.0</u>	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Iron	μg/L	300	300		<u>1200</u>	<u>520</u>	<u>550</u>	<u>630</u>	<u>610</u>	300	290	<u>3800</u>	<u>840</u>	<u>2000</u>	<u>2100</u>	<u>400</u>	100	100	<u>520</u>	<u>530</u>	<u>1200</u>	<u>1100</u>	300	<u>320</u>	290	280	<u>330</u>	<u>330</u>
Lead	μg/L	1 - 7 ⁶	1		<u>8.0</u>	<u>3.1</u>	2.9	2.6	<u>3.1</u>	<u>1.1</u>	<u>1.4</u>	<u>2.9</u>	0.67	0.87	0.98	0.69	< 0.50	< 0.50	<u>1.1</u>	0.68	0.64	0.65	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Magnesium	μ g/L	NG	NG	Dry	1800	460	560	1400	2700	980	1100	1900	4900	2000	2200	2700	5000	5000	1100	1500	2200	2200	3700	3500	1300	1300	1400	1400
Manganese	μg/L	NG	820	Diy	40	10	15	25	41	14	15	84	270	110	230	190	37	38	12	11	23	18	24	23	31	30	8.8	9.1
Molybdenum	μg/L	73	73		<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Nickel	μg/L	25 - 150 ⁷	25		6.1	<2.0	<2.0	2.1	2.9	<2.0	<2.0	3.6	2.0	2.8	3.2	2.4	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Phosphorus	μg/L	NG	NG		<100	<100	<100	<100	<100	<100	<100	140	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100
Potassium	μg/L	NG	NG		9100	3800	4100	2500	3900	1800	1500	12000	13000	6900	7500	1900	3000	2800	2700	2600	1500	1500	1500	1500	710	710	1100	1100
Selenium	μg/L	1	1		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Silver	μg/L	0.25	0.1		<0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	<0.10	< 0.10	<0.10	<0.10	<0.10	<0.10	<0.10	< 0.10	< 0.10	< 0.10	< 0.10	<0.10	< 0.10	<0.10
Sodium	μ g/L	NG	NG		22000	9500	11000	9500	13000	7500	8200	15000	17000	11000	12000	30000	38000	38000	16000	21000	9800	9800	15000	14000	9000	9000	11000	11000
Strontium	μ g/L	NG	21000		23	5.7	7.2	13	26	8.5	10	31	79	28	34	35	60	62	14	20	21	22	31	30	12	11	14	13
Thallium	μ g/L	0.8	0.8		< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	<0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	<0.10	< 0.10	<0.10
Tin	μg/L	NG	NG		<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Titanium	μg/L	NG	NG		28	7.6	7.9	6.1	9.6	3.2	3.8	16	4.8	9.7	10	2.3	2.1	<2.0	5.5	5.1	6.5	7.3	2.6	2.8	3.5	3.4	5.2	5.2
Uranium	μg/L	15	300		<0.10	< 0.10	<0.10	< 0.10	<0.10	<0.10	< 0.10	< 0.10	< 0.10	<0.10	<0.10	<0.10	< 0.10	<0.10	<0.10	< 0.10	<0.10	<0.10	<0.10	< 0.10	<0.10	<0.10	<0.10	<0.10
Vanadium	μg/L	NG	6		3.1	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	2.3	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Zinc	μ g/L	30	30		16	5.9	9.1	8.2	13	6.9	8.0	19	<u>38</u>	<u>35</u>	<u>32</u>	8.9	11	11	7.1	6.4	6.4	6.4	11	9.6	7.9	8.6	6.2	5.8

Notes:

NG - no guideline

exceeds CCME guidelines exceeds NSE EQS

detection limit exceeds one or both guidelines

 3 Aluminium Guideline for pH < 6.5 = 5 ug/L Aluminium Guideline for pH \geq 6.5 = 100 ug/L

 5 At [CaCO $_{3}$] = 0 to 120 mg/L, copper guideline = 2 ug/L. At [CaCO3] = 120 to 180 mg/L, copper guideline = 3 ug/L. At [CaCO3] = > 180 mg/L, copper guideline = 4 ug/L. If hardness unknown, the CWQG is 2 ug/L

 4 At [CaCO3] = > 0 to < 17 mg/L, cadmium guideline = 0.04 $\mu\text{g/L}$ At [CaCO3] = \geq 17 to \leq 280 mg/L, cadmium guideline (μ g/L) = $10^{(0.83(log[hardness]) - 2.46})$

At [CaCO3] = > 280 mg/L, cadmium guideline = 0.37 μ g/L

⁶ At [CaCO₃] = 0 to ≤60 mg/L, lead guideline = 1 ug/L At [CaCO₃] = >60 to ≤180 mg/L, lead guideline = $e^{(1.273[n(hardness)]-4.705)}$

At [CaCO₃] = >180 mg/L, lead guideline = 7 ug/L

⁷ At [CaCO₃] ≤60 mg/L, nickel guideline = 25 ug/L. At [CaCO3] >60 to \leq 180 mg/L, nickel guideline (μ g/L) = $e^{[0.76[ln(hardness)]+1.06)}$

At [CaCO3] >180 mg/L, nickel guideline = 150 μ g/L If hardness unknown, the CWQG is 25 ug/L

³ 1999 (Update 2015) CCME Canadian Water Quality Guidelines for the Protection of Freshwater Aquatic Life.

² 2013 NSE Tier 1 Environmental Quality Standards (EQS) for fresh water surface water

												Samı	ple ID								
PARAMETER	UNITS	Health Canada Drinking Water	NSE Tier 1	PV	W2		PW2A								PW3						
		Guidelines ¹	EQS ²	D	ug		Drilled		Hose	Inlet (Pre-treat)	DUP Inlet (Pre-treat)	Inlet (Pre-treat)	Inlet (Pre-treat)	Lab-DUP Inlet (Pre-treat)	Inlet (Pre-treat)	Lab Dup Inlet (Pre-treat)	Inlet (Pre-treat)	Kitchen Tap	Kitchen Tap	Kitchen Tap	Kitchen Tap
				2-Feb-16	16-Mar-16	11-Jan-06	21-Mar-16	Lab Dup	2-Feb-16	16-Mar-16	16-Mar-16	15-Jul-16	19-Oct-16	19-Oct-16	31-Jan-17	31-Jan-17	25-Apr-17	15-Jul-16	19-Oct-16	31-Jan-17	25-Apr-17
Field pH	pН	7-10.5	NG	6.58	6.6	-	6.7	-	6.64	5.43	5.43	5.51	5.9	-	5.94	-	5.60	5.76	5.9	6.23	5.66
Field Conductivity	uS/cm	NG	NG	114	109	-	47	-	185	183	183	448	406	-	306	-	225	477	375	163	263
Field Temperature	°C	NG	NG	12.07	11.36	-	9.19	-	7.37	7.42	7.42	13.37	13.5	-	7.94	-	9.62	14.76	13	7.32	9.55
Anion Sum	me/L	NG	NG	1.51	1.48	1.19	1.35	-	2.64	2.86	2.88	5.54	3.32	-	2.51	-	3.55	-	-	-	-
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	NG	NG	41	37	24	27	-	12	9.5	10	9	19	-	8.8	-	11	-	-	-	-
Calculated TDS	mg/L	< 500 (AO)	NG	97	95	95	110	-	150	170	170	320	200	-	150	-	200	-	-	-	-
Carb. Alkalinity (calc. as CaCO3)	mg/L	NG	NG	<1.0	<1.0	<1.0	<1.0	-	<1.0	<1.0	<1.0	<1.0	<1.0	-	<1.0	-	<1.0	-	-	-	-
Cation Sum	me/L	NG	NG	1.36	1.41	1.36	1.50	-	2.30	2.55	2.63	5.20	3.24	-	2.25	-	3.15	-	-	-	-
Colour	TCU	≤ 15 (AO)	NG	<5.0	<5.0	<5.0	<5.0	-	<5.0	13	5.7	<5.0	<5.0	-	17	-	6.3	-	-	-	-
Conductivity	uS/cm	NG	NG	130	140	130	120	-	260	290	290	560	360	-	280	-	390	-	-	-	-
Chloride (CI)	mg/L	< 250 (AO)	250	15	16	12	14	-	78	87	87	180	92	-	77	-	110	-	-	-	-
Sulphate (SO4)	mg/L	< 500 (AO)	NG	12	12	17	20	-	8.7	9.5	10	17	15	-	8.0	-	12	-	-	-	-
Hardness (CaCO3)	mg/L	NG	NG	45	45	37	37	-	23	22	23	34	33	-	21	-	25	-	-	-	-
Ion Balance (% Difference)	%	NG	NG	5.23	2.42	6.51	5.26	-	6.88	5.73	4.54	3.17	1.22	-	5.46	-	5.97	-	-	-	-
Langelier Index (@ 20C)	N/A	NG	NG	-1.58	-1.70	(2.14)	-2.05	-	-3.27	-3.33	-3.32	-3.30	-2.73	-	-3.31	-	-3.28	-	-	-	-
Langelier Index (@ 4C)	N/A	NG	NG	-1.84	-1.95	(2.39)	-2.30	-	-3.52	-3.58	-3.57	-3.55	-2.98	-	-3.56	-	-3.53	-	-	-	-
Nitrate (N)	mg/L	10 (MAC)	NG	0.45	0.42	<0.05	<0.050	-	0.15	0.093	0.10	0.11	0.12	-	0.092	-	0.13	-	-	-	-
Nitrate + Nitrite	mg/L	NG	NG	0.45	0.42	<0.05	<0.050	-	0.15	0.093	0.10	0.11	0.12	-	0.092	-	0.13	-	-	-	-
Nitrite (N)	mg/L	1 (MAC)	NG	<0.010	<0.010	<0.01	<0.010	-	<0.010	<0.010	<0.010	<0.010	<0.010	-	<0.010	-	<0.010	-	-	-	-
Nitrogen (Ammonia Nitrogen)	mg/L	NG	NG	<0.050	<0.050	< 0.05	0.11	-	0.051	<0.050	< 0.050	< 0.050	< 0.050	-	<0.050	-	<0.050	-	-	-	-
Orthophosphate (P)	mg/L	NG	NG	0.015	0.012	<0.01	0.013	-	<0.010	<0.010	0.012	<0.010	0.014	-	<0.010	-	<0.010	-	-	-	-
рН	pН	7-10.5	NG	7.00	6.93	6.84	6.89	-	6.19	6.28	6.23	6.20	6.39	-	6.31	-	6.21	-	-	-	-
Reactive Silica (SiO2)	mg/L	NG	NG	16	14	23	22	-	5.9	5.4	5.7	7.4	11	-	5.6	-	5.7	-	-	-	-
Saturation pH (@ 20C)	N/A	NG	NG	8.59	8.63	8.98	8.94	-	9.47	9.61	9.54	9.50	9.12	-	9.62	-	9.49	-	-	-	
Saturation pH (@ 4C)	N/A	NG	NG	8.84	8.88	9.23	9.19	÷	9.72	9.86	9.79	9.75	9.37	=	9.87	=	9.74	-	-	=	-
Total Alkalinity (Total as CaCO3)	mg/L	NG	NG	41	37	24	27	-	12	9.5	10	9	19	-	8.8	-	11	-	-	-	-
Total Organic Carbon (C)	mg/L	NG	NG	<0.50	<0.50	<0.5	0.58	0.6	0.56	0.74	0.61	0.95	0.79	0.66	0.61	-	0.90	-	-	-	-
Turbidity	NTU	1 (MAC) ³	NG	0.49	0.71	39	52	-	0.66	0.37	0.40	1.20	0.69		0.34	0.37	0.42	-	-		-

Notes:
AO - Aesthetic Objective
MAC - Maximum Acceptable Concentration
NG - no guideline
NR -data not recorded due to equipment malfunction

(1) Elevated reporting limit due to sample matrix.

(2) Reporting limit was increased due to turbidity.

(3) The sample was decanted due to sediment.

(4) Elevated reporting limit due to blank performance.

 $^{^{\}rm 1}$ 2017 Health Canada Canadian Water Quality Guidelines for Community (Drinking) Water (HCDWQ)


² 2013 NSE Tier 1 Environmental Quality Standards (EQS) for potable water at a residential site with coarse-grained soil

³ Guideline applies to individual filter turbidity for municipal systems using surface water or groundwater under the direct influence of surface water.

						Sam	ple ID		
PARAMETER	UNITS	Health Canada Drinking Water	NSE Tier 1 EQS ²			PI	W8		
		Guidelines ¹	LQS			Inlet (P	re-treat)		
				2-Feb-16	16-Mar-16	15-Jul-16	31-Oct-16	31-Jan-17	26-Apr-17
Field pH	рН	7-10.5	NG	6.95	6.25	6.11	6.06	5.43	5.59
Field Conductivity	uS/cm	NG	NG	234	99	183	NR	295	180
Field Temperature	°C	NG	NG	10.24	7.28	10.45	10	8.93	9.95
Anion Sum	me/L	NG	NG	3.29	2.77	2.63	2.62	2.60	2.63
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	NG	NG	58	61	63	65	69	69
Calculated TDS	mg/L	< 500 (AO)	NG	190	170	160	160	160	160
Carb. Alkalinity (calc. as CaCO3)	mg/L	NG	NG	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Cation Sum	me/L	NG	NG	2.80	2.62	2.5	2.53	2.61	2.54
Colour	TCU	4 15 (AO)	NG	<5.0	<5.0	5.4	<5.0	<5.0	< 5.0
Conductivity	uS/cm	NG	NG	290	250	240	270	260	260
Chloride (CI)	mg/L	< 250 (AO)	250	68	47	41	40	37	37
Sulphate (SO4)	mg/L	< 500 (AO)	NG	10	10	9.9	9.3	8.2	9.9
Hardness (CaCO3)	mg/L	NG	NG	83	83	85	84	84	87
Ion Balance (% Difference)	%	NG	NG	8.05	2.78	2.53	1.75	0.190	1.74
Langelier Index (@ 20C)	N/A	NG	NG	-0.950	-0.737	-0.469	-0.720	-0.609	-0.588
Langelier Index (@ 4C)	N/A	NG	NG	-1.20	-0.987	-0.719	-0.970	-0.859	-0.839
Nitrate (N)	mg/L	10 (MAC)	NG	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Nitrate + Nitrite	mg/L	NG	NG	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Nitrite (N)	mg/L	1 (MAC)	NG	<0.010	<0.010	<0.010	<0.010	<0.010	< 0.010
Nitrogen (Ammonia Nitrogen)	mg/L	NG	NG	0.068	0.068	< 0.050	0.052	0.050	< 0.050
Orthophosphate (P)	mg/L	NG	NG	0.017	0.020	0.016	0.020	0.018	< 0.010
рН	pН	7-10.5	NG	7.29	7.47	7.71	7.44	7.53	7.53
Reactive Silica (SiO2)	mg/L	NG	NG	21	21	22	22	22	21
Saturation pH (@ 20C)	N/A	NG	NG	8.24	8.20	8.18	8.16	8.14	8.12
Saturation pH (@ 4C)	N/A	NG	NG	8.49	8.45	8.43	8.41	8.39	8.37
Total Alkalinity (Total as CaCO3)	mg/L	NG	NG	58	61	63	65	69	69
Total Organic Carbon (C)	mg/L	NG	NG	< 0.50	< 0.50	0.5	0.54	0.72	0.63
Turbidity	NTU	1 (MAC) ³	NG	12	7.4	14	14	66	6.2

Notes:
AO - Aesthetic Objective
MAC - Maximum Acceptable Concentration
NG - no guideline
NR -data not recorded due to equipment malfunction

- (1) Elevated reporting limit due to sample matrix.
- (2) Reporting limit was increased due to turbidity.
- (3) The sample was decanted due to sediment.
- (4) Elevated reporting limit due to blank performance.

- $^{\rm 1}$ 2017 Health Canada Canadian Water Quality Guidelines for Community (Drinking) Water (HCDWQ)
- ² 2013 NSE Tier 1 Environmental Quality Standards (EQS) for potable water at a residential site with coarse-grained soil
- 3 Guideline applies to individual filter turbidity for municipal systems using surface water or groundwater under the direct influence of surface water.

											Sampl	le ID							
DADAMETED	LIMITO	Health Canada	NSE Tier 1	PV	V2	PV	V2A						P\	N3					
PARAMETER	UNITS	Drinking Water Guidelines ¹	EQS ²	Di	ng	Dr	illed	Hose	Inlet (Pre-treat)	DUP Inlet (Pre-treat)	Inlet (Pre-treat)	Lab Dup Inlet (Pre-treat)	Inlet (Pre-treat)	Inlet (Pre-treat)	Inlet (Pre-treat)		Kitch	ien Tap	
				2-Feb-16	16-Mar-16	11-Jan-06	21-Mar-16	2-Feb-16	16-Mar-16	16-Mar-16	15-Jul-16	15-Jul-16	19-Oct-16	31-Jan-17	25-Apr-17	15-Jul-16	19-Oct-16	31-Jan-17	25-Apr-17
Aluminum	μg/L	100 ³	NG	12	24	<10	24	110	110	110	170	170	59	94	95	160	53	91	91
Antimony	μg/L	6 (MAC)	6	<1.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Arsenic	μg/L	10 (MAC)	10	<1.0	<1.0	9	<u>23</u>	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Barium	μ g/L	1000 (MAC)	1000	8.1	8.1	<5.0	3.5	18	19	20	41	41	22	16	22	40	19	16	21
Beryllium	μ g/L	NG	4	<1.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bismuth	μg/L	NG	NG	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Boron	μg/L	5000 (MAC)	5000	<50	<50	<5.0	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
Cadmium	μg/L	5 (MAC)	5	0.025	0.038	< 0.3	0.067	0.072	0.063	0.055	0.11	0.10	0.050	0.054	0.051	0.10	0.046	0.040	0.046
Calcium	μg/L	NG	NG	14000	14000	9500	9400	6500	6200	6500	9400	9300	9800	6300	7100	9300	9100	6000	7200
Chromium	μg/L	50 (MAC)	50	<1.0	<1.0	<2.0	3.5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Cobalt	μg/L	NG	10	< 0.40	< 0.40	<1.0	0.70	< 0.40	< 0.40	< 0.40	0.62	0.59	0.67	< 0.40	<0.40	0.61	0.72	< 0.40	< 0.40
Copper	μ g/L	≤1000 (AO)	NG	86	59	6	67	260	7.5	6.3	8.3	8.3	2.7	5.2	6.9	69	60	76	100
Iron	μg/L	≤300 (AO)	NG	<50	<50	3600	8300	120	210	180	380	380	250	530	200	180	240	440	220
Lead	μ g/L	10 (MAC)	10	1.3	1.1	2.0	7.2	<u>15</u>	1.1	1.1	1.9	1.8	0.68	0.99	1.6	0.69	<0.50	<0.50	<0.50
Magnesium	μg/L	NG	NG	2600	2600	3300	3200	1600	1700	1700	2700	2700	2100	1400	1600	2600	1900	1400	1700
Manganese	μg/L	≤50 (AO)	NG	9.8	10	160	480	30	42	44	110	110	140	28	41	100	140	27	42
Mercury	μg/L	1 (MAC)	1	< 0.013	0.020	-	-	< 0.013	0.013	< 0.013	-	-	-	-	-	-	-	-	-
Molybdenum	μg/L	NG	70	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Nickel	μg/L	NG	100	<2.0	<2.0	<2.0	9.3	7.5	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Phosphorus	μg/L	NG	NG	<100	<100	<100	140	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100
Potassium	μg/L	NG	NG	1700	1600	900	870	690	680	730	1000	1000	900	740	750	1000	830	710	770
Selenium	μg/L	50 (MAC)	10	<1.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Silver	μg/L	NG	100	<0.10	<0.10	<0.5	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Sodium	μg/L	< 200,000 (AO)	200,000	9400	11000	11000	10000	42000	48000	49000	100000	100000	59000	41000	60000	98000	52000	41000	61000
Strontium	μg/L	NG	4400	77	83	40	38	33	37	38	65	65	55	32	40	64	51	31	40
Tellurium	μg/L	NG	NG	-	-	-	-	-	-	-	-	-	-	-	<2.0	-	-	-	<2.0
Thallium	μg/L	NG	2	<0.10	<0.10	<0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Tin	μg/L	NG	4400	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Titanium	μg/L	NG	NG	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Uranium	μg/L	20 (MAC)	20	<0.10	<0.10	<0.1	0.12	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Vanadium	μg/L	NG	6.2	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Zinc	μg/L	≤5000 (AO)	5000	33	29	20	380		210	39	24	31	11	29	29	11	8.1	12	8.9

Notes:

AO - Aesthetic Objective
MAC - Maximum Acceptable Concentration

<u>value</u> -exceeds NSE EQS

value - exceeds Health Canada DWQG

OG - Operational Guideline

NG - no guideline

¹2017 Health Canada Canadian Water Quality Guidelines for Community (Drinking) Water (HCDWQ)

² 2013 NSE Tier 1 Environmental Quality Standards (EQS) for potable water at a residential site with coarse-grained soil

 $^{\rm 3}$ For municipal treatment systems only; does not apply to naturally occuring aluminum in groundwater

						Samp	ole ID		
212115752		Health Canada	NSE Tier 1			PV	W8		
PARAMETER	UNITS	Drinking Water Guidelines ¹	EQS ²			Inlet (Pr	re-treat)		
				2-Feb-16	16-Mar-16	15-Jul-16	31-Oct-16	31-Jan-17	26-Apr-17
Aluminum	μ g/L	100 ³	NG	5.7	<5.0	7.5	6.7	22	6.1
Antimony	µg/L	6 (MAC)	6	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Arsenic	µg/L	10 (MAC)	10	1.1	1.1	2.3	1.8	8.7	1.5
Barium	μ g/L	1000 (MAC)	1000	18	18	18	17	19	18
Beryllium	μg/L	NG	4	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bismuth	μ g/L	NG	NG	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Boron	μg/L	5000 (MAC)	5000	<50	<50	<50	<50	<50	<50
Cadmium	μg/L	5 (MAC)	5	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Calcium	μg/L	NG	NG	24000	24000	25000	25000	25000	26000
Chromium	μg/L	50 (MAC)	50	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Cobalt	μg/L	NG	10	< 0.40	< 0.40	< 0.40	<0.40	< 0.40	< 0.40
Copper	μg/L	≤1000 (AO)	NG	21	<2.0	<2.0	<2.0	5.3	<2.0
Iron	μ g/L	≤300 (AO)	NG	1000	800	1600	1600	6300	980
Lead	μg/L	10 (MAC)	10	7.5	< 0.50	<0.50	<0.50	<0.50	< 0.50
Magnesium	μg/L	NG	NG	5500	5400	5600	5400	5200	5400
Manganese	µ g/L	≤50 (AO)	NG	420	350	260	280	260	250
Mercury	µ g/L	1 (MAC)	1	<0.013	< 0.013	-	-	-	-
Molybdenum	µ g/L	NG	70	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Nickel	µ g/L	NG	100	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Phosphorus	µ g/L	NG	NG	<100	<100	<100	<100	120	<100
Potassium	µ g/L	NG	NG	1600	1600	1600	1600	1700	1800
Selenium	µg/L	50 (MAC)	10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Silver	µg/L	NG	100	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Sodium	µg/L	< 200,000 (AO)	200,000	25000	20000	16000	17000	15000	16000
Strontium	μg/L	NG	4400	140	150	150	150	160	150
Tellurium	μg/L	NG	NG	-	-	-	-	-	<2.0
Thallium	μg/L	NG	2	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Tin	μg/L	NG	4400	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Titanium	μg/L	NG	NG	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Uranium	μg/L	20 (MAC)	20	<0.10	<0.10	<0.10	<0.10	0.15	<0.10
Vanadium	μg/L	NG	6.2	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Zinc	μg/L	≤5000 (AO)	5000	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0

Notes:

AO - Aesthetic Objective
MAC - Maximum Acceptable Concentration

value - exceeds Health Canada DWQG
-exceeds NSE EQS

OG - Operational Guideline

NG - no guideline

¹2017 Health Canada Canadian Water Quality Guidelines for Community (Drinking) Water (HCDWQ)

 $^2\,2013\,\,\text{NSE Tier}\,1\,\text{Environmental Quality Standards (EQS)}\,for\,potable\,water\,at\,a\,residential\,site\,with\,coarse-grained\,soil$

 $^3\,\mathrm{For}$ municipal treatment systems only; does not apply to naturally occuring aluminum in groundwater

TABLE 8: METALS in Sediment

Client: Town of Yarmouth

Site Location: 2014 Lake George Road, Lake George, NS

Englobe Project No.: 21347

		2013 NSF			D.	SAMPLE ID (DEPTH) ATE SAMPLE	:D		
PARAMETER	UNITS	TIER 1 EQS ¹	SI	W1	SW2	SW3	SW12	SW14	BACK2
		HER I EUS							
			(0 - 0.2m) 15-Jul-16	Lab-Dup 15-Jul-16	(0 - 0.2m) 14-Jul-16	(0 - 0.2m) 15-Jul-16	(0 - 0.2m) 15-Jul-16	(0 - 0.2m) 15-Jul-16	(0 - 0.2m) 14-Jul-16
Aluminum (AI)	mg/kg	NG	12000	12000	2800	5300	6600	13000	10000
Antimony (Sb)	mg/kg	25	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Arsenic (As)	mg/kg	17	2.7	2.8	4.0	8.0	2.5	21	21
Barium (Ba)	mg/kg	NG	15	15	21	33	44	19	55
Beryllium (Be)	mg/kg	NG	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Bismuth (Bi)	mg/kg	NG	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Boron (B)	mg/kg	NG	<50	<50	<50	<50	<50	<50	<50
Cadmium (Cd)	mg/kg	3.5	< 0.30	< 0.30	< 0.30	< 0.30	0.52	< 0.30	< 0.30
Chromium (Cr)	mg/kg	90	26	27	3.2	9.5	7.0	25	23
Cobalt (Co)	mg/kg	NG	9.1	9.0	1.5	4.4	2.9	24	9.6
Copper (Cu)	mg/kg	197	5.8	6.2	5.9	6.4	14	6.5	8.6
Iron (Fe)	mg/kg	43,766	19000	19000	3000	16000	7900	31000	36000
Lead (Pb)	mg/kg	91.3	13	13	20	13	41	26	10
Lithium (Li)	mg/kg	NG	27	28	<2.0	7.3	<2.0	25	35
Manganese (Mn)	mg/kg	1,100	370	370	68	400	66	1100	270
Mercury	mg/kg	0.486	0.10	<0.10	0.24	0.12	0.34	<0.10	<0.10
Molybdenum (Mo)	mg/kg	NG	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	2.2
Nickel (Ni)	mg/kg	75	24	24	4.1	7.8	10	21	12
Rubidium (Rb)	mg/kg	NG	6.4	6.2	2.3	6.5	2.6	5.4	27
Selenium (Se)	mg/kg	2	<1.0	<1.0	<1.0	<1.0	1.1	1.2	<1.0
Silver (Ag)	mg/kg	1	< 0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Strontium (Sr)	mg/kg	NG	7.8	8.2	23	20	24	11	5.6
Thallium (TI)	mg/kg	NG	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.14
Tin (Sn)	mg/kg	NG	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Uranium (U)	mg/kg	NG	0.40	0.38	0.26	0.48	0.67	0.62	0.69
Vanadium (V)	mg/kg	NG	17	17	3.5	9.1	11	37	47
Zinc (Zn)	mg/kg	315	49	52	17	38	25	52	39

Notes: value - value exceeds NSE standard

NG - no guideline

 $^{^{\}rm 1}$ 2013 Nova Scotia Environment Tier 1 Environmental Quality Standards for freshwater sediment.

Appendix 3

Laboratory Certificates

Your P.O. #: A06016 Your Project #: P-0010903 Site Location: LAKE GEORGE Your C.O.C. #: 568681-01-01, D11596

Attention:Aven Cole

Englobe Corp.
97 Troop Ave
Dartmouth, NS
CANADA B3B 2A7

Report Date: 2016/07/22

Report #: R4077290 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B6E7556 Received: 2016/07/15, 11:56

Sample Matrix: Water # Samples Received: 13

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Carbonate, Bicarbonate and Hydroxide	8	N/A	2016/07/19	N/A	SM 22 4500-CO2 D
Carbonate, Bicarbonate and Hydroxide	1	N/A	2016/07/20	N/A	SM 22 4500-CO2 D
Carbonate, Bicarbonate and Hydroxide	4	N/A	2016/07/22	N/A	SM 22 4500-CO2 D
Alkalinity	13	N/A	2016/07/22	ATL SOP 00013	EPA 310.2 R1974 m
Chloride	13	N/A	2016/07/22	ATL SOP 00014	SM 22 4500-Cl- E m
Colour	13	N/A	2016/07/21	ATL SOP 00020	SM 22 2120C m
Conductance - water	8	N/A	2016/07/19	ATL SOP 00004	SM 22 2510B m
Conductance - water	1	N/A	2016/07/20	ATL SOP 00004	SM 22 2510B m
Conductance - water	4	N/A	2016/07/22	ATL SOP 00004	SM 22 2510B m
Hardness (calculated as CaCO3)	1	N/A	2016/07/21	ATL SOP 00048	SM 22 2340 B
Hardness (calculated as CaCO3)	12	N/A	2016/07/22	ATL SOP 00048	SM 22 2340 B
Mercury - Total (CVAA,LL)	13	2016/07/21	2016/07/22	ATL SOP 00026	EPA 245.1 R3 m
Metals Water Diss. MS (1)	1	N/A	2016/07/22	ATL SOP 00058	EPA 6020A R1 m
Metals Water Diss. MS (as rec'd)	3	N/A	2016/07/21	ATL SOP 00058	EPA 6020A R1 m
Metals Water Diss. MS (as rec'd)	1	N/A	2016/07/22	ATL SOP 00058	EPA 6020A R1 m
Metals Water Total MS	1	2016/07/19	2016/07/20	ATL SOP 00058	EPA 6020A R1 m
Metals Water Total MS	8	2016/07/20	2016/07/21	ATL SOP 00058	EPA 6020A R1 m
Metals Water Total MS	3	2016/07/21	2016/07/21	ATL SOP 00058	EPA 6020A R1 m
Metals Water Total MS	1	2016/07/21	2016/07/22	ATL SOP 00058	EPA 6020A R1 m
Ion Balance (% Difference)	13	N/A	2016/07/22		Auto Calc.
Anion and Cation Sum	13	N/A	2016/07/22		Auto Calc.
Nitrogen Ammonia - water	13	N/A	2016/07/21	ATL SOP 00015	EPA 350.1 R2 m
Nitrogen - Nitrate + Nitrite	13	N/A	2016/07/22	ATL SOP 00016	USGS SOPINCF0452.2 m
Nitrogen - Nitrite	13	N/A	2016/07/22	ATL SOP 00017	SM 22 4500-NO2- B m
Nitrogen - Nitrate (as N)	13	N/A	2016/07/22	ATL SOP 00018	ASTM D3867
рН (2)	8	N/A	2016/07/19	ATL SOP 00003	SM 22 4500-H+ B m
pH (2)	1	N/A	2016/07/20	ATL SOP 00003	SM 22 4500-H+ B m
рН (2)	4	N/A	2016/07/22	ATL SOP 00003	SM 22 4500-H+ B m
Phosphorus - ortho	13	N/A	2016/07/22	ATL SOP 00021	EPA 365.2 m
Sat. pH and Langelier Index (@ 20C)	13	N/A	2016/07/22	ATL SOP 00049	Auto Calc.

Your P.O. #: A06016 Your Project #: P-0010903 Site Location: LAKE GEORGE

Your C.O.C. #: 568681-01-01, D11596

Attention:Aven Cole

Englobe Corp.
97 Troop Ave
Dartmouth, NS
CANADA B3B 2A7

Report Date: 2016/07/22

Report #: R4077290 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B6E7556 Received: 2016/07/15, 11:56

Sample Matrix: Water # Samples Received: 13

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Sat. pH and Langelier Index (@ 4C)	13	N/A	2016/07/22	ATL SOP 00049	Auto Calc.
Reactive Silica	13	N/A	2016/07/21	ATL SOP 00022	EPA 366.0 m
Sulphate	13	N/A	2016/07/22	ATL SOP 00023	ASTMD516-11 m
Total Dissolved Solids (TDS calc)	13	N/A	2016/07/22		Auto Calc.
Organic carbon - Total (TOC) (3)	13	N/A	2016/07/21	ATL SOP 00037	SM 22 5310C m
Total Suspended Solids	3	2016/07/20	2016/07/20	ATL SOP 00007	SM 22 2540D m
Total Suspended Solids	2	2016/07/20	2016/07/21	ATL SOP 00007	SM 22 2540D m
Turbidity	9	N/A	2016/07/19	ATL SOP 00011	EPA 180.1 R2 m
Turbidity	4	N/A	2016/07/22	ATL SOP 00011	EPA 180.1 R2 m

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) Sample filtered in laboratory prior to analysis for dissolved metals.
- (2) The APHA Standard Method require pH to be analyzed within 15 minutes of sampling and therefore field analysis is required for compliance. All Laboratory pH analyses in this report are reported past the APHA Standard Method holding time.
- (3) TOC / DOC present in the sample should be considered as non-purgeable TOC / DOC.

Encryption Key

Maxxam 22 Jul 2016 17:51:48 -03:00

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Avery Withrow, Project Manager Email: AWithrow@maxxam.ca Phone# (902)420-0203 Ext:233

This report has been generated and distributed using a secure automated process.

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Maxxam ID		CSF359		CSF360			CSF361			
Sampling Date		2016/07/14 10:00		2016/07/14 11:00			2016/07/14 11:55			
COC Number		568681-01-01		568681-01-01			568681-01-01			
	UNITS	SW13	QC Batch	SW2	RDL	QC Batch	Р3	RDL	QC Batch	MDL
Calculated Parameters		•	•	•						•
Anion Sum	me/L	0.370	4580734	0.460	N/A	4580734	0.850	N/A	4580734	N/A
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	4580730	<1.0	1.0	4580730	9.2	1.0	4580730	0.20
Calculated TDS	mg/L	34	4580738	43	1.0	4580738	120	1.0	4580738	0.20
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	4580730	<1.0	1.0	4580730	<1.0	1.0	4580730	0.20
Cation Sum	me/L	0.550	4580734	0.720	N/A	4580734	3.70	N/A	4580734	N/A
Hardness (CaCO3)	mg/L	4.9	4580732	11	1.0	4580732	110	1.0	4580732	1.0
Ion Balance (% Difference)	%	19.6	4580733	22.0	N/A	4580733	62.6	N/A	4580733	N/A
Langelier Index (@ 20C)	N/A	NC	4580736	NC		4580736	-3.08		4580736	
Langelier Index (@ 4C)	N/A	NC	4580737	NC		4580737	-3.33		4580737	
Nitrate (N)	mg/L	<0.050	4580735	0.057	0.050	4580735	0.050	0.050	4580735	N/A
Saturation pH (@ 20C)	N/A	NC	4580736	NC		4580736	8.92		4580736	
Saturation pH (@ 4C)	N/A	NC	4580737	NC		4580737	9.17		4580737	
Inorganics	•	•	•	•	•		•		•	•
Total Alkalinity (Total as CaCO3)	mg/L	<5.0	4586424	<5.0	5.0	4586424	9.2	5.0	4586424	N/A
Dissolved Chloride (CI)	mg/L	13	4586426	14	1.0	4586426	20	1.0	4586426	N/A
Colour	TCU	420	4586439	390	150	4586439	500	250	4586439	N/A
Nitrate + Nitrite (N)	mg/L	<0.050	4586447	0.057	0.050	4586447	0.062	0.050	4586447	N/A
Nitrite (N)	mg/L	<0.010	4586455	<0.010	0.010	4586455	0.011	0.010	4586455	N/A
Nitrogen (Ammonia Nitrogen)	mg/L	0.065	4587902	<0.050	0.050	4587902	0.37	0.050	4587902	N/A
Total Organic Carbon (C)	mg/L	23 (1)	4585766	20 (1)	5.0	4585766	59 (2)	50	4585766	N/A
Orthophosphate (P)	mg/L	0.015	4586445	0.023	0.010	4586445	0.035	0.010	4586445	N/A
рН	рН	4.98	4583894	5.98	N/A	4583911	5.84	N/A	4585674	N/A
Reactive Silica (SiO2)	mg/L	8.4	4586433	9.8	0.50	4586433	12	0.50	4586433	N/A
Dissolved Sulphate (SO4)	mg/L	<2.0	4586428	3.4	2.0	4586428	4.6	2.0	4586428	N/A
Turbidity	NTU	2.6	4584024	6.5	0.10	4584024	>1000	1.0	4584024	0.10
Conductivity	uS/cm	66	4583896	74	1.0	4583912	110	1.0	4585675	N/A
Metals										
Total Aluminum (Al)	ug/L	640	4585662	620	5.0	4585662	33000	5.0	4585895	N/A
Total Antimony (Sb)	ug/L	<1.0	4585662	<1.0	1.0	4585662	1.2	1.0	4585895	N/A
Total Arsenic (As)	ug/L	<1.0	4585662	1.1	1.0	4585662	10	1.0	4585895	N/A
Total Barium (Ba)	ug/L	2.9	4585662	4.2	1.0	4585662	140	1.0	4585895	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

- (1) Elevated reporting limit due to sample matrix.
- (2) Reporting limit was increased due to turbidity.

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Maxxam ID		CSF359		CSF360			CSF361			
Sampling Date		2016/07/14		2016/07/14			2016/07/14			
. 0		10:00		11:00			11:55			
COC Number		568681-01-01		568681-01-01			568681-01-01			<u> </u>
	UNITS	SW13	QC Batch	SW2	RDL	QC Batch	P3	RDL	QC Batch	MDL
Total Beryllium (Be)	ug/L	<1.0	4585662	<1.0	1.0	4585662	1.7	1.0	4585895	N/A
Total Bismuth (Bi)	ug/L	<2.0	4585662	<2.0	2.0	4585662	<2.0	2.0	4585895	N/A
Total Boron (B)	ug/L	<50	4585662	<50	50	4585662	<50	50	4585895	N/A
Total Cadmium (Cd)	ug/L	0.030	4585662	0.046	0.010	4585662	1.1	0.010	4585895	N/A
Total Calcium (Ca)	ug/L	800	4585662	2200	100	4585662	30000	100	4585895	N/A
Total Chromium (Cr)	ug/L	1.2	4585662	1.0	1.0	4585662	25	1.0	4585895	N/A
Total Cobalt (Co)	ug/L	0.65	4585662	0.59	0.40	4585662	6.9	0.40	4585895	N/A
Total Copper (Cu)	ug/L	<2.0	4585662	<2.0	2.0	4585662	51	2.0	4585895	N/A
Total Iron (Fe)	ug/L	1000	4585662	670	50	4585662	14000	50	4585895	N/A
Total Lead (Pb)	ug/L	2.3	4585662	2.8	0.50	4585662	110	0.50	4585895	N/A
Total Magnesium (Mg)	ug/L	710	4585662	1400	100	4585662	7800	100	4585895	N/A
Total Manganese (Mn)	ug/L	9.8	4585662	25	2.0	4585662	330	2.0	4585895	N/A
Total Molybdenum (Mo)	ug/L	<2.0	4585662	<2.0	2.0	4585662	9.2	2.0	4585895	N/A
Total Nickel (Ni)	ug/L	2.7	4585662	2.4	2.0	4585662	31	2.0	4585895	N/A
Total Phosphorus (P)	ug/L	<100	4585662	<100	100	4585662	5400	100	4585895	N/A
Total Potassium (K)	ug/L	1700	4585662	2600	100	4585662	14000	100	4585895	N/A
Total Selenium (Se)	ug/L	<1.0	4585662	<1.0	1.0	4585662	8.0	1.0	4585895	N/A
Total Silver (Ag)	ug/L	<0.10	4585662	<0.10	0.10	4585662	1.2	0.10	4585895	N/A
Total Sodium (Na)	ug/L	8100	4585662	9800	100	4585662	16000	100	4585895	N/A
Total Strontium (Sr)	ug/L	6.8	4585662	14	2.0	4585662	190	2.0	4585895	N/A
Total Thallium (TI)	ug/L	<0.10	4585662	<0.10	0.10	4585662	<0.10	0.10	4585895	N/A
Total Tin (Sn)	ug/L	<2.0	4585662	<2.0	2.0	4585662	8.4	2.0	4585895	N/A
Total Titanium (Ti)	ug/L	5.5	4585662	8.9	2.0	4585662	390	2.0	4585895	N/A
Total Uranium (U)	ug/L	<0.10	4585662	<0.10	0.10	4585662	3.7	0.10	4585895	N/A
Total Vanadium (V)	ug/L	<2.0	4585662	<2.0	2.0	4585662	26	2.0	4585895	N/A
Total Zinc (Zn)	ug/L	<5.0	4585662	7.0	5.0	4585662	120	5.0	4585895	N/A

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

N/A = Not Applicable

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Session Sess	Maxxam ID		CSF362			CSF363			CSF364			
Calculated Parameters	Sampling Date		2016/07/14									
Calculated Parameters Anion Sum me/L 4.04 N/A 4580734 1.46 N/A 4580734 0.810 N/A 4580734 N/A Bicarb. Alkalinity (calc. as CaCO3) mg/L 150 1.0 4580730 41 1.0 4580730 11 1.0 4580730 0.20 Caclulated TDS mg/L 240 1.0 4580738 100 1.0 4580730 1.1 1.0 4580730 0.20 Caclulated TDS mg/L 240 1.0 4580738 100 1.0 4580730 1.0 1.0 4580730 0.20 Cach. Alkalinity (calc. as CaCO3) mg/L 4.1.0 1.0 4580738 1.0 1.0 4580730 4.1.0 1.0 4580730 0.20 Cation Sum me/L 4.60 N/A 4580734 1.96 N/A 4580734 0.870 N/A 4580734 N/A Hardness (CaCO3) mg/L 100 1.0 4580732 34 1.0 4580732 18 1.0 4580732 1.0 Ion Balance (% Difference) % 6.48 N/A 4580733 14.6 N/A 4580733 3.57 N/A 4580733 1.0 Langelier Index (@ 20C) N/A -0.414 4580736 -1.28 4580736 -2.98 4580736 Langelier Index (@ 4C) N/A -0.663 4580737 -1.53 4580737 -3.23 4580737 N/A Saturation pH (@ 4C) N/A 8.07 4580737 3.05 4580737 3.99 4580735 N/A Saturation pH (@ 4C) N/A 8.07 4580737 3.05 4580737 9.99 4580737 Inorganics Total Alkalinity (Total as CaCO3) mg/L 37 1.0 4586424 41 5.0 4586424 11 5.0 4586426 N/A Nitrate (N) mg/L 37 1.0 4586425 20 1.0 4586426 16 1.0 4586426 N/A Nitrate (N) mg/L 0.062 0.550 4586439 400 150 4586439 230 25 4586439 N/A Nitrate (N) mg/L 0.062 0.550 4586439 400 150 4586447 0.30 0.050 4586457 N/A Nitrate (N) mg/L 0.062 0.550 4586439 400 150 4586447 0.30 0.050 4586457 N/A Nitrate (N) mg/L 0.062 0.550 4586439 400 150 4586447 0.30 0.050 4586457 N/A Nitrate (N) mg/L 0.062 0.550 4586439 400 150 4586445 0.010 0.010 4586456 N/A Nitrate (N) mg/L 0.062 0.550 4586439 0.050 4586439 2.0 0.050 4586439 N/A Nitrate (N) mg/L 0.063 0.050 4586450	COC Number		568681-01-01			568681-01-01			568681-01-01			
Anion Sum me/L 4.04 N/A 4580734 1.46 N/A 4580734 0.810 N/A 4580734 N/A Bicarb. Alkalinity (calc. as CaCO3) mg/L 150 1.0 4580730 41 1.0 4580730 11 1.0 4580730 0.20 Calculated TDS mg/L 240 1.0 4580730 1.0 1.0 4580730 1.0 1.0 4580730 1.0 1.0 4580730 0.20 Carb. Alkalinity (calc. as CaCO3) mg/L <1.0 1.0 4580730 1.0 1.0 4580730 <1.0 1.0 4580730 <1.0 1.0 4580730 0.20 Cation Sum me/L 4.60 N/A 4580734 1.96 N/A 4580734 0.870 N/A 4580734 N/A Hardness (CaCO3) mg/L 100 1.0 4580732 1.3 1.0 4580732 1.8 1.0 4580732 1.0 In Balance (% Difference) % 6.48 N/A 4580732 1.4.6 N/A 4580733 3.57 N/A 4580732 1.0 In Balance (% Difference) N/A 0.414 4580736 1.128 4580736 2.298 4580736 1.28 1.0 4580736 1.28 1.0 4580737 N/A 4580733 N/A 4580733 N/A 4580733 N/A 4580733 N/A 4580733 N/A 4580734 N/A 0.663 4580737 1.53 4580737 3.23 4580737 N/A 458		UNITS	SWDUP1	RDL	QC Batch	SW5	RDL	QC Batch	BACK2	RDL	QC Batch	MDL
Bicarb. Alkalinity (calc. as CaCO3) mg/L 150 1.0 4580730 41 1.0 4580730 11 1.0 4580730 0.20 Calculated TDS mg/L 240 1.0 4580738 100 1.0 4580738 60 1.0 4580738 0.20 Carb. Alkalinity (calc. as CaCO3) mg/L < 1.0 1.0 4580738 100 1.0 4580738 60 1.0 4580738 0.20 Carb. Alkalinity (calc. as CaCO3) mg/L < 1.0 1.0 4580730 1.0 1.0 4580730 < 1.0 1.0 4580730 0.20 Cation Sum me/L 4.60 N/A 4580734 1.96 N/A 4580734 0.870 N/A 4580733 N/A Hardness (CaCO3) mg/L 100 1.0 4580732 34 1.96 N/A 4580734 0.870 N/A 4580733 N/A Hardness (CaCO3) mg/L 100 1.0 4580732 14 1.0 4580732 18 1.0 4580732 1.0 Ion Balance (% Difference) % 6.48 N/A 4580733 14.6 N/A 4580733 3.57 N/A 4580733 N/A Langelier Index (@ 20C) N/A -0.414 4580736 -1.28 4580736 -2.98 4580736 Langelier Index (@ 20C) N/A -0.663 4580737 -1.53 4580737 -3.23 4580737 Nitrate (N) mg/L 0.062 0.050 4580735 0.095 0.050 4580735 0.30 0.050 4580735 N/A Saturation pH (@ 20C) N/A 8.07 4580736 8.79 4580736 9.74 4580736 Saturation pH (@ 4C) N/A 8.07 4580737 9.05 4580737 9.99 4580737 Disorder	Calculated Parameters		·	·	<u> </u>	<u> </u>	<u> </u>	·		<u>- </u>	·	
Calculated TDS mg/L 240 1.0 4580738 100 1.0 4580738 60 1.0 4580738 0.20 Carb. Alkalinity (calc. as CaCO3) mg/L 4.1.0 1.0 4580730 <1.0 1.0 4580730 <1.0 1.0 4580730 0.20 Cation Sum me/L 4.6.0 N/A 4580730 <1.0 1.0 4580734 0.870 N/A Assorosal Mardiness (CaCO3) mg/L 1.00 1.0 4580732 34 1.0 4580733 1.8 1.0 4580734 1.0 Ion Balance (% Difference) % 6.4.8 N/A 4580733 14.6 N/A 4580733 3.57 N/A 4580733 N/A Langelier Index (@ 20C) N/A -0.414 4580736 -1.2.8 4580736 -2.98 4580736 -2.98 4580736 Langelier Index (@ 20C) N/A -0.663 4580737 -1.53 4580737 -3.23 4580737 -3.23 4580737 Invitate (N) mg/L 0.062 0.050 4580735 0.095 0.050 4580735 0.30 0.050 4580735 0.30 Saturation pH (@ 20C) N/A 7.82 4580736 8.79 4580736 9.74 4580737 Invitate (N) mg/L 0.62 0.50 4580737 9.05 4580737 9.99 4580737 Invitate (N) mg/L 0.62 0.50 4586424 41 5.0 4586424 11 5.0 4586424 N/A Colour TCU 560 250 4586439 400 150 4586439 230 25 4586439 N/A Nitrate (N) mg/L 0.062 0.050 4586447 0.095 0.050 4586447 0.30 0.050 4586447 N/A Nitrate (N) mg/L 0.062 0.050 4586447 0.095 0.050 4586445 0.005 0.050 4586447 N/A Nitrate (N) mg/L 0.062 0.050 4586447 0.095 0.050 4586447 0.30 0.050 4586447 N/A Nitrate (N) mg/L 0.062 0.050 4586447 0.095 0.050 4586447 0.000 0.010 4586455 N/A Nitrigen (Ammonia Nitrogen) mg/L 0.67 0.050 4586445 0.030 0.050 4586445 N/A Nitrogen (Ammonia Nitrogen) mg/L 0.67 0.050 4586445 0.030 0.010 4586455 0.010 0.101 4586455 N/A Nitrogen (Ammonia Nitrogen) mg/L 0.68 0.010 4586445 0.030 0.010 4586445 0.025 0.050 4586447 N/A Nitrogen (Ammonia Nitrogen) mg/L 0.68 0.010 4586445 0.030 0.010 4586445 0.025 0.050 4586499 1.0	Anion Sum	me/L	4.04	N/A	4580734	1.46	N/A	4580734	0.810	N/A	4580734	N/A
Carb. Alkalinity (calc. as CaCO3) mg/L	Bicarb. Alkalinity (calc. as CaCO3)	mg/L	150	1.0	4580730	41	1.0	4580730	11	1.0	4580730	0.20
Cation Sum me/L 4.60 N/A 4580734 1.96 N/A 4580734 0.870 N/A 4580734 N/A Hardness (CaCO3) mg/L 100 1.0 4580732 34 1.0 4580732 18 1.0 4580732 1.0 Ion Balance (% Difference) % 6.48 N/A 4580733 14.6 N/A 4580733 3.57 N/A 4580733 N/A Langelier Index (@ 2OC) N/A -0.414 4580736 -1.28 4580736 -2.98 4580736 Langelier Index (@ 4C) N/A -0.663 4580737 -1.53 4580737 -3.23 4580737 Nitrate (N) mg/L 0.062 0.050 4580735 0.095 0.050 4580735 0.30 0.050 4580737 Nitrate (N) mg/L 0.062 0.050 4580737 9.05 4580737 9.99 4580737 Nitrate (N) N/A 8.07 4580737 9.05 4580737 9.99 4580737 Nitrate (N) N/A 8.07 4580737 9.05 4580737 9.99 4580737 Nitrate (N) N/A 8.07 4580737 9.05 4580737 9.99 4580737 Nitrate (N) Mg/L 37 1.0 4586426 20 1.0 4586424 11 5.0 4586426 N/A Dissolved Chloride (Cl) mg/L 37 1.0 4586426 20 1.0 4586426 16 1.0 4586426 N/A Colour TCU 560 250 4586439 400 150 4586439 230 25 4586439 N/A Nitrate +Nitrite (N) mg/L 0.062 0.050 4586479 0.095 0.050 4586439 230 25 4586439 N/A Nitrate exhitrite (N) mg/L 0.062 0.050 4586455 0.000 0.010 4586455 0.000 0.010 4586455 N/A Nitrate exhitrite (N) mg/L 0.062 0.500 4586455 0.050 0.050 4586447 0.30 0.050 4586447 N/A Nitrogen (Ammonia Nitrogen) mg/L 0.67 0.050 4586455 0.010 0.010 4586455 0.000 0.010 4586455 N/A Total Organic Carbon (C) mg/L 49 (1) 5.0 4585766 30 (1) 5.0 4585899 12 (1) 5.0 4585899 N/A Orthophosphate (P) mg/L 0.068 0.010 4586445 0.030 0.010 4586445 0.025 0.010 4586445 N/A Reactive Silica (SiO2) mg/L 7.9 0.50 4586428 3.5 2.0 4586433 12 0.50 4586339 N/A Dissolved Sulphate (SO4) mg/L 2.0 4584628 3.5 2.0 4586428 5.5 2.0 4586438 N/A Dissolved Sulphate (SO4) mg/L 2.0 2.0 4586428 3.5 2.0 4586628 3.6 0.5 4586438 N/A Dissolved Sulphate (SO4) mg/L 2.0 2.0 4586428 3.5 2.0 4586628 3.0 5.0 458662 3.0 5.0 4586628 N/A Total Aluminum (Al) ug/L 7.8 5.0 4585662 5.0 4.0 4585662 3.0 5.0 4586620 N/A Total Aluminum (Al) ug/L 7.8 5.0 4585662 5.0 4.0 4585662 3.0 5.0 4585662 N/A Total Aluminum (Ba) ug/L 12 1.0 4585662 5.0 4.0 4.0 4585662 3.0 1.0 4585662 N/A Total Aluminum (Ba) ug/L 12 1.0 4585662 5.0 4.0 1.0 45	Calculated TDS	mg/L	240	1.0	4580738	100	1.0	4580738	60	1.0	4580738	0.20
Hardness (CaCO3) mg/L 100 1.0 4580732 34 1.0 4580732 18 1.0 4580732 1.0 Ion Balance (% Difference) % 6.48 N/A 4580733 14.6 N/A 4580733 3.57 N/A 4580733 N/A Langelier Index (@ 2OC) N/A -0.414 4580733 14.6 N/A 4580736 -2.98 4580736 Langelier Index (@ 4C) N/A -0.663 4580737 -1.53 4580736 -2.98 4580737 N/A 580736 Ion Balance (% Ofference) N/A 7.0663 4580737 -1.53 4580737 -3.23 4580737 N/A 580737 N/A 580737 N/A 580737 N/A 580737 N/A 580737 N/A 580737 N/A 580737 N/A 580737 N/A 580737 N/A 7.82 4580737 N/A 7.82 4580737 N/A 7.82 4580737 N/A 7.82 N/A 580737 N/A 580737 N/A 8.07 4580737 N/A 8.07 4580737 N/A 8.07 4580737 N/A 8.07 4580737 N/A 8.07 4580737 N/A 8.07 N	Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	4580730	<1.0	1.0	4580730	<1.0	1.0	4580730	0.20
No. Balance (% Difference) % 6.48 N/A 4580733 14.6 N/A 4580733 3.57 N/A 4580733 N/A	Cation Sum	me/L	4.60	N/A	4580734	1.96	N/A	4580734	0.870	N/A	4580734	N/A
Langelier Index (@ 20C) N/A -0.414	Hardness (CaCO3)	mg/L	100	1.0	4580732	34	1.0	4580732	18	1.0	4580732	1.0
Langelier Index (@ 4C) N/A -0.663 4580737 -1.53 4580737 -3.23 4580737 Nitrate (N) mg/L 0.062 0.050 4580735 0.095 0.050 4580735 0.30 0.050 4580735 N/A Saturation pH (@ 2CC) N/A 7.82 4580736 8.79 4580736 9.74 4580736 Saturation pH (@ 4CC) N/A 8.07 4580737 9.05 4580737 9.99 4580737 Nitrate (N) Mg/L 150 25 4586424 41 5.0 4586426 16 1.0 4586426 N/A Colour TCU 560 250 4586439 400 150 4586439 230 25 4586439 N/A Nitrate + Nitrite (N) mg/L 0.062 0.050 4586447 0.095 0.050 4586447 0.30 0.050 4586447 N/A Nitrite (N) mg/L 0.062 0.050 4586447 0.095 0.050 4586447 0.30 0.050 4586447 N/A Nitrite (N) mg/L 0.67 0.050 4586455 0.010 0.010 4586455 0.010 0.010 4586455 N/A Nitrogen (Ammonia Nitrogen) mg/L 0.667 0.050 4585902 0.050 0.050 4585990 1.0 458599 1.2 (1) 5.0 4585899 N/A Nitrogen (Ammonia Nitrogen) mg/L 0.068 0.010 4586455 0.030 0.050 4586447 0.025 0.050 4586445 N/A Nitrogen (Ammonia Nitrogen) mg/L 0.068 0.010 4586455 0.030 0.050 4585990 1.2 (1) 5.0 4585899 N/A Nitrogen (Ammonia Nitrogen) mg/L 0.068 0.010 4586455 0.030 0.010 4586455 0.010 0.010 4586455 N/A Nitrogen (Ammonia Nitrogen) mg/L 0.068 0.010 4586455 0.030 0.050 4585990 1.2 (1) 5.0 4585899 N/A Nitrogen (Ammonia Nitrogen) mg/L 0.068 0.010 4586455 0.030 0.050 4586445 0.025 0.010 4586445 N/A Reactive Silica (SiO2) mg/L 7.9 0.50 4586433 6.6 0.50 4586433 1.2 0.50 4586433 N/A Reactive Silica (SiO2) mg/L 7.9 0.50 4586428 3.5 1.0 4586428 5.5 1.0 4586428 N/A Turbidity NTU 64 0.10 4584024 1.2 0.10 4584024 1.6 0.10 4584024 0.10 Conductivity NTU 64 0.10 4584024 1.2 0.10 4584024 1.6 0.10 4584024 0.10 Conductivity NTU 64 0.10 4586450 5.0 458662 5.0 4586428 5.5 1.0 4585662 N/A Total Alminum (Al) ug/L 7.80 5.0 4585662 5.0 5.0 4585662 3.6 5.0 4585662 1.0 1.0 4585662 N/A Total Alminum (Al) ug/L 7.10 1.0 4585662 4.7 1.0 1.0 4585662 1.10 1.0 4585662 N/A Total Alminum (Ba) ug/L 2.1 1.0 4585662 5.6 1.0 4585662 3.6 1.0 4585662 N/A Total Alminum (Ba) ug/L 2.1 1.0 4585662 5.6 1.0 4585662 3.6 1.0 4585662 N/A Total Alminum (Ba) ug/L 2.1 1.0 4585662 5.6 1.0 4585662 3.6 1.0 4585662 N/A	Ion Balance (% Difference)	%	6.48	N/A	4580733	14.6	N/A	4580733	3.57	N/A	4580733	N/A
Nitrate (N)	Langelier Index (@ 20C)	N/A	-0.414		4580736	-1.28		4580736	-2.98		4580736	
Saturation pH (@ 20C)	Langelier Index (@ 4C)	N/A	-0.663		4580737	-1.53		4580737	-3.23		4580737	
Saturation ph (@ 4C)	Nitrate (N)	mg/L	0.062	0.050	4580735	0.095	0.050	4580735	0.30	0.050	4580735	N/A
Total Alkalinity (Total as CaCO3) mg/L 150 25 4586424 41 5.0 4586424 11 5.0 4586424 N/A	Saturation pH (@ 20C)	N/A	7.82		4580736	8.79		4580736	9.74		4580736	
Total Alkalinity (Total as CaCO3) mg/L 150 25 4586424 41 5.0 4586424 11 5.0 4586424 N/A Dissolved Chloride (Cl) mg/L 37 1.0 4586426 20 1.0 4586426 16 1.0 4586426 N/A Colour TCU 560 250 4586439 400 150 4586439 230 25 4586439 N/A Nitrate + Nitrite (N) mg/L 0.062 0.050 4586447 0.095 0.050 4586447 0.30 0.050 4586447 N/A Nitrite (N) mg/L <0.010 0.010 4586455 <0.010 0.010 4586455 <0.010 0.010 4586455 <0.010 0.010 4586455 N/A Nitrogen (Ammonia Nitrogen) mg/L 0.67 0.050 4587902 <0.050 0.050 4587902 0.085 0.050 4587902 N/A Total Organic Carbon (C) mg/L 49 (1) 5.0 4585766 30 (1) 5.0 4585899 12 (1) 5.0 4585899 N/A Orthophosphate (P) mg/L 0.068 0.010 4586445 0.030 0.010 4586445 0.025 0.010 4586445 N/A Reactive Silica (SiO2) mg/L 7.9 0.50 4586433 6.6 0.50 4586433 12 0.50 4586433 N/A Dissolved Sulphate (SO4) mg/L <2.0 2.0 4586428 3.5 2.0 4586428 5.5 2.0 4586428 N/A Turbidity NTU 64 0.10 4584024 12 0.10 4584024 16 0.10 4584024 0.10 Conductivity uS/cm 390 1.0 4583896 150 1.0 4583900 91 1.0 4583896 N/A Metals Total Aluminum (Al) ug/L 780 5.0 4585662 530 5.0 4585662 3600 5.0 4585662 N/A Total Antimony (Sb) ug/L <1.0 1.0 4585662 <1.0 1.0 4585662 12 1.0 4585662 N/A Total Arsenic (As) ug/L 21 1.0 4585662 5.6 1.0 4585662 36 1.0 4585662 N/A	Saturation pH (@ 4C)	N/A	8.07		4580737	9.05		4580737	9.99		4580737	
Dissolved Chloride (Cl) mg/L 37 1.0 4586426 20 1.0 4586426 16 1.0 4586426 N/A Colour TCU 560 250 4586439 400 150 4586439 230 25 4586439 N/A Nitrate + Nitrite (N) mg/L 0.062 0.050 4586447 0.095 0.050 4586447 0.30 0.050 4586447 N/A Nitrite (N) mg/L <0.010 0.010 4586455 <0.010 0.010 4586455 <0.010 0.010 4586455 <0.010 0.010 4586455 N/A Nitrogen (Ammonia Nitrogen) mg/L 0.67 0.050 4587902 <0.050 0.050 4587902 0.085 0.050 4587902 N/A Total Organic Carbon (C) mg/L 49 (1) 5.0 4585766 30 (1) 5.0 4585899 12 (1) 5.0 4585899 N/A Orthophosphate (P) mg/L 0.068 0.010 4586445 0.030 0.010 4586445 0.025 0.010 4586445 N/A PH 7.41 N/A 4583894 7.52 N/A 4583898 6.76 N/A 4583894 N/A Reactive Silica (SiO2) mg/L 7.9 0.50 4586428 3.5 2.0 4586428 5.5 2.0 4586428 N/A Turbidity NTU 64 0.10 4584024 12 0.10 4584024 16 0.10 4584024 0.10 Conductivity us/cm 390 1.0 4583896 150 1.0 458390 91 1.0 4583896 N/A Metals Total Aluminum (Al) ug/L 780 5.0 4585662 530 5.0 4585662 360 5.0 4585662 N/A Total Arsenic (As) ug/L 12 1.0 4585662 4.7 1.0 4585662 12 1.0 4585662 N/A Total Barium (Ba) ug/L 21 1.0 4585662 5.6 1.0 4585662 36 1.0 4585662 N/A	Inorganics											
Colour TCU 560 250 4586439 400 150 4586439 230 25 4586439 N/A Nitrate + Nitrite (N) mg/L 0.062 0.050 4586447 0.095 0.050 4586447 0.30 0.050 4586447 N/A Nitrite (N) mg/L <0.010 0.010 4586455 <0.010 0.010 4586455 <0.010 0.010 4586455 <0.010 0.010 4586455 N/A Nitrite (N) mg/L 0.67 0.050 4587902 <0.050 0.050 4587902 0.085 0.050 4587902 N/A Total Organic Carbon (C) mg/L 49 (1) 5.0 4585766 30 (1) 5.0 4585899 12 (1) 5.0 4585899 N/A Orthophosphate (P) mg/L 0.068 0.010 4586445 0.030 0.010 4586445 0.025 0.010 4586445 N/A PH pH 7.41 N/A 4583894 7.52 N/A 4583898 6.76 N/A 4583894 N/A Reactive Silica (SiO2) mg/L 7.9 0.50 4586433 6.6 0.50 4586433 12 0.50 4586433 N/A Dissolved Sulphate (SO4) mg/L <2.0 2.0 4586428 3.5 2.0 4586428 5.5 2.0 4586428 N/A Turbidity NTU 64 0.10 4584024 12 0.10 4584024 16 0.10 4584024 0.10 Conductivity us/cm 390 1.0 4583896 150 1.0 458390 91 1.0 4583896 N/A Metals Total Aluminum (Al) ug/L 780 5.0 4585662 530 5.0 4585662 3600 5.0 4585662 N/A Total Antimony (Sb) ug/L <1.0 1.0 4585662 4.7 1.0 4585662 12 1.0 4585662 N/A Total Arsenic (As) ug/L 21 1.0 4585662 5.6 1.0 4585662 36 1.0 4585662 N/A	Total Alkalinity (Total as CaCO3)	mg/L	150	25	4586424	41	5.0	4586424	11	5.0	4586424	N/A
Nitrate + Nitrite (N) mg/L 0.062 0.050 4586447 0.095 0.050 4586447 0.30 0.050 4586447 N/A Nitrite (N) mg/L <0.010 0.010 4586455 <0.010 0.010 4586455 <0.010 0.010 4586455 N/A Nitrogen (Ammonia Nitrogen) mg/L 0.67 0.050 4587902 <0.050 0.050 4587902 0.085 0.050 4587902 N/A Total Organic Carbon (C) mg/L 49 (1) 5.0 4585766 30 (1) 5.0 4585899 12 (1) 5.0 4585899 N/A Orthophosphate (P) mg/L 0.068 0.010 4586445 0.030 0.010 4586445 0.025 0.010 4586445 N/A PH 7.41 N/A 4583894 7.52 N/A 4583898 6.76 N/A 4583894 N/A Reactive Silica (SiO2) mg/L 7.9 0.50 4586433 6.6 0.50 4586433 12 0.50 4586433 N/A Dissolved Sulphate (SO4) mg/L <2.0 2.0 4586428 3.5 2.0 4586428 5.5 2.0 4586428 N/A Turbidity NTU 64 0.10 4584024 12 0.10 4584024 16 0.10 4584024 0.10 Conductivity us/cm 390 1.0 4583896 150 1.0 4583900 91 1.0 4583896 N/A Metals Total Aluminum (Al) ug/L 780 5.0 4585662 530 5.0 4585662 3600 5.0 4585662 N/A Total Antimony (Sb) ug/L 12 1.0 4585662 4.7 1.0 4585662 12 1.0 4585662 N/A Total Arsenic (As) ug/L 21 1.0 4585662 5.6 1.0 4585662 36 1.0 4585662 N/A Total Barium (Ba) ug/L 21 1.0 4585662 5.6 1.0 4585662 36 1.0 4585662 N/A	Dissolved Chloride (CI)	mg/L	37	1.0	4586426	20	1.0	4586426	16	1.0	4586426	N/A
Nitrite (N)	Colour	TCU	560	250	4586439	400	150	4586439	230	25	4586439	N/A
Nitrogen (Ammonia Nitrogen) mg/L	Nitrate + Nitrite (N)	mg/L	0.062	0.050	4586447	0.095	0.050	4586447	0.30	0.050	4586447	N/A
Total Organic Carbon (C) mg/L 49 (1) 5.0 4585766 30 (1) 5.0 4585899 12 (1) 5.0 4585899 N/A Orthophosphate (P) mg/L 0.068 0.010 4586445 0.030 0.010 4586445 0.025 0.010 4586445 N/A pH pH 7.41 N/A 4583894 7.52 N/A 4583898 6.76 N/A 4583894 N/A Reactive Silica (SiO2) mg/L 7.9 0.50 4586433 6.6 0.50 4586433 12 0.50 4586433 N/A Dissolved Sulphate (SO4) mg/L <2.0 2.0 4586428 3.5 2.0 4586428 5.5 2.0 4586428 N/A Turbidity NTU 64 0.10 4584024 12 0.10 4584024 16 0.10 4584024 0.10 Conductivity us/cm 390 1.0 4583896 150 1.0 4583900 91 1.0 4583896 N/A Metals Total Aluminum (Al) ug/L 780 5.0 4585662 530 5.0 4585662 3600 5.0 4585662 N/A Total Antimony (Sb) ug/L <1.0 1.0 4585662 <1.0 1.0 4585662 12 1.0 4585662 N/A Total Arsenic (As) ug/L 21 1.0 4585662 5.6 1.0 4585662 36 1.0 4585662 N/A	Nitrite (N)	mg/L	<0.010	0.010	4586455	<0.010	0.010	4586455	<0.010	0.010	4586455	N/A
Orthophosphate (P) mg/L 0.068 0.010 4586445 0.030 0.010 4586445 0.025 0.010 4586445 N/A pH pH 7.41 N/A 4583894 7.52 N/A 4583898 6.76 N/A 4583894 N/A Reactive Silica (SiO2) mg/L 7.9 0.50 4586433 6.6 0.50 4586433 12 0.50 4586433 N/A Dissolved Sulphate (SO4) mg/L <2.0	Nitrogen (Ammonia Nitrogen)	mg/L	0.67	0.050	4587902	<0.050	0.050	4587902	0.085	0.050	4587902	N/A
pH	Total Organic Carbon (C)	mg/L	49 (1)	5.0	4585766	30 (1)	5.0	4585899	12 (1)	5.0	4585899	N/A
Reactive Silica (SiO2) mg/L 7.9 0.50 4586433 6.6 0.50 4586433 12 0.50 4586433 N/A Dissolved Sulphate (SO4) mg/L <2.0 2.0 4586428 3.5 2.0 4586428 5.5 2.0 4586428 N/A Turbidity NTU 64 0.10 4584024 12 0.10 4584024 16 0.10 4584024 0.10 Conductivity us/cm 390 1.0 4583896 150 1.0 4583900 91 1.0 4583896 N/A Metals Total Aluminum (Al) ug/L 780 5.0 4585662 530 5.0 4585662 3600 5.0 4585662 N/A Total Antimony (Sb) ug/L <1.0 1.0 4585662 <1.0 1.0 4585662 <1.0 1.0 4585662 N/A Total Arsenic (As) ug/L 12 1.0 4585662 5.6 1.0 4585662 36 1.0 4585662 N/A Total Barium (Ba) ug/L 21 1.0 4585662 5.6 1.0 4585662 36 1.0 4585662 N/A	Orthophosphate (P)	mg/L	0.068	0.010	4586445	0.030	0.010	4586445	0.025	0.010	4586445	N/A
Dissolved Sulphate (SO4) mg/L <2.0 2.0 4586428 3.5 2.0 4586428 5.5 2.0 4586428 N/A Turbidity NTU 64 0.10 4584024 12 0.10 4584024 16 0.10 4584024 0.10 Conductivity uS/cm 390 1.0 4583896 150 1.0 4583900 91 1.0 4583896 N/A Metals Total Aluminum (Al) ug/L 780 5.0 4585662 530 5.0 4585662 3600 5.0 4585662 N/A Total Antimony (Sb) ug/L <1.0 1.0 4585662 <1.0 1.0 4585662 <1.0 1.0 4585662 N/A Total Arsenic (As) ug/L 12 1.0 4585662 4.7 1.0 4585662 12 1.0 4585662 N/A Total Barium (Ba) ug/L 21 1.0 4585662 5.6 1.0 4585662 36 1.0 4585662 N/A	рН	рН	7.41	N/A	4583894	7.52	N/A	4583898	6.76	N/A	4583894	N/A
Turbidity NTU 64 0.10 4584024 12 0.10 4584024 16 0.10 4584024 0.10 Conductivity uS/cm 390 1.0 4583896 150 1.0 4583900 91 1.0 4583896 N/A Metals Total Aluminum (Al) ug/L 780 5.0 4585662 530 5.0 4585662 3600 5.0 4585662 N/A Total Antimony (Sb) ug/L <1.0 1.0 4585662 <1.0 1.0 4585662 <1.0 1.0 4585662 N/A Total Arsenic (As) ug/L 12 1.0 4585662 4.7 1.0 4585662 12 1.0 4585662 N/A Total Barium (Ba) ug/L 21 1.0 4585662 5.6 1.0 4585662 36 1.0 4585662 N/A	Reactive Silica (SiO2)	mg/L	7.9	0.50	4586433	6.6	0.50	4586433	12	0.50	4586433	N/A
Conductivity uS/cm 390 1.0 4583896 150 1.0 4583900 91 1.0 4583896 N/A Metals Total Aluminum (Al) ug/L 780 5.0 4585662 530 5.0 4585662 3600 5.0 4585662 N/A Total Antimony (Sb) ug/L <1.0 1.0 4585662 <1.0 1.0 4585662 <1.0 1.0 4585662 N/A Total Arsenic (As) ug/L 12 1.0 4585662 4.7 1.0 4585662 12 1.0 4585662 N/A Total Barium (Ba) ug/L 21 1.0 4585662 5.6 1.0 4585662 36 1.0 4585662 N/A	Dissolved Sulphate (SO4)	mg/L	<2.0	2.0	4586428	3.5	2.0	4586428	5.5	2.0	4586428	N/A
Metals Total Aluminum (Al) ug/L 780 5.0 4585662 530 5.0 4585662 3600 5.0 4585662 N/A Total Antimony (Sb) ug/L <1.0	Turbidity	NTU	64	0.10	4584024	12	0.10	4584024	16	0.10	4584024	0.10
Total Aluminum (Al)	Conductivity	uS/cm	390	1.0	4583896	150	1.0	4583900	91	1.0	4583896	N/A
Total Antimony (Sb)	Metals		•	-		•	-	•	•	•	•	•
Total Arsenic (As)	Total Aluminum (Al)	ug/L	780	5.0	4585662	530	5.0	4585662	3600	5.0	4585662	N/A
Total Barium (Ba) ug/L 21 1.0 4585662 5.6 1.0 4585662 36 1.0 4585662 N/A	Total Antimony (Sb)	ug/L	<1.0	1.0	4585662	<1.0	1.0	4585662	<1.0	1.0	4585662	N/A
	Total Arsenic (As)	ug/L	12	1.0	4585662	4.7	1.0	4585662	12	1.0	4585662	N/A
Total Beryllium (Be)	Total Barium (Ba)	ug/L	21	1.0	4585662	5.6	1.0	4585662	36	1.0	4585662	N/A
	Total Beryllium (Be)	ug/L	<1.0	1.0	4585662	<1.0	1.0	4585662	<1.0	1.0	4585662	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

(1) Elevated reporting limit due to sample matrix.

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Maxxam ID		CSF362			CSF363			CSF364			
Sampling Date		2016/07/14			2016/07/14 15:50			2016/07/14 17:30			
COC Number		568681-01-01			568681-01-01			568681-01-01			
	UNITS	SWDUP1	RDL	QC Batch	SW5	RDL	QC Batch	BACK2	RDL	QC Batch	MDL
Total Bismuth (Bi)	ug/L	<2.0	2.0	4585662	<2.0	2.0	4585662	<2.0	2.0	4585662	N/A
Total Boron (B)	ug/L	<50	50	4585662	<50	50	4585662	<50	50	4585662	N/A
Total Cadmium (Cd)	ug/L	0.053	0.010	4585662	0.018	0.010	4585662	0.069	0.010	4585662	N/A
Total Calcium (Ca)	ug/L	26000	100	4585662	8700	100	4585662	4700	100	4585662	N/A
Total Chromium (Cr)	ug/L	2.1	1.0	4585662	1.9	1.0	4585662	7.4	1.0	4585662	N/A
Total Cobalt (Co)	ug/L	20	0.40	4585662	2.7	0.40	4585662	4.4	0.40	4585662	N/A
Total Copper (Cu)	ug/L	7.6	2.0	4585662	2.7	2.0	4585662	6.6	2.0	4585662	N/A
Total Iron (Fe)	ug/L	11000	50	4585662	10000	50	4585662	11000	50	4585662	N/A
Total Lead (Pb)	ug/L	2.4	0.50	4585662	2.2	0.50	4585662	6.6	0.50	4585662	N/A
Total Magnesium (Mg)	ug/L	9500	100	4585662	3000	100	4585662	4000	100	4585662	N/A
Total Manganese (Mn)	ug/L	2000	2.0	4585662	280	2.0	4585662	220	2.0	4585662	N/A
Total Molybdenum (Mo)	ug/L	8.2	2.0	4585662	<2.0	2.0	4585662	<2.0	2.0	4585662	N/A
Total Nickel (Ni)	ug/L	17	2.0	4585662	3.0	2.0	4585662	6.3	2.0	4585662	N/A
Total Phosphorus (P)	ug/L	350	100	4585662	280	100	4585662	310	100	4585662	N/A
Total Potassium (K)	ug/L	30000	100	4585662	9900	100	4585662	2400	100	4585662	N/A
Total Selenium (Se)	ug/L	<1.0	1.0	4585662	<1.0	1.0	4585662	<1.0	1.0	4585662	N/A
Total Silver (Ag)	ug/L	<0.10	0.10	4585662	<0.10	0.10	4585662	<0.10	0.10	4585662	N/A
Total Sodium (Na)	ug/L	31000	100	4585662	15000	100	4585662	12000	100	4585662	N/A
Total Strontium (Sr)	ug/L	140	2.0	4585662	40	2.0	4585662	29	2.0	4585662	N/A
Total Thallium (TI)	ug/L	<0.10	0.10	4585662	<0.10	0.10	4585662	<0.10	0.10	4585662	N/A
Total Tin (Sn)	ug/L	<2.0	2.0	4585662	<2.0	2.0	4585662	<2.0	2.0	4585662	N/A
Total Titanium (Ti)	ug/L	23	2.0	4585662	13	2.0	4585662	170	2.0	4585662	N/A
Total Uranium (U)	ug/L	0.26	0.10	4585662	<0.10	0.10	4585662	0.64	0.10	4585662	N/A
Total Vanadium (V)	ug/L	3.3	2.0	4585662	<2.0	2.0	4585662	8.7	2.0	4585662	N/A
Total Zinc (Zn)	ug/L	11	5.0	4585662	6.5	5.0	4585662	27	5.0	4585662	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Maxxam ID		CSF365			CSF366	CSF366			
Sampling Date		2016/07/14 10:35			2016/07/14	2016/07/14			
COC Number		568681-01-01			568681-01-01	568681-01-01			
	UNITS	SW7	RDL	QC Batch	SWDUP2	SWDUP2 Lab-Dup	RDL	QC Batch	MDL
Calculated Parameters									
Anion Sum	me/L	0.550	N/A	4580734	0.770		N/A	4580734	N/A
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	5.8	1.0	4580730	11		1.0	4580730	0.20
Calculated TDS	mg/L	48	1.0	4580738	58		1.0	4580738	0.20
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	4580730	<1.0		1.0	4580730	0.20
Cation Sum	me/L	0.790	N/A	4580734	0.850		N/A	4580734	N/A
Hardness (CaCO3)	mg/L	13	1.0	4580732	18		1.0	4580732	1.0
Ion Balance (% Difference)	%	17.9	N/A	4580733	4.94		N/A	4580733	N/A
Langelier Index (@ 20C)	N/A	-3.91		4580736	-3.00			4580736	
Langelier Index (@ 4C)	N/A	-4.16		4580737	-3.25			4580737	
Nitrate (N)	mg/L	<0.050	0.050	4580735	0.31		0.050	4580735	N/A
Saturation pH (@ 20C)	N/A	10.1		4580736	9.74			4580736	
Saturation pH (@ 4C)	N/A	10.4		4580737	10.0			4580737	
Inorganics									
Total Alkalinity (Total as CaCO3)	mg/L	5.8	5.0	4586424	11	10	5.0	4586424	N/A
Dissolved Chloride (CI)	mg/L	13	1.0	4586426	15	15	1.0	4586426	N/A
Colour	TCU	320	150	4586439	220	230	25	4586439	N/A
Nitrate + Nitrite (N)	mg/L	<0.050	0.050	4586447	0.31	0.32	0.050	4586447	N/A
Nitrite (N)	mg/L	<0.010	0.010	4586455	<0.010	<0.010	0.010	4586455	N/A
Nitrogen (Ammonia Nitrogen)	mg/L	<0.050	0.050	4587902	<0.050		0.050	4587902	N/A
Total Organic Carbon (C)	mg/L	19 (1)	5.0	4585899	11 (1)		5.0	4585899	N/A
Orthophosphate (P)	mg/L	0.020	0.010	4586445	0.024	0.024	0.010	4586445	N/A
рН	рН	6.21	N/A	4583894	6.75	6.78	N/A	4583894	N/A
Reactive Silica (SiO2)	mg/L	11	0.50	4586433	12	12	0.50	4586433	N/A
Dissolved Sulphate (SO4)	mg/L	3.6	2.0	4586428	5.2	5.1	2.0	4586428	N/A
Turbidity	NTU	3.4	0.10	4584024	7.0		0.10	4584019	0.10
Conductivity	uS/cm	74	1.0	4583896	87	87	1.0	4583896	N/A
Metals									_
Total Aluminum (AI)	ug/L	600	5.0	4585662	440		5.0	4584314	N/A
Total Antimony (Sb)	ug/L	<1.0	1.0	4585662	<1.0		1.0	4584314	N/A
Total Arsenic (As)	ug/L	1.2	1.0	4585662	2.1		1.0	4584314	N/A
Total Barium (Ba)	ug/L	4.2	1.0	4585662	11		1.0	4584314	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

(1) Elevated reporting limit due to sample matrix.

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Maxxam ID		CSF365			CSF366	CSF366			
Sampling Date		2016/07/14 10:35			2016/07/14	2016/07/14			
COC Number		568681-01-01			568681-01-01	568681-01-01			
	UNITS	SW7	RDL	QC Batch	SWDUP2	SWDUP2 Lab-Dup	RDL	QC Batch	MDL
Total Beryllium (Be)	ug/L	<1.0	1.0	4585662	<1.0		1.0	4584314	N/A
Total Bismuth (Bi)	ug/L	<2.0	2.0	4585662	<2.0		2.0	4584314	N/A
Total Boron (B)	ug/L	<50	50	4585662	<50		50	4584314	N/A
Total Cadmium (Cd)	ug/L	0.044	0.010	4585662	0.019		0.010	4584314	N/A
Total Calcium (Ca)	ug/L	2600	100	4585662	3900		100	4584314	N/A
Total Chromium (Cr)	ug/L	1.4	1.0	4585662	1.0		1.0	4584314	N/A
Total Cobalt (Co)	ug/L	0.49	0.40	4585662	0.72		0.40	4584314	N/A
Total Copper (Cu)	ug/L	<2.0	2.0	4585662	<2.0		2.0	4584314	N/A
Total Iron (Fe)	ug/L	770	50	4585662	2100		50	4584314	N/A
Total Lead (Pb)	ug/L	2.5	0.50	4585662	1.0		0.50	4584314	N/A
Total Magnesium (Mg)	ug/L	1600	100	4585662	2400		100	4584314	N/A
Total Manganese (Mn)	ug/L	19	2.0	4585662	43		2.0	4584314	N/A
Total Molybdenum (Mo)	ug/L	<2.0	2.0	4585662	<2.0		2.0	4584314	N/A
Total Nickel (Ni)	ug/L	2.3	2.0	4585662	<2.0		2.0	4584314	N/A
Total Phosphorus (P)	ug/L	<100	100	4585662	<100		100	4584314	N/A
Total Potassium (K)	ug/L	2500	100	4585662	1600		100	4584314	N/A
Total Selenium (Se)	ug/L	<1.0	1.0	4585662	<1.0		1.0	4584314	N/A
Total Silver (Ag)	ug/L	<0.10	0.10	4585662	<0.10		0.10	4584314	N/A
Total Sodium (Na)	ug/L	10000	100	4585662	10000		100	4584314	N/A
Total Strontium (Sr)	ug/L	16	2.0	4585662	24		2.0	4584314	N/A
Total Thallium (TI)	ug/L	<0.10	0.10	4585662	<0.10		0.10	4584314	N/A
Total Tin (Sn)	ug/L	<2.0	2.0	4585662	<2.0		2.0	4584314	N/A
Total Titanium (Ti)	ug/L	9.3	2.0	4585662	12		2.0	4584314	N/A
Total Uranium (U)	ug/L	<0.10	0.10	4585662	<0.10		0.10	4584314	N/A
Total Vanadium (V)	ug/L	<2.0	2.0	4585662	<2.0		2.0	4584314	N/A
Total Zinc (Zn)	ug/L	7.3	5.0	4585662	<5.0		5.0	4584314	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Maxxam ID		CSF367			CSR212			CSR319			
Sampling Date		2016/07/14 11:40			2016/07/15 10:45			2016/07/15 12:40			
COC Number		568681-01-01			D11596			D11596			
	UNITS	SW9	RDL	QC Batch	SW3	RDL	QC Batch	SW4	RDL	QC Batch	MDL
Calculated Parameters	•	•	•		•	•			•		
Anion Sum	me/L	3.94	N/A	4580734	1.35	N/A	4583968	2.82	N/A	4583968	N/A
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	150	1.0	4580730	32	1.0	4583964	27	1.0	4583964	0.20
Calculated TDS	mg/L	250	1.0	4580738	98	1.0	4583973	170	1.0	4583973	0.20
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	4580730	<1.0	1.0	4583964	<1.0	1.0	4583964	0.20
Cation Sum	me/L	4.90	N/A	4580734	1.57	N/A	4583968	2.93	N/A	4583968	N/A
Hardness (CaCO3)	mg/L	110	1.0	4580732	24	1.0	4583966	44	1.0	4583966	1.0
Ion Balance (% Difference)	%	10.9	N/A	4580733	7.53	N/A	4583967	1.91	N/A	4583967	N/A
Langelier Index (@ 20C)	N/A	-0.434		4580736	-2.38		4583971	-1.82		4583971	
Langelier Index (@ 4C)	N/A	-0.683		4580737	-2.63		4583972	-2.07		4583972	
Nitrate (N)	mg/L	0.052	0.050	4580735	0.18	0.050	4584921	0.084	0.050	4584921	N/A
Saturation pH (@ 20C)	N/A	7.80		4580736	9.03		4583971	8.96		4583971	
Saturation pH (@ 4C)	N/A	8.05		4580737	9.28		4583972	9.21		4583972	
Inorganics											
Total Alkalinity (Total as CaCO3)	mg/L	150	25	4586424	32	5.0	4586538	27	5.0	4586538	N/A
Dissolved Chloride (CI)	mg/L	34	1.0	4586426	16	1.0	4586550	77	1.0	4586550	N/A
Colour	TCU	490	150	4586439	380	100	4586557	31	5.0	4586557	N/A
Nitrate + Nitrite (N)	mg/L	0.052	0.050	4586447	0.18	0.050	4586563	0.084	0.050	4586563	N/A
Nitrite (N)	mg/L	<0.010	0.010	4586455	<0.010	0.010	4586568	<0.010	0.010	4586568	N/A
Nitrogen (Ammonia Nitrogen)	mg/L	0.60	0.050	4587902	0.12	0.050	4587902	0.068	0.050	4587902	N/A
Total Organic Carbon (C)	mg/L	43 (1)	5.0	4585899	30 (1)	5.0	4585899	6.7	0.50	4585899	N/A
Orthophosphate (P)	mg/L	0.061	0.010	4586445	0.058	0.010	4586562	0.011	0.010	4586562	N/A
рН	рН	7.37	N/A	4583911	6.65	N/A	4589410	7.13	N/A	4589410	N/A
Reactive Silica (SiO2)	mg/L	7.9	0.50	4586433	11	0.50	4586556	6.8	0.50	4586556	N/A
Dissolved Sulphate (SO4)	mg/L	<2.0	2.0	4586428	12	2.0	4586555	5.3	2.0	4586555	N/A
Turbidity	NTU	55	0.10	4584024	37	0.10	4589515	49	0.10	4589508	0.10
Conductivity	uS/cm	390	1.0	4583912	130	1.0	4589411	280	1.0	4589411	N/A
Metals											
Total Aluminum (AI)	ug/L	2400	5.0	4585662	2000	5.0	4587708	800	5.0	4587708	N/A
Total Antimony (Sb)	ug/L	<1.0	1.0	4585662	<1.0	1.0	4587708	<1.0	1.0	4587708	N/A
Total Arsenic (As)	ug/L	19	1.0	4585662	5.5	1.0	4587708	3.2	1.0	4587708	N/A
Total Barium (Ba)	ug/L	29	1.0	4585662	26	1.0	4587708	13	1.0	4587708	N/A
Total Beryllium (Be)	ug/L	<1.0	1.0	4585662	<1.0	1.0	4587708	<1.0	1.0	4587708	N/A
lance a 1 1 1 no 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1											

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

(1) Elevated reporting limit due to sample matrix.

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Maxxam ID		CSF367			CSR212			CSR319			
Sampling Date		2016/07/14 11:40			2016/07/15 10:45			2016/07/15 12:40			
COC Number		568681-01-01			D11596			D11596			
	UNITS	SW9	RDL	QC Batch	SW3	RDL	QC Batch	SW4	RDL	QC Batch	MDL
Total Bismuth (Bi)	ug/L	<2.0	2.0	4585662	<2.0	2.0	4587708	<2.0	2.0	4587708	N/A
Total Boron (B)	ug/L	<50	50	4585662	61	50	4587708	<50	50	4587708	N/A
Total Cadmium (Cd)	ug/L	0.12	0.010	4585662	0.090	0.010	4587708	0.032	0.010	4587708	N/A
Total Calcium (Ca)	ug/L	27000	100	4585662	8100	100	4587708	9900	100	4587708	N/A
Total Chromium (Cr)	ug/L	4.6	1.0	4585662	3.4	1.0	4587708	1.4	1.0	4587708	N/A
Total Cobalt (Co)	ug/L	23	0.40	4585662	3.0	0.40	4587708	4.2	0.40	4587708	N/A
Total Copper (Cu)	ug/L	13	2.0	4585662	7.9	2.0	4587708	<2.0	2.0	4587708	N/A
Total Iron (Fe)	ug/L	15000	50	4585662	10000	50	4587708	5500	50	4587708	N/A
Total Lead (Pb)	ug/L	6.1	0.50	4585662	7.6	0.50	4587708	2.6	0.50	4587708	N/A
Total Magnesium (Mg)	ug/L	10000	100	4585662	2300	100	4587708	4600	100	4587708	N/A
Total Manganese (Mn)	ug/L	2100	2.0	4585662	480	2.0	4587708	400	2.0	4587708	N/A
Total Molybdenum (Mo)	ug/L	8.3	2.0	4585662	<2.0	2.0	4587708	<2.0	2.0	4587708	N/A
Total Nickel (Ni)	ug/L	21	2.0	4585662	4.9	2.0	4587708	2.5	2.0	4587708	N/A
Total Phosphorus (P)	ug/L	600	100	4585662	400	100	4587708	120	100	4587708	N/A
Total Potassium (K)	ug/L	31000	100	4585662	12000	100	4587708	1300	100	4587708	N/A
Total Selenium (Se)	ug/L	<1.0	1.0	4585662	<1.0	1.0	4587708	<1.0	1.0	4587708	N/A
Total Silver (Ag)	ug/L	<0.10	0.10	4585662	<0.10	0.10	4587708	<0.10	0.10	4587708	N/A
Total Sodium (Na)	ug/L	31000	100	4585662	15000	100	4587708	42000	100	4587708	N/A
Total Strontium (Sr)	ug/L	140	2.0	4585662	40	2.0	4587708	74	2.0	4587708	N/A
Total Thallium (TI)	ug/L	<0.10	0.10	4585662	<0.10	0.10	4587708	<0.10	0.10	4587708	N/A
Total Tin (Sn)	ug/L	<2.0	2.0	4585662	<2.0	2.0	4587708	<2.0	2.0	4587708	N/A
Total Titanium (Ti)	ug/L	62	2.0	4585662	44	2.0	4587708	14	2.0	4587708	N/A
Total Uranium (U)	ug/L	0.38	0.10	4585662	0.24	0.10	4587708	<0.10	0.10	4587708	N/A
Total Vanadium (V)	ug/L	7.5	2.0	4585662	5.2	2.0	4587708	2.9	2.0	4587708	N/A
Total Zinc (Zn)	ug/L	25	5.0	4585662	30	5.0	4587708	5.7	5.0	4587708	N/A

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Maxxam ID		CSR319			CSR326	CSR326			
Sampling Date		2016/07/15			2016/07/15	2016/07/15			
Sampling Date		12:40			11:50	11:50			
COC Number		D11596			D11596	D11596			
	UNITS	SW4 Lab-Dup	RDL	QC Batch	SW14	SW14 Lab-Dup	RDL	QC Batch	MDL
Calculated Parameters									
Anion Sum	me/L		N/A	4583968	1.88		N/A	4583968	N/A
Bicarb. Alkalinity (calc. as CaCO3)	mg/L		1.0	4583964	9.4		1.0	4583964	0.20
Calculated TDS	mg/L		1.0	4583973	110		1.0	4583973	0.20
Carb. Alkalinity (calc. as CaCO3)	mg/L		1.0	4583964	<1.0		1.0	4583964	0.20
Cation Sum	me/L		N/A	4583968	1.81		N/A	4583968	N/A
Hardness (CaCO3)	mg/L		1.0	4583966	23		1.0	4583966	1.0
Ion Balance (% Difference)	%		N/A	4583967	1.90		N/A	4583967	N/A
Langelier Index (@ 20C)	N/A			4583971	-3.49			4583971	
Langelier Index (@ 4C)	N/A			4583972	-3.74			4583972	
Nitrate (N)	mg/L		0.050	4584921	<0.050		0.050	4584921	N/A
Saturation pH (@ 20C)	N/A			4583971	9.71			4583971	
Saturation pH (@ 4C)	N/A			4583972	9.96			4583972	
Inorganics	•	•		•	•	•			•
Total Alkalinity (Total as CaCO3)	mg/L		5.0	4586538	9.4		5.0	4586538	N/A
Dissolved Chloride (CI)	mg/L		1.0	4586550	55		1.0	4586550	N/A
Colour	TCU		5.0	4586557	61		10	4586557	N/A
Nitrate + Nitrite (N)	mg/L		0.050	4586563	<0.050		0.050	4586563	N/A
Nitrite (N)	mg/L		0.010	4586568	<0.010		0.010	4586568	N/A
Nitrogen (Ammonia Nitrogen)	mg/L		0.050	4587902	0.11	0.13	0.050	4587902	N/A
Total Organic Carbon (C)	mg/L		0.50	4585899	7.9		0.50	4585899	N/A
Orthophosphate (P)	mg/L		0.010	4586562	0.011		0.010	4586562	N/A
рН	рН		N/A	4589410	6.22		N/A	4589412	N/A
Reactive Silica (SiO2)	mg/L		0.50	4586556	5.8		0.50	4586556	N/A
Dissolved Sulphate (SO4)	mg/L		2.0	4586555	6.0		2.0	4586555	N/A
Turbidity	NTU	47	0.10	4589508	1.4		0.10	4589508	0.10
Conductivity	uS/cm		1.0	4589411	200		1.0	4589413	N/A
Metals									
Total Aluminum (Al)	ug/L		5.0	4587708	930		5.0	4587708	N/A
Total Antimony (Sb)			1.0	4587708	<1.0		1.0	4587708	N/A
, ,	ug/L								
Total Arsenic (As)	ug/L ug/L		1.0	4587708	1.2		1.0	4587708	N/A
Total Arsenic (As) Total Barium (Ba)	_				1.2 9.5		1.0	4587708 4587708	N/A N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Maxxam ID		CSR319			CSR326	CSR326			
Sampling Date		2016/07/15 12:40			2016/07/15 11:50	2016/07/15 11:50			
COC Number		D11596			D11596	D11596			
	UNITS	SW4 Lab-Dup	RDL	QC Batch	SW14	SW14 Lab-Dup	RDL	QC Batch	MDL
Total Bismuth (Bi)	ug/L		2.0	4587708	<2.0		2.0	4587708	N/A
Total Boron (B)	ug/L		50	4587708	<50		50	4587708	N/A
Total Cadmium (Cd)	ug/L		0.010	4587708	0.057		0.010	4587708	N/A
Total Calcium (Ca)	ug/L		100	4587708	5100		100	4587708	N/A
Total Chromium (Cr)	ug/L		1.0	4587708	2.2		1.0	4587708	N/A
Total Cobalt (Co)	ug/L		0.40	4587708	3.0		0.40	4587708	N/A
Total Copper (Cu)	ug/L		2.0	4587708	2.8		2.0	4587708	N/A
Total Iron (Fe)	ug/L		50	4587708	1500		50	4587708	N/A
Total Lead (Pb)	ug/L		0.50	4587708	2.0		0.50	4587708	N/A
Total Magnesium (Mg)	ug/L		100	4587708	3000		100	4587708	N/A
Total Manganese (Mn)	ug/L		2.0	4587708	230		2.0	4587708	N/A
Total Molybdenum (Mo)	ug/L		2.0	4587708	<2.0		2.0	4587708	N/A
Total Nickel (Ni)	ug/L		2.0	4587708	<2.0		2.0	4587708	N/A
Total Phosphorus (P)	ug/L		100	4587708	<100		100	4587708	N/A
Total Potassium (K)	ug/L		100	4587708	2000		100	4587708	N/A
Total Selenium (Se)	ug/L		1.0	4587708	<1.0		1.0	4587708	N/A
Total Silver (Ag)	ug/L		0.10	4587708	<0.10		0.10	4587708	N/A
Total Sodium (Na)	ug/L		100	4587708	31000		100	4587708	N/A
Total Strontium (Sr)	ug/L		2.0	4587708	38		2.0	4587708	N/A
Total Thallium (TI)	ug/L		0.10	4587708	<0.10		0.10	4587708	N/A
Total Tin (Sn)	ug/L		2.0	4587708	<2.0		2.0	4587708	N/A
Total Titanium (Ti)	ug/L		2.0	4587708	20		2.0	4587708	N/A
Total Uranium (U)	ug/L		0.10	4587708	<0.10		0.10	4587708	N/A
Total Vanadium (V)	ug/L		2.0	4587708	<2.0		2.0	4587708	N/A
Total Zinc (Zn)	ug/L		5.0	4587708	8.9		5.0	4587708	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Maxxam ID		CSR334			
Sampling Date		2016/07/15 10:20			
COC Number		D11596			
	UNITS	P1A	RDL	QC Batch	MDL
Calculated Parameters					
Anion Sum	me/L	0.820	N/A	4583968	N/A
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	20	1.0	4583964	0.20
Calculated TDS	mg/L	210	1.0	4583973	0.20
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	4583964	0.20
Cation Sum	me/L	7.23	N/A	4583968	N/A
Hardness (CaCO3)	mg/L	170	1.0	4583966	1.0
Ion Balance (% Difference)	%	79.6	N/A	4583967	N/A
Langelier Index (@ 20C)	N/A	-2.22		4583971	
Langelier Index (@ 4C)	N/A	-2.47		4583972	
Nitrate (N)	mg/L	<0.050	0.050	4584921	N/A
Saturation pH (@ 20C)	N/A	8.37		4583971	
Saturation pH (@ 4C)	N/A	8.62		4583972	
Inorganics	•				•
Total Alkalinity (Total as CaCO3)	mg/L	20	5.0	4586538	N/A
Dissolved Chloride (Cl)	mg/L	13	1.0	4586550	N/A
Colour	TCU	340	50	4586557	N/A
Nitrate + Nitrite (N)	mg/L	<0.050	0.050	4586563	N/A
Nitrite (N)	mg/L	<0.010	0.010	4586568	N/A
Nitrogen (Ammonia Nitrogen)	mg/L	1.1	0.050	4587911	N/A
Total Organic Carbon (C)	mg/L	120 (1)	50	4585899	N/A
Orthophosphate (P)	mg/L	0.019	0.010	4586562	N/A
рН	рН	6.15	N/A	4589412	N/A
Reactive Silica (SiO2)	mg/L	8.9	0.50	4586556	N/A
Dissolved Sulphate (SO4)	mg/L	2.4	2.0	4586555	N/A
Turbidity	NTU	>1000	1.0	4589508	0.10
Conductivity	uS/cm	95	1.0	4589413	N/A
Metals				-	
Total Aluminum (AI)	ug/L	41000	50	4587765	N/A
Total Antimony (Sb)	ug/L	<10	10	4587765	N/A
Total Arsenic (As)	ug/L	38	10	4587765	N/A
Total Barium (Ba)	ug/L	360	10	4587765	N/A
Total Beryllium (Be)	ug/L	<10	10	4587765	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

(1) Reporting limit was increased due to turbidity.

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Maxxam ID		CSR334			
Sampling Date		2016/07/15 10:20			
COC Number		D11596			
	UNITS	P1A	RDL	QC Batch	MDL
Total Bismuth (Bi)	ug/L	<20	20	4587765	N/A
Total Boron (B)	ug/L	<500	500	4587765	N/A
Total Cadmium (Cd)	ug/L	2.1	0.10	4587765	N/A
Total Calcium (Ca)	ug/L	52000	1000	4587765	N/A
Total Chromium (Cr)	ug/L	45	10	4587765	N/A
Total Cobalt (Co)	ug/L	22	4.0	4587765	N/A
Total Copper (Cu)	ug/L	84	20	4587765	N/A
Total Iron (Fe)	ug/L	75000	500	4587765	N/A
Total Lead (Pb)	ug/L	140	5.0	4587765	N/A
Total Magnesium (Mg)	ug/L	10000	1000	4587765	N/A
Total Manganese (Mn)	ug/L	2800	20	4587765	N/A
Total Molybdenum (Mo)	ug/L	<20	20	4587765	N/A
Total Nickel (Ni)	ug/L	49	20	4587765	N/A
Total Phosphorus (P)	ug/L	5100	1000	4587765	N/A
Total Potassium (K)	ug/L	13000	1000	4587765	N/A
Total Selenium (Se)	ug/L	<10	10	4587765	N/A
Total Silver (Ag)	ug/L	1.1	1.0	4587765	N/A
Total Sodium (Na)	ug/L	15000	1000	4587765	N/A
Total Strontium (Sr)	ug/L	320	20	4587765	N/A
Total Thallium (TI)	ug/L	<1.0	1.0	4587765	N/A
Total Tin (Sn)	ug/L	<20	20	4587765	N/A
Total Titanium (Ti)	ug/L	520	20	4587765	N/A
Total Uranium (U)	ug/L	5.4	1.0	4587765	N/A
Total Vanadium (V)	ug/L	56	20	4587765	N/A
Total Zinc (Zn)	ug/L	530	50	4587765	N/A
PDI - Papartable Detection Limit	•			•	

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016

RESULTS OF ANALYSES OF WATER

Maxxam ID		CSF360		CSF364	CSF366			CSR212	CSR212			
Sampling Date		2016/07/14 11:00		2016/07/14 17:30	2016/07/14			2016/07/15 10:45	2016/07/15 10:45			
COC Number		568681-01-01		568681-01-01	568681-01-01			D11596	D11596			
	UNITS	SW2	RDL	BACK2	SWDUP2	RDL	QC Batch	SW3	SW3 Lab-Dup	RDL	QC Batch	MDL
Inorganics												
Total Suspended Solids	mg/L	2.0	1.0	130	<5.0	5.0	4585717	380	360	10	4586190	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Maxxam ID		CSR326							
Sampling Date		2016/07/15							
Sampling Date		11:50							
COC Number		D11596							
	UNITS	SW14	RDL	QC Batch	MDL				
Inorganics									
Total Suspended Solids	mg/L	1.2	1.0	4586190	N/A				
RDL = Reportable Detection L	RDL = Reportable Detection Limit								
QC Batch = Quality Control Batch									
N/A = Not Applicable									

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016

MERCURY BY COLD VAPOUR AA (WATER)

Maxxam ID		CSF359	CSF360	CSF361	CSF362	CSF363	CSF364			
Sampling Date		2016/07/14 10:00	2016/07/14 11:00	2016/07/14 11:55	2016/07/14	2016/07/14 15:50	2016/07/14 17:30			
COC Number		568681-01-01	568681-01-01	568681-01-01	568681-01-01	568681-01-01	568681-01-01			
	UNITS	SW13	SW2	Р3	SWDUP1	SW5	BACK2	RDL	QC Batch	MDL
Metals						·				
Total Mercury (Hg)	ug/L	0.023	0.025	0.57	0.025	<0.013	0.018	0.013	4588194	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Maxxam ID		CSF365	CSF366	CSF367	CSR212	CSR319	CSR326			
Sampling Date		2016/07/14 10:35	2016/07/14	2016/07/14 11:40	2016/07/15 10:45	2016/07/15 12:40	2016/07/15 11:50			
COC Number		568681-01-01	568681-01-01	568681-01-01	D11596	D11596	D11596			
	UNITS	SW7	SWDUP2	SW9	SW3	SW4	SW14	RDL	QC Batch	MDL
Metals										
Total Mercury (Hg)	ug/L	0.023	< 0.013	0.022	0.072	<0.013	< 0.013	0.013	4588194	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Maxxam ID		CSR334			
Sampling Date		2016/07/15 10:20			
COC Number		D11596			
	UNITS	P1A	RDL	QC Batch	MDL
Metals	UNITS	P1A	RDL	QC Batch	MDL
Metals Total Mercury (Hg)	ug/L	P1A 0.19	0.013		MDL N/A

QC Batch = Quality Control Batch

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016

ELEMENTS BY ICP/MS (WATER)

Maxxam ID		CSF360	CSF364	CSF366		CSR212			
Sampling Date		2016/07/14 11:00	2016/07/14 17:30	2016/07/14		2016/07/15 10:45			
COC Number		568681-01-01	568681-01-01	568681-01-01		D11596			
	UNITS	SW2	BACK2	SWDUP2	QC Batch	SW3	RDL	QC Batch	MDL
Metals		-	•	•	•	•			
Dissolved Aluminum (Al)	ug/L	590	280	290	4587845	650	5.0	4589406	N/A
Dissolved Antimony (Sb)	ug/L	<1.0	<1.0	<1.0	4587845	<1.0	1.0	4589406	N/A
Dissolved Arsenic (As)	ug/L	<1.0	1.3	1.2	4587845	2.4	1.0	4589406	N/A
Dissolved Barium (Ba)	ug/L	3.9	8.0	7.9	4587845	11	1.0	4589406	N/A
Dissolved Beryllium (Be)	ug/L	<1.0	<1.0	<1.0	4587845	<1.0	1.0	4589406	N/A
Dissolved Bismuth (Bi)	ug/L	<2.0	<2.0	<2.0	4587845	<2.0	2.0	4589406	N/A
Dissolved Boron (B)	ug/L	<50	<50	<50	4587845	63	50	4589406	N/A
Dissolved Cadmium (Cd)	ug/L	0.046	0.016	0.016	4587845	0.038	0.010	4589406	N/A
Dissolved Calcium (Ca)	ug/L	2200	3500	3400	4587845	6500	100	4589406	N/A
Dissolved Chromium (Cr)	ug/L	<1.0	<1.0	<1.0	4587845	1.3	1.0	4589406	N/A
Dissolved Cobalt (Co)	ug/L	0.47	0.42	<0.40	4587845	0.71	0.40	4589406	N/A
Dissolved Copper (Cu)	ug/L	<2.0	<2.0	<2.0	4587845	6.0	2.0	4589406	N/A
Dissolved Iron (Fe)	ug/L	630	1200	1100	4587845	3800	50	4589406	N/A
Dissolved Lead (Pb)	ug/L	2.6	0.64	0.65	4587845	2.9	0.50	4589406	N/A
Dissolved Magnesium (Mg)	ug/L	1400	2200	2200	4587845	1900	100	4589406	N/A
Dissolved Manganese (Mn)	ug/L	25	23	18	4587845	84	2.0	4589406	N/A
Dissolved Molybdenum (Mo)	ug/L	<2.0	<2.0	<2.0	4587845	<2.0	2.0	4589406	N/A
Dissolved Nickel (Ni)	ug/L	2.1	<2.0	<2.0	4587845	3.6	2.0	4589406	N/A
Dissolved Phosphorus (P)	ug/L	<100	<100	<100	4587845	140	100	4589406	N/A
Dissolved Potassium (K)	ug/L	2500	1500	1500	4587845	12000	100	4589406	N/A
Dissolved Selenium (Se)	ug/L	<1.0	<1.0	<1.0	4587845	<1.0	1.0	4589406	N/A
Dissolved Silver (Ag)	ug/L	<0.10	<0.10	<0.10	4587845	<0.10	0.10	4589406	N/A
Dissolved Sodium (Na)	ug/L	9500	9800	9800	4587845	15000	100	4589406	N/A
Dissolved Strontium (Sr)	ug/L	13	21	22	4587845	31	2.0	4589406	N/A
Dissolved Thallium (TI)	ug/L	<0.10	<0.10	<0.10	4587845	<0.10	0.10	4589406	N/A
Dissolved Tin (Sn)	ug/L	<2.0	<2.0	<2.0	4587845	<2.0	2.0	4589406	N/A
Dissolved Titanium (Ti)	ug/L	6.1	6.5	7.3	4587845	16	2.0	4589406	N/A
Dissolved Uranium (U)	ug/L	<0.10	<0.10	<0.10	4587845	<0.10	0.10	4589406	N/A
Dissolved Vanadium (V)	ug/L	<2.0	<2.0	<2.0	4587845	2.3	2.0	4589406	N/A
Dissolved Zinc (Zn)	ug/L	8.2	6.4	6.4	4587845	19	5.0	4589406	N/A
PDI - Papartable Detection Lie	mi+		•	•	•	•			

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016

ELEMENTS BY ICP/MS (WATER)

Maxxam ID		CSR326			
Sampling Date		2016/07/15			
		11:50			
COC Number		D11596			
	UNITS	SW14	RDL	QC Batch	MDI
Metals					
Dissolved Aluminum (Al)	ug/L	230	5.0	4587848	N/A
Dissolved Antimony (Sb)	ug/L	<1.0	1.0	4587848	N/A
Dissolved Arsenic (As)	ug/L	<1.0	1.0	4587848	N/A
Dissolved Barium (Ba)	ug/L	8.0	1.0	4587848	N/A
Dissolved Beryllium (Be)	ug/L	<1.0	1.0	4587848	N/A
Dissolved Bismuth (Bi)	ug/L	<2.0	2.0	4587848	N/A
Dissolved Boron (B)	ug/L	<50	50	4587848	N/A
Dissolved Cadmium (Cd)	ug/L	0.044	0.010	4587848	N/A
Dissolved Calcium (Ca)	ug/L	4700	100	4587848	N/A
Dissolved Chromium (Cr)	ug/L	<1.0	1.0	4587848	N/A
Dissolved Cobalt (Co)	ug/L	2.1	0.40	4587848	N/A
Dissolved Copper (Cu)	ug/L	<2.0	2.0	4587848	N/A
Dissolved Iron (Fe)	ug/L	400	50	4587848	N/A
Dissolved Lead (Pb)	ug/L	0.69	0.50	4587848	N/A
Dissolved Magnesium (Mg)	ug/L	2700	100	4587848	N/A
Dissolved Manganese (Mn)	ug/L	190	2.0	4587848	N/A
Dissolved Molybdenum (Mo)	ug/L	<2.0	2.0	4587848	N/A
Dissolved Nickel (Ni)	ug/L	2.4	2.0	4587848	N/A
Dissolved Phosphorus (P)	ug/L	<100	100	4587848	N/A
Dissolved Potassium (K)	ug/L	1900	100	4587848	N/A
Dissolved Selenium (Se)	ug/L	<1.0	1.0	4587848	N/A
Dissolved Silver (Ag)	ug/L	<0.10	0.10	4587848	N/A
Dissolved Sodium (Na)	ug/L	30000	100	4587848	N/A
Dissolved Strontium (Sr)	ug/L	35	2.0	4587848	N/A
Dissolved Thallium (TI)	ug/L	<0.10	0.10	4587848	N/A
Dissolved Tin (Sn)	ug/L	<2.0	2.0	4587848	N/A
Dissolved Titanium (Ti)	ug/L	2.3	2.0	4587848	N/A
Dissolved Uranium (U)	ug/L	<0.10	0.10	4587848	N/A
Dissolved Vanadium (V)	ug/L	<2.0	2.0	4587848	N/A
Dissolved Zinc (Zn)	ug/L	8.9	5.0	4587848	N/A
RDL = Reportable Detection Lii QC Batch = Quality Control Bat					

QC Batch = Quality Control Batch

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016

TEST SUMMARY

Maxxam ID: CSF359 Sample ID: SW13 Matrix: Water

Collected: 2016/07/14

Shipped:

Received: 2016/07/15

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4580730	N/A	2016/07/19	Automated Statchk
Alkalinity	KONE	4586424	N/A	2016/07/22	Nancy Rogers
Chloride	KONE	4586426	N/A	2016/07/22	Nancy Rogers
Colour	KONE	4586439	N/A	2016/07/21	Nancy Rogers
Conductance - water	AT	4583896	N/A	2016/07/19	Julia McGovern
Hardness (calculated as CaCO3)		4580732	N/A	2016/07/22	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4588194	2016/07/21	2016/07/22	Arlene Rossiter
Metals Water Total MS	CICP/MS	4585662	2016/07/20	2016/07/21	Bryon Angevine
Ion Balance (% Difference)	CALC	4580733	N/A	2016/07/22	Automated Statchk
Anion and Cation Sum	CALC	4580734	N/A	2016/07/22	Automated Statchk
Nitrogen Ammonia - water	KONE	4587902	N/A	2016/07/21	Nancy Rogers
Nitrogen - Nitrate + Nitrite	KONE	4586447	N/A	2016/07/22	Nancy Rogers
Nitrogen - Nitrite	KONE	4586455	N/A	2016/07/22	Mary Clancey
Nitrogen - Nitrate (as N)	CALC	4580735	N/A	2016/07/22	Automated Statchk
рН	AT	4583894	N/A	2016/07/19	Julia McGovern
Phosphorus - ortho	KONE	4586445	N/A	2016/07/22	Cecilia (Kate) Barrett
Sat. pH and Langelier Index (@ 20C)	CALC	4580736	N/A	2016/07/22	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4580737	N/A	2016/07/22	Automated Statchk
Reactive Silica	KONE	4586433	N/A	2016/07/21	Nancy Rogers
Sulphate	KONE	4586428	N/A	2016/07/22	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4580738	N/A	2016/07/22	Automated Statchk
Organic carbon - Total (TOC)	TECH	4585766	N/A	2016/07/21	Soraya Merchant
Turbidity	TURB	4584024	N/A	2016/07/19	Julia McGovern

Maxxam ID: CSF360 Sample ID: SW2 Matrix: Water

Collected: 2016/07/14

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4580730	N/A	2016/07/19	Automated Statchk
Alkalinity	KONE	4586424	N/A	2016/07/22	Nancy Rogers
Chloride	KONE	4586426	N/A	2016/07/22	Nancy Rogers
Colour	KONE	4586439	N/A	2016/07/21	Nancy Rogers
Conductance - water	AT	4583912	N/A	2016/07/19	Julia McGovern
Hardness (calculated as CaCO3)		4580732	N/A	2016/07/22	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4588194	2016/07/21	2016/07/22	Arlene Rossiter
Metals Water Diss. MS (as rec'd)	CICP/MS	4587845	N/A	2016/07/21	Bryon Angevine
Metals Water Total MS	CICP/MS	4585662	2016/07/20	2016/07/21	Bryon Angevine
Ion Balance (% Difference)	CALC	4580733	N/A	2016/07/22	Automated Statchk
Anion and Cation Sum	CALC	4580734	N/A	2016/07/22	Automated Statchk
Nitrogen Ammonia - water	KONE	4587902	N/A	2016/07/21	Nancy Rogers
Nitrogen - Nitrate + Nitrite	KONE	4586447	N/A	2016/07/22	Nancy Rogers
Nitrogen - Nitrite	KONE	4586455	N/A	2016/07/22	Mary Clancey
Nitrogen - Nitrate (as N)	CALC	4580735	N/A	2016/07/22	Automated Statchk

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016

TEST SUMMARY

Maxxam ID: CSF360 Sample ID: SW2 Matrix: Water **Collected:** 2016/07/14

Shipped:

Received: 2016/07/15

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
рН	AT	4583911	N/A	2016/07/19	Julia McGovern
Phosphorus - ortho	KONE	4586445	N/A	2016/07/22	Cecilia (Kate) Barrett
Sat. pH and Langelier Index (@ 20C)	CALC	4580736	N/A	2016/07/22	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4580737	N/A	2016/07/22	Automated Statchk
Reactive Silica	KONE	4586433	N/A	2016/07/21	Nancy Rogers
Sulphate	KONE	4586428	N/A	2016/07/22	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4580738	N/A	2016/07/22	Automated Statchk
Organic carbon - Total (TOC)	TECH	4585766	N/A	2016/07/21	Soraya Merchant
Total Suspended Solids	BAL	4585717	2016/07/20	2016/07/20	Megan MacMillan
Turbidity	TURB	4584024	N/A	2016/07/19	Julia McGovern

Maxxam ID: CSF361 Sample ID: P3 Matrix: Water **Collected:** 2016/07/14

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4580730	N/A	2016/07/20	Automated Statchk
Alkalinity	KONE	4586424	N/A	2016/07/22	Nancy Rogers
Chloride	KONE	4586426	N/A	2016/07/22	Nancy Rogers
Colour	KONE	4586439	N/A	2016/07/21	Nancy Rogers
Conductance - water	AT	4585675	N/A	2016/07/20	Julia McGovern
Hardness (calculated as CaCO3)		4580732	N/A	2016/07/22	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4588194	2016/07/21	2016/07/22	Arlene Rossiter
Metals Water Total MS	CICP/MS	4585895	2016/07/20	2016/07/21	Bryon Angevine
Ion Balance (% Difference)	CALC	4580733	N/A	2016/07/22	Automated Statchk
Anion and Cation Sum	CALC	4580734	N/A	2016/07/22	Automated Statchk
Nitrogen Ammonia - water	KONE	4587902	N/A	2016/07/21	Nancy Rogers
Nitrogen - Nitrate + Nitrite	KONE	4586447	N/A	2016/07/22	Nancy Rogers
Nitrogen - Nitrite	KONE	4586455	N/A	2016/07/22	Mary Clancey
Nitrogen - Nitrate (as N)	CALC	4580735	N/A	2016/07/22	Automated Statchk
рН	AT	4585674	N/A	2016/07/20	Julia McGovern
Phosphorus - ortho	KONE	4586445	N/A	2016/07/22	Cecilia (Kate) Barrett
Sat. pH and Langelier Index (@ 20C)	CALC	4580736	N/A	2016/07/22	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4580737	N/A	2016/07/22	Automated Statchk
Reactive Silica	KONE	4586433	N/A	2016/07/21	Nancy Rogers
Sulphate	KONE	4586428	N/A	2016/07/22	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4580738	N/A	2016/07/22	Automated Statchk
Organic carbon - Total (TOC)	TECH	4585766	N/A	2016/07/21	Soraya Merchant
Turbidity	TURB	4584024	N/A	2016/07/19	Julia McGovern

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016

TEST SUMMARY

Maxxam ID: CSF362 Sample ID: SWDUP1 Matrix: Water **Collected:** 2016/07/14

Shipped:

Received: 2016/07/15

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4580730	N/A	2016/07/19	Automated Statchk
Alkalinity	KONE	4586424	N/A	2016/07/22	Nancy Rogers
Chloride	KONE	4586426	N/A	2016/07/22	Nancy Rogers
Colour	KONE	4586439	N/A	2016/07/21	Nancy Rogers
Conductance - water	AT	4583896	N/A	2016/07/19	Julia McGovern
Hardness (calculated as CaCO3)		4580732	N/A	2016/07/22	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4588194	2016/07/21	2016/07/22	Arlene Rossiter
Metals Water Total MS	CICP/MS	4585662	2016/07/20	2016/07/21	Bryon Angevine
Ion Balance (% Difference)	CALC	4580733	N/A	2016/07/22	Automated Statchk
Anion and Cation Sum	CALC	4580734	N/A	2016/07/22	Automated Statchk
Nitrogen Ammonia - water	KONE	4587902	N/A	2016/07/21	Nancy Rogers
Nitrogen - Nitrate + Nitrite	KONE	4586447	N/A	2016/07/22	Nancy Rogers
Nitrogen - Nitrite	KONE	4586455	N/A	2016/07/22	Mary Clancey
Nitrogen - Nitrate (as N)	CALC	4580735	N/A	2016/07/22	Automated Statchk
рН	AT	4583894	N/A	2016/07/19	Julia McGovern
Phosphorus - ortho	KONE	4586445	N/A	2016/07/22	Cecilia (Kate) Barrett
Sat. pH and Langelier Index (@ 20C)	CALC	4580736	N/A	2016/07/22	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4580737	N/A	2016/07/22	Automated Statchk
Reactive Silica	KONE	4586433	N/A	2016/07/21	Nancy Rogers
Sulphate	KONE	4586428	N/A	2016/07/22	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4580738	N/A	2016/07/22	Automated Statchk
Organic carbon - Total (TOC)	TECH	4585766	N/A	2016/07/21	Soraya Merchant
Turbidity	TURB	4584024	N/A	2016/07/19	Julia McGovern

Maxxam ID: CSF363 Sample ID: SW5 Matrix: Water **Collected:** 2016/07/14

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4580730	N/A	2016/07/19	Automated Statchk
Alkalinity	KONE	4586424	N/A	2016/07/22	Nancy Rogers
Chloride	KONE	4586426	N/A	2016/07/22	Nancy Rogers
Colour	KONE	4586439	N/A	2016/07/21	Nancy Rogers
Conductance - water	AT	4583900	N/A	2016/07/19	Julia McGovern
Hardness (calculated as CaCO3)		4580732	N/A	2016/07/22	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4588194	2016/07/21	2016/07/22	Arlene Rossiter
Metals Water Total MS	CICP/MS	4585662	2016/07/20	2016/07/21	Bryon Angevine
Ion Balance (% Difference)	CALC	4580733	N/A	2016/07/22	Automated Statchk
Anion and Cation Sum	CALC	4580734	N/A	2016/07/22	Automated Statchk
Nitrogen Ammonia - water	KONE	4587902	N/A	2016/07/21	Nancy Rogers
Nitrogen - Nitrate + Nitrite	KONE	4586447	N/A	2016/07/22	Nancy Rogers
Nitrogen - Nitrite	KONE	4586455	N/A	2016/07/22	Mary Clancey
Nitrogen - Nitrate (as N)	CALC	4580735	N/A	2016/07/22	Automated Statchk
рН	AT	4583898	N/A	2016/07/19	Julia McGovern

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016

TEST SUMMARY

Maxxam ID: CSF363 Sample ID: SW5 Matrix: Water **Collected:** 2016/07/14

Shipped:

Received: 2016/07/15

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Phosphorus - ortho	KONE	4586445	N/A	2016/07/22	Cecilia (Kate) Barrett
Sat. pH and Langelier Index (@ 20C)	CALC	4580736	N/A	2016/07/22	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4580737	N/A	2016/07/22	Automated Statchk
Reactive Silica	KONE	4586433	N/A	2016/07/21	Nancy Rogers
Sulphate	KONE	4586428	N/A	2016/07/22	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4580738	N/A	2016/07/22	Automated Statchk
Organic carbon - Total (TOC)	TECH	4585899	N/A	2016/07/21	Soraya Merchant
Turbidity	TURB	4584024	N/A	2016/07/19	Julia McGovern

Maxxam ID: CSF364 Sample ID: BACK2 Matrix: Water **Collected:** 2016/07/14

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4580730	N/A	2016/07/19	Automated Statchk
Alkalinity	KONE	4586424	N/A	2016/07/22	Nancy Rogers
Chloride	KONE	4586426	N/A	2016/07/22	Nancy Rogers
Colour	KONE	4586439	N/A	2016/07/21	Nancy Rogers
Conductance - water	AT	4583896	N/A	2016/07/19	Julia McGovern
Hardness (calculated as CaCO3)		4580732	N/A	2016/07/22	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4588194	2016/07/21	2016/07/22	Arlene Rossiter
Metals Water Diss. MS (as rec'd)	CICP/MS	4587845	N/A	2016/07/21	Bryon Angevine
Metals Water Total MS	CICP/MS	4585662	2016/07/20	2016/07/21	Bryon Angevine
Ion Balance (% Difference)	CALC	4580733	N/A	2016/07/22	Automated Statchk
Anion and Cation Sum	CALC	4580734	N/A	2016/07/22	Automated Statchk
Nitrogen Ammonia - water	KONE	4587902	N/A	2016/07/21	Nancy Rogers
Nitrogen - Nitrate + Nitrite	KONE	4586447	N/A	2016/07/22	Nancy Rogers
Nitrogen - Nitrite	KONE	4586455	N/A	2016/07/22	Mary Clancey
Nitrogen - Nitrate (as N)	CALC	4580735	N/A	2016/07/22	Automated Statchk
рН	AT	4583894	N/A	2016/07/19	Julia McGovern
Phosphorus - ortho	KONE	4586445	N/A	2016/07/22	Cecilia (Kate) Barrett
Sat. pH and Langelier Index (@ 20C)	CALC	4580736	N/A	2016/07/22	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4580737	N/A	2016/07/22	Automated Statchk
Reactive Silica	KONE	4586433	N/A	2016/07/21	Nancy Rogers
Sulphate	KONE	4586428	N/A	2016/07/22	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4580738	N/A	2016/07/22	Automated Statchk
Organic carbon - Total (TOC)	TECH	4585899	N/A	2016/07/21	Soraya Merchant
Total Suspended Solids	BAL	4585717	2016/07/20	2016/07/20	Megan MacMillan
Turbidity	TURB	4584024	N/A	2016/07/19	Julia McGovern

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016

TEST SUMMARY

Maxxam ID: CSF365 Sample ID: SW7 Matrix: Water **Collected:** 2016/07/14

Shipped:

Received: 2016/07/15

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4580730	N/A	2016/07/19	Automated Statchk
Alkalinity	KONE	4586424	N/A	2016/07/22	Nancy Rogers
Chloride	KONE	4586426	N/A	2016/07/22	Nancy Rogers
Colour	KONE	4586439	N/A	2016/07/21	Nancy Rogers
Conductance - water	AT	4583896	N/A	2016/07/19	Julia McGovern
Hardness (calculated as CaCO3)		4580732	N/A	2016/07/22	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4588194	2016/07/21	2016/07/22	Arlene Rossiter
Metals Water Total MS	CICP/MS	4585662	2016/07/20	2016/07/21	Bryon Angevine
Ion Balance (% Difference)	CALC	4580733	N/A	2016/07/22	Automated Statchk
Anion and Cation Sum	CALC	4580734	N/A	2016/07/22	Automated Statchk
Nitrogen Ammonia - water	KONE	4587902	N/A	2016/07/21	Nancy Rogers
Nitrogen - Nitrate + Nitrite	KONE	4586447	N/A	2016/07/22	Nancy Rogers
Nitrogen - Nitrite	KONE	4586455	N/A	2016/07/22	Mary Clancey
Nitrogen - Nitrate (as N)	CALC	4580735	N/A	2016/07/22	Automated Statchk
рН	AT	4583894	N/A	2016/07/19	Julia McGovern
Phosphorus - ortho	KONE	4586445	N/A	2016/07/22	Cecilia (Kate) Barrett
Sat. pH and Langelier Index (@ 20C)	CALC	4580736	N/A	2016/07/22	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4580737	N/A	2016/07/22	Automated Statchk
Reactive Silica	KONE	4586433	N/A	2016/07/21	Nancy Rogers
Sulphate	KONE	4586428	N/A	2016/07/22	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4580738	N/A	2016/07/22	Automated Statchk
Organic carbon - Total (TOC)	TECH	4585899	N/A	2016/07/21	Soraya Merchant
Turbidity	TURB	4584024	N/A	2016/07/19	Julia McGovern

Maxxam ID: CSF366 Sample ID: SWDUP2 Matrix: Water **Collected:** 2016/07/14

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4580730	N/A	2016/07/19	Automated Statchk
Alkalinity	KONE	4586424	N/A	2016/07/22	Nancy Rogers
Chloride	KONE	4586426	N/A	2016/07/22	Nancy Rogers
Colour	KONE	4586439	N/A	2016/07/21	Nancy Rogers
Conductance - water	AT	4583896	N/A	2016/07/19	Julia McGovern
Hardness (calculated as CaCO3)		4580732	N/A	2016/07/21	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4588194	2016/07/21	2016/07/22	Arlene Rossiter
Metals Water Diss. MS (as rec'd)	CICP/MS	4587845	N/A	2016/07/21	Bryon Angevine
Metals Water Total MS	CICP/MS	4584314	2016/07/19	2016/07/20	Bryon Angevine
Ion Balance (% Difference)	CALC	4580733	N/A	2016/07/22	Automated Statchk
Anion and Cation Sum	CALC	4580734	N/A	2016/07/22	Automated Statchk
Nitrogen Ammonia - water	KONE	4587902	N/A	2016/07/21	Nancy Rogers
Nitrogen - Nitrate + Nitrite	KONE	4586447	N/A	2016/07/22	Nancy Rogers
Nitrogen - Nitrite	KONE	4586455	N/A	2016/07/22	Mary Clancey
Nitrogen - Nitrate (as N)	CALC	4580735	N/A	2016/07/22	Automated Statchk

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016

TEST SUMMARY

Maxxam ID: CSF366 Sample ID: SWDUP2 Matrix: Water **Collected:** 2016/07/14

Shipped:

Received: 2016/07/15

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
рН	AT	4583894	N/A	2016/07/19	Julia McGovern
Phosphorus - ortho	KONE	4586445	N/A	2016/07/22	Cecilia (Kate) Barrett
Sat. pH and Langelier Index (@ 20C)	CALC	4580736	N/A	2016/07/22	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4580737	N/A	2016/07/22	Automated Statchk
Reactive Silica	KONE	4586433	N/A	2016/07/21	Nancy Rogers
Sulphate	KONE	4586428	N/A	2016/07/22	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4580738	N/A	2016/07/22	Automated Statchk
Organic carbon - Total (TOC)	TECH	4585899	N/A	2016/07/21	Soraya Merchant
Total Suspended Solids	BAL	4585717	2016/07/20	2016/07/20	Megan MacMillan
Turbidity	TURB	4584019	N/A	2016/07/19	Julia McGovern

Maxxam ID: CSF366 Dup Sample ID: SWDUP2 Matrix: Water

Matrix: Water

Shipped:

Collected:

2016/07/14

Received: 2016/07/15

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	KONE	4586424	N/A	2016/07/22	Nancy Rogers
Chloride	KONE	4586426	N/A	2016/07/22	Nancy Rogers
Colour	KONE	4586439	N/A	2016/07/21	Nancy Rogers
Conductance - water	AT	4583896	N/A	2016/07/19	Julia McGovern
Nitrogen - Nitrate + Nitrite	KONE	4586447	N/A	2016/07/22	Nancy Rogers
Nitrogen - Nitrite	KONE	4586455	N/A	2016/07/22	Mary Clancey
рН	AT	4583894	N/A	2016/07/19	Julia McGovern
Phosphorus - ortho	KONE	4586445	N/A	2016/07/22	Cecilia (Kate) Barrett
Reactive Silica	KONE	4586433	N/A	2016/07/21	Nancy Rogers
Sulphate	KONE	4586428	N/A	2016/07/22	Nancy Rogers

Maxxam ID: CSF367
Sample ID: SW9

Collected: 2016/07/14

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4580730	N/A	2016/07/19	Automated Statchk
Alkalinity	KONE	4586424	N/A	2016/07/22	Nancy Rogers
Chloride	KONE	4586426	N/A	2016/07/22	Nancy Rogers
Colour	KONE	4586439	N/A	2016/07/21	Nancy Rogers
Conductance - water	AT	4583912	N/A	2016/07/19	Julia McGovern
Hardness (calculated as CaCO3)		4580732	N/A	2016/07/22	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4588194	2016/07/21	2016/07/22	Arlene Rossiter
Metals Water Total MS	CICP/MS	4585662	2016/07/20	2016/07/21	Bryon Angevine
Ion Balance (% Difference)	CALC	4580733	N/A	2016/07/22	Automated Statchk
Anion and Cation Sum	CALC	4580734	N/A	2016/07/22	Automated Statchk
Nitrogen Ammonia - water	KONE	4587902	N/A	2016/07/21	Nancy Rogers
Nitrogen - Nitrate + Nitrite	KONE	4586447	N/A	2016/07/22	Nancy Rogers

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016

TEST SUMMARY

Maxxam ID: CSF367 Sample ID: SW9 Matrix: Water **Collected:** 2016/07/14

Shipped:

Received: 2016/07/15

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Nitrogen - Nitrite	KONE	4586455	N/A	2016/07/22	Mary Clancey
Nitrogen - Nitrate (as N)	CALC	4580735	N/A	2016/07/22	Automated Statchk
рН	AT	4583911	N/A	2016/07/19	Julia McGovern
Phosphorus - ortho	KONE	4586445	N/A	2016/07/22	Cecilia (Kate) Barrett
Sat. pH and Langelier Index (@ 20C)	CALC	4580736	N/A	2016/07/22	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4580737	N/A	2016/07/22	Automated Statchk
Reactive Silica	KONE	4586433	N/A	2016/07/21	Nancy Rogers
Sulphate	KONE	4586428	N/A	2016/07/22	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4580738	N/A	2016/07/22	Automated Statchk
Organic carbon - Total (TOC)	TECH	4585899	N/A	2016/07/21	Soraya Merchant
Turbidity	TURB	4584024	N/A	2016/07/19	Julia McGovern

Maxxam ID: CSR212 Sample ID: SW3 Matrix: Water **Collected:** 2016/07/15

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4583964	N/A	2016/07/22	Automated Statchk
Alkalinity	KONE	4586538	N/A	2016/07/22	Nancy Rogers
Chloride	KONE	4586550	N/A	2016/07/22	Nancy Rogers
Colour	KONE	4586557	N/A	2016/07/21	Nancy Rogers
Conductance - water	AT	4589411	N/A	2016/07/22	Julia McGovern
Hardness (calculated as CaCO3)		4583966	N/A	2016/07/22	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4588194	2016/07/21	2016/07/22	Arlene Rossiter
Metals Water Diss. MS	CICP/MS	4589406	N/A	2016/07/22	Bryon Angevine
Metals Water Total MS	CICP/MS	4587708	2016/07/21	2016/07/21	Bryon Angevine
Ion Balance (% Difference)	CALC	4583967	N/A	2016/07/22	Automated Statchk
Anion and Cation Sum	CALC	4583968	N/A	2016/07/22	Automated Statchk
Nitrogen Ammonia - water	KONE	4587902	N/A	2016/07/21	Nancy Rogers
Nitrogen - Nitrate + Nitrite	KONE	4586563	N/A	2016/07/22	Nancy Rogers
Nitrogen - Nitrite	KONE	4586568	N/A	2016/07/22	Mary Clancey
Nitrogen - Nitrate (as N)	CALC	4584921	N/A	2016/07/22	Automated Statchk
рН	AT	4589410	N/A	2016/07/22	Julia McGovern
Phosphorus - ortho	KONE	4586562	N/A	2016/07/22	Cecilia (Kate) Barrett
Sat. pH and Langelier Index (@ 20C)	CALC	4583971	N/A	2016/07/22	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4583972	N/A	2016/07/22	Automated Statchk
Reactive Silica	KONE	4586556	N/A	2016/07/21	Nancy Rogers
Sulphate	KONE	4586555	N/A	2016/07/22	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4583973	N/A	2016/07/22	Automated Statchk
Organic carbon - Total (TOC)	TECH	4585899	N/A	2016/07/21	Soraya Merchant
Total Suspended Solids	BAL	4586190	2016/07/20	2016/07/21	Megan MacMillan
Turbidity	TURB	4589515	N/A	2016/07/22	Julia McGovern

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016

TEST SUMMARY

Maxxam ID: CSR212 Dup Sample ID: SW3

Water

Matrix:

Collected: 2016/07/15

Shipped:

Received: 2016/07/15

Test Description Date Analyzed Instrumentation Batch **Extracted** Analyst **Total Suspended Solids** BAL 4586190 2016/07/20 2016/07/21 Megan MacMillan

Maxxam ID: CSR319 Sample ID: SW4 Matrix: Water

Collected: 2016/07/15

Shipped:

Received: 2016/07/15

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4583964	N/A	2016/07/22	Automated Statchk
Alkalinity	KONE	4586538	N/A	2016/07/22	Nancy Rogers
Chloride	KONE	4586550	N/A	2016/07/22	Nancy Rogers
Colour	KONE	4586557	N/A	2016/07/21	Nancy Rogers
Conductance - water	AT	4589411	N/A	2016/07/22	Julia McGovern
Hardness (calculated as CaCO3)		4583966	N/A	2016/07/22	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4588194	2016/07/21	2016/07/22	Arlene Rossiter
Metals Water Total MS	CICP/MS	4587708	2016/07/21	2016/07/21	Bryon Angevine
Ion Balance (% Difference)	CALC	4583967	N/A	2016/07/22	Automated Statchk
Anion and Cation Sum	CALC	4583968	N/A	2016/07/22	Automated Statchk
Nitrogen Ammonia - water	KONE	4587902	N/A	2016/07/21	Nancy Rogers
Nitrogen - Nitrate + Nitrite	KONE	4586563	N/A	2016/07/22	Nancy Rogers
Nitrogen - Nitrite	KONE	4586568	N/A	2016/07/22	Mary Clancey
Nitrogen - Nitrate (as N)	CALC	4584921	N/A	2016/07/22	Automated Statchk
рН	AT	4589410	N/A	2016/07/22	Julia McGovern
Phosphorus - ortho	KONE	4586562	N/A	2016/07/22	Cecilia (Kate) Barrett
Sat. pH and Langelier Index (@ 20C)	CALC	4583971	N/A	2016/07/22	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4583972	N/A	2016/07/22	Automated Statchk
Reactive Silica	KONE	4586556	N/A	2016/07/21	Nancy Rogers
Sulphate	KONE	4586555	N/A	2016/07/22	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4583973	N/A	2016/07/22	Automated Statchk
Organic carbon - Total (TOC)	TECH	4585899	N/A	2016/07/21	Soraya Merchant
Turbidity	TURB	4589508	N/A	2016/07/22	Julia McGovern

Maxxam ID: CSR319 Dup Sample ID: SW4

Water

Matrix:

Collected: 2016/07/15

Shipped:

2016/07/15 Received:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Turbidity	TURB	4589508	N/A	2016/07/22	Julia McGovern

Maxxam ID: CSR326 Sample ID: SW14 Matrix: Water

Collected: 2016/07/15 Shipped:

2016/07/15 Received:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4583964	N/A	2016/07/22	Automated Statchk

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016

TEST SUMMARY

Maxxam ID: CSR326 Sample ID: SW14 Matrix: Water **Collected:** 2016/07/15

Shipped:

Received: 2016/07/15

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	KONE	4586538	N/A	2016/07/22	Nancy Rogers
Chloride	KONE	4586550	N/A	2016/07/22	Nancy Rogers
Colour	KONE	4586557	N/A	2016/07/21	Nancy Rogers
Conductance - water	AT	4589413	N/A	2016/07/22	Julia McGovern
Hardness (calculated as CaCO3)		4583966	N/A	2016/07/22	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4588194	2016/07/21	2016/07/22	Arlene Rossiter
Metals Water Diss. MS (as rec'd)	CICP/MS	4587848	N/A	2016/07/22	Bryon Angevine
Metals Water Total MS	CICP/MS	4587708	2016/07/21	2016/07/21	Bryon Angevine
Ion Balance (% Difference)	CALC	4583967	N/A	2016/07/22	Automated Statchk
Anion and Cation Sum	CALC	4583968	N/A	2016/07/22	Automated Statchk
Nitrogen Ammonia - water	KONE	4587902	N/A	2016/07/21	Nancy Rogers
Nitrogen - Nitrate + Nitrite	KONE	4586563	N/A	2016/07/22	Nancy Rogers
Nitrogen - Nitrite	KONE	4586568	N/A	2016/07/22	Mary Clancey
Nitrogen - Nitrate (as N)	CALC	4584921	N/A	2016/07/22	Automated Statchk
pH	AT	4589412	N/A	2016/07/22	Julia McGovern
Phosphorus - ortho	KONE	4586562	N/A	2016/07/22	Cecilia (Kate) Barrett
Sat. pH and Langelier Index (@ 20C)	CALC	4583971	N/A	2016/07/22	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4583972	N/A	2016/07/22	Automated Statchk
Reactive Silica	KONE	4586556	N/A	2016/07/21	Nancy Rogers
Sulphate	KONE	4586555	N/A	2016/07/22	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4583973	N/A	2016/07/22	Automated Statchk
Organic carbon - Total (TOC)	TECH	4585899	N/A	2016/07/21	Soraya Merchant
Total Suspended Solids	BAL	4586190	2016/07/20	2016/07/21	Megan MacMillan
Turbidity	TURB	4589508	N/A	2016/07/22	Julia McGovern

Maxxam ID: CSR326 Dup

Sample ID: SW14

Matrix: Water

Collected: 2016/07/15

Shipped:

Received: 2016/07/15

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Nitrogen Ammonia - water	KONE	4587902	N/A	2016/07/21	Nancy Rogers

Maxxam ID: CSR334 Sample ID: P1A Matrix: Water Collected: 2016

2016/07/15

Shipped: Received:

ed: 2016/07/15

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4583964	N/A	2016/07/22	Automated Statchk
Alkalinity	KONE	4586538	N/A	2016/07/22	Nancy Rogers
Chloride	KONE	4586550	N/A	2016/07/22	Nancy Rogers
Colour	KONE	4586557	N/A	2016/07/21	Nancy Rogers
Conductance - water	AT	4589413	N/A	2016/07/22	Julia McGovern
Hardness (calculated as CaCO3)		4583966	N/A	2016/07/22	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4588194	2016/07/21	2016/07/22	Arlene Rossiter

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016

TEST SUMMARY

Maxxam ID: CSR334 Sample ID: P1A Matrix: Water **Collected:** 2016/07/15

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Metals Water Total MS	CICP/MS	4587765	2016/07/21	2016/07/22	Bryon Angevine
Ion Balance (% Difference)	CALC	4583967	N/A	2016/07/22	Automated Statchk
Anion and Cation Sum	CALC	4583968	N/A	2016/07/22	Automated Statchk
Nitrogen Ammonia - water	KONE	4587911	N/A	2016/07/21	Nancy Rogers
Nitrogen - Nitrate + Nitrite	KONE	4586563	N/A	2016/07/22	Nancy Rogers
Nitrogen - Nitrite	KONE	4586568	N/A	2016/07/22	Mary Clancey
Nitrogen - Nitrate (as N)	CALC	4584921	N/A	2016/07/22	Automated Statchk
рН	AT	4589412	N/A	2016/07/22	Julia McGovern
Phosphorus - ortho	KONE	4586562	N/A	2016/07/22	Cecilia (Kate) Barrett
Sat. pH and Langelier Index (@ 20C)	CALC	4583971	N/A	2016/07/22	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4583972	N/A	2016/07/22	Automated Statchk
Reactive Silica	KONE	4586556	N/A	2016/07/21	Nancy Rogers
Sulphate	KONE	4586555	N/A	2016/07/22	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4583973	N/A	2016/07/22	Automated Statchk
Organic carbon - Total (TOC)	TECH	4585899	N/A	2016/07/21	Soraya Merchant
Turbidity	TURB	4589508	N/A	2016/07/22	Julia McGovern

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 7.3°C

Sample CSF359-01: RCAp Ion Balance acceptable. Anion/cation agreement within 0.2 meq/L.

Sample CSF360-01: RCAp Ion Balance acceptable. Low ionic strength sample.

Sample CSF361-01: Poor RCAp Ion Balance due to sample matrix. Excess cations due to presence of turbidity.

Sample CSF362-01: Poor RCAp Ion Balance due to sample matrix. Excess cations due to presence of turbidity.

Sample CSF363-01: Poor RCAp Ion Balance due to sample matrix. Excess cations due to presence of turbidity.

Sample CSF365-01: RCAp Ion Balance acceptable. Low ionic strength sample.

Sample CSF367-01: Poor RCAp Ion Balance due to sample matrix. Excess cations due to presence of turbidity.

Sample CSR212-01: Poor RCAp Ion Balance due to sample matrix. Possibly due to fine particulate matter.

Sample CSR334-01: Elevated reporting limits for trace metals due to sample matrix.

Poor RCAp Ion Balance due to sample matrix. Excess cations due to presence of turbidity.

Results relate only to the items tested.

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016

QUALITY ASSURANCE REPORT

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	d Valu		UNITS	QC Limits
4583894	JMV	QC Standard	рН	2016/07/		100	%	97 - 103
4583894	JMV	RPD - Sample/Sample Dup	pH	2016/07/			%	N/A
4583896	JMV	Spiked Blank	Conductivity	2016/07/		102	%	80 - 120
4583896	JMV	Method Blank	Conductivity	2016/07/	19 1.4		uS/cm	
			•	• •	RDL=1		•	
4583896	JMV	RPD - Sample/Sample Dup	Conductivity	2016/07/	19 0.79	9	%	25
4583898	JMV	QC Standard	рН	2016/07/		100	%	97 - 103
4583898	JMV	RPD - Sample/Sample Dup	рН	2016/07/			%	N/A
4583900	JMV	Spiked Blank	Conductivity	2016/07/		102	%	80 - 120
4583900	JMV	Method Blank	Conductivity	2016/07/			uS/cm	
			,		RDL=1			
4583900	JMV	RPD - Sample/Sample Dup	Conductivity	2016/07/			%	25
4583911	JMV	QC Standard	рН	2016/07/		100	%	97 - 103
4583911	JMV	RPD - Sample/Sample Dup	рН	2016/07/			%	N/A
4583912	JMV	Spiked Blank	Conductivity	2016/07/		102	%	80 - 120
4583912	JMV	Method Blank	Conductivity	2016/07/			uS/cm	
	*****		,	,	RDL=1		,	
4583912	JMV	RPD - Sample/Sample Dup	Conductivity	2016/07/			%	25
4584019	JMV	QC Standard	Turbidity	2016/07/		98	%	80 - 120
4584019	JMV	Spiked Blank	Turbidity	2016/07/		99	%	80 - 120
4584019	JMV	Method Blank	Turbidity	2016/07/			NTU	00 120
4584019	JMV	RPD - Sample/Sample Dup		2016/07/			%	20
4584024	JMV	QC Standard	Turbidity	2016/07/		99	%	80 - 120
4584024	JMV	Spiked Blank	Turbidity	2016/07/		98	%	80 - 120
4584024	JMV	Method Blank	Turbidity	2016/07/			NTU	00 120
4584024	JMV	RPD - Sample/Sample Dup	Turbidity	2016/07/			%	20
4584314	BAN	Matrix Spike	Total Aluminum (Al)	2016/07/		105	%	80 - 120
			Total Antimony (Sb)	2016/07/		103	%	80 - 120
			Total Arsenic (As)	2016/07/		98	%	80 - 120
			Total Barium (Ba)	2016/07/		100	%	80 - 120
			Total Beryllium (Be)	2016/07/		100	%	80 - 120
			Total Bismuth (Bi)	2016/07/	20	101	%	80 - 120
			Total Boron (B)	2016/07/	20	99	%	80 - 120
			Total Cadmium (Cd)	2016/07/	20	100	%	80 - 120
			Total Calcium (Ca)	2016/07/	20	NC	%	80 - 120
			Total Chromium (Cr)	2016/07/	20	100	%	80 - 120
			Total Cobalt (Co)	2016/07/	20	100	%	80 - 120
			Total Copper (Cu)	2016/07/	20	99	%	80 - 120
			Total Iron (Fe)	2016/07/	20	103	%	80 - 120
			Total Lead (Pb)	2016/07/	20	102	%	80 - 120
			Total Magnesium (Mg)	2016/07/		104	%	80 - 120
			Total Manganese (Mn)	2016/07/	20	NC	%	80 - 120
			Total Molybdenum (Mo)	2016/07/	20	103	%	80 - 120
			Total Nickel (Ni)	2016/07/		98	%	80 - 120
			Total Phosphorus (P)	2016/07/		106	%	80 - 120
			Total Potassium (K)	2016/07/		100	%	80 - 120
			Total Selenium (Se)	2016/07/		100	%	80 - 120
			Total Silver (Ag)	2016/07/		98	%	80 - 120
			Total Sodium (Na)	2016/07/		102	%	80 - 120
			Total Strontium (Sr)	2016/07/		NC	%	80 - 120
			Total Thallium (TI)	2016/07/		102	%	80 - 120
			Total Tin (Sn)	2016/07/	20	102	%	80 - 120

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			Total Titanium (Ti)	2016/07/20		105	%	80 - 120
			Total Uranium (U)	2016/07/20		107	%	80 - 120
			Total Vanadium (V)	2016/07/20		102	%	80 - 120
			Total Zinc (Zn)	2016/07/20		95	%	80 - 120
4584314	BAN	Spiked Blank	Total Aluminum (Al)	2016/07/20		103	%	80 - 120
			Total Antimony (Sb)	2016/07/20		98	%	80 - 120
			Total Arsenic (As)	2016/07/20		96	%	80 - 120
			Total Barium (Ba)	2016/07/20		98	%	80 - 120
			Total Beryllium (Be)	2016/07/20		99	%	80 - 120
			Total Bismuth (Bi)	2016/07/20		100	%	80 - 120
			Total Boron (B)	2016/07/20		103	%	80 - 120
			Total Cadmium (Cd)	2016/07/20		97	%	80 - 120
			Total Calcium (Ca)	2016/07/20		100	%	80 - 120
			Total Chromium (Cr)	2016/07/20		98	%	80 - 120
			Total Cobalt (Co)	2016/07/20		99	%	80 - 120
			Total Copper (Cu)	2016/07/20		99	%	80 - 120
			Total Iron (Fe)	2016/07/20		103	%	80 - 120
			Total Lead (Pb)	2016/07/20		99	%	80 - 120
			Total Magnesium (Mg)	2016/07/20		102	%	80 - 120
			Total Manganese (Mn)	2016/07/20		100	%	80 - 120
			Total Molybdenum (Mo)	2016/07/20		100	%	80 - 120
			Total Nickel (Ni)	2016/07/20		98	%	80 - 120
			Total Phosphorus (P)	2016/07/20		101	%	80 - 120
			Total Potassium (K)	2016/07/20		98	%	80 - 120
			Total Selenium (Se)	2016/07/20		96	%	80 - 120
			Total Silver (Ag)	2016/07/20		98	%	80 - 120
			Total Sodium (Na)	2016/07/20		100	%	80 - 120
			Total Strontium (Sr)	2016/07/20		99	%	80 - 120
			Total Thallium (TI)	2016/07/20		100	%	80 - 120
			Total Tin (Sn)	2016/07/20		100	%	80 - 120
			Total Titanium (Ti)	2016/07/20		102	%	80 - 120
			Total Uranium (U)	2016/07/20		103	%	80 - 120
			Total Vanadium (V)	2016/07/20		100	%	80 - 120
			Total Zinc (Zn)	2016/07/20		96	%	80 - 120
4584314	BAN	Method Blank	Total Aluminum (Al)	2016/07/20	7.0,		ug/L	
			, ,		RDL=5.0		O.	
			Total Antimony (Sb)	2016/07/20	<1.0		ug/L	
			Total Arsenic (As)	2016/07/20	<1.0		ug/L	
			Total Barium (Ba)	2016/07/20	<1.0		ug/L	
			Total Beryllium (Be)	2016/07/20	<1.0		ug/L	
			Total Bismuth (Bi)	2016/07/20	<2.0		ug/L	
			Total Boron (B)	2016/07/20	<50		ug/L	
			Total Cadmium (Cd)	2016/07/20	< 0.010		ug/L	
			Total Calcium (Ca)	2016/07/20	<100		ug/L	
			Total Chromium (Cr)	2016/07/20	<1.0		ug/L	
			Total Cobalt (Co)	2016/07/20	<0.40		ug/L	
			Total Copper (Cu)	2016/07/20	<2.0		ug/L	
			Total Iron (Fe)	2016/07/20	<50		ug/L	
			Total Head (Pb)	2016/07/20	<0.50		ug/L	
			Total Magnesium (Mg)	2016/07/20	<100		ug/L	
			Total Magnesium (Mg) Total Manganese (Mn)	2016/07/20	<2.0		ug/L	
			Total Molybdenum (Mo)	2016/07/20	<2.0		ug/L	
			rotar wiorybuerium (wio)	2010/07/20	\2.0		ug/L	

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			Total Nickel (Ni)	2016/07/20	<2.0	·	ry UNITS C ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L % % % % % % % % % % % % %	
			Total Phosphorus (P)	2016/07/20	<100			
			Total Potassium (K)	2016/07/20	<100			
			Total Selenium (Se)	2016/07/20	<1.0			
			Total Silver (Ag)	2016/07/20	<0.10			
			Total Sodium (Na)	2016/07/20	160,			
			,	, .	RDL=100		O,	
			Total Strontium (Sr)	2016/07/20	<2.0		πσ/Ι	
			Total Thallium (TI)	2016/07/20	<0.10		_	
			Total Tin (Sn)	2016/07/20	<2.0			
			Total Titanium (Ti)	2016/07/20	<2.0			
			Total Uranium (U)	2016/07/20	<0.10			
			Total Vanadium (V)	2016/07/20	<2.0			
			Total Zinc (Zn)	2016/07/20	<5.0			
4584314	RΔN	RPD - Sample/Sample Dup		2016/07/20	1.5			20
4304314	DAIN	Ki b Sample/Sample bup	Total Antimony (Sb)	2016/07/20	NC			20
			Total Arsenic (As)	2016/07/20	NC			20
			Total Barium (Ba)	2016/07/20	4.4			20
			Total Beryllium (Be)	2016/07/20	NC			20
			Total Bismuth (Bi)	2016/07/20	NC			20
			Total Boron (B)	2016/07/20	NC			20
			Total Cadmium (Cd)	2016/07/20	NC			20
			Total Calcium (Ca)	2016/07/20	0.49			20
			Total Chromium (Cr)	2016/07/20	NC			20
			Total Copper (Cu)	2016/07/20	NC			20
			Total Copper (Cu)	2016/07/20	NC			20
			Total Iron (Fe)	2016/07/20	NC			20
			Total Lead (Pb)	2016/07/20	NC			20
			Total Magnesium (Mg)	2016/07/20	1.9			20
			Total Manganese (Mn)	2016/07/20	4.0			20
			Total Molybdenum (Mo)	2016/07/20	1.4			20
			Total Nickel (Ni)	2016/07/20	NC			20
			Total Phosphorus (P)	2016/07/20	NC			20
			Total Potassium (K)	2016/07/20	2.2		%	20
			Total Selenium (Se)	2016/07/20	NC		%	20
			Total Silver (Ag)	2016/07/20	NC		%	20
			Total Sodium (Na)	2016/07/20	1.9		%	20
			Total Strontium (Sr)	2016/07/20	0.89		%	20
			Total Thallium (TI)	2016/07/20	NC		%	20
			Total Tin (Sn)	2016/07/20	NC		%	20
			Total Titanium (Ti)	2016/07/20	NC		%	20
			Total Uranium (U)	2016/07/20	NC		%	20
			Total Vanadium (V)	2016/07/20	1.6		%	20
			Total Zinc (Zn)	2016/07/20	NC		%	20
4585662	BAN	Matrix Spike	Total Aluminum (Al)	2016/07/21		108	%	80 - 120
			Total Antimony (Sb)	2016/07/21		104	%	80 - 120
			Total Arsenic (As)	2016/07/21		101	%	80 - 120
			Total Barium (Ba)	2016/07/21		101	%	80 - 120
			Total Beryllium (Be)	2016/07/21		103	%	80 - 120
			Total Bismuth (Bi)	2016/07/21		103	%	80 - 120
			Total Boron (B)	2016/07/21		105	%	80 - 120
			Total Cadmium (Cd)	2016/07/21		103	%	80 - 120

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
		- 71	Total Calcium (Ca)	2016/07/21		103	%	80 - 120
			Total Chromium (Cr)	2016/07/21		102	%	80 - 120
			Total Cobalt (Co)	2016/07/21		105	%	80 - 120
			Total Copper (Cu)	2016/07/21		104	%	80 - 120
			Total Iron (Fe)	2016/07/21		NC	%	80 - 120
			Total Lead (Pb)	2016/07/21		102	%	80 - 120
			Total Magnesium (Mg)	2016/07/21		106	%	80 - 120
			Total Manganese (Mn)	2016/07/21		NC	%	80 - 120
			Total Molybdenum (Mo)	2016/07/21		104	%	80 - 120
			Total Nickel (Ni)	2016/07/21		103	%	80 - 120
			Total Phosphorus (P)	2016/07/21		108	%	80 - 120
			Total Potassium (K)	2016/07/21		104	%	80 - 120
			Total Selenium (Se)	2016/07/21		102	%	80 - 120
			Total Silver (Ag)	2016/07/21		104	%	80 - 120
			Total Sodium (Na)	2016/07/21		103	%	80 - 120
			Total Strontium (Sr)	2016/07/21		NC	%	80 - 120
			Total Thallium (TI)	2016/07/21		103	%	80 - 120
			Total Tin (Sn)	2016/07/21		107	%	80 - 120
			Total Titanium (Ti)	2016/07/21		100	%	80 - 120
			Total Uranium (U)	2016/07/21		107	%	80 - 120
			Total Vanadium (V)	2016/07/21		105	%	80 - 120
			Total Zinc (Zn)	2016/07/21		100	%	80 - 120
4585662	BAN	Spiked Blank	Total Aluminum (Al)	2016/07/21		103	%	80 - 120
			Total Antimony (Sb)	2016/07/21		101	%	80 - 120
			Total Arsenic (As)	2016/07/21		98	%	80 - 120
			Total Barium (Ba)	2016/07/21		97	%	80 - 120
			Total Beryllium (Be)	2016/07/21		99	%	80 - 120
			Total Bismuth (Bi)	2016/07/21		100	%	80 - 120
			Total Boron (B)	2016/07/21		99	%	80 - 120
			Total Cadmium (Cd)	2016/07/21		100	%	80 - 120
			Total Calcium (Ca)	2016/07/21		100	%	80 - 120
			Total Chromium (Cr)	2016/07/21		101	%	80 - 120
			Total Cobalt (Co)	2016/07/21		102	%	80 - 120
			Total Copper (Cu)	2016/07/21		103	%	80 - 120
			Total Iron (Fe)	2016/07/21		105	%	80 - 120
			Total Lead (Pb)	2016/07/21		100	%	80 - 120
			Total Magnesium (Mg)	2016/07/21		104	%	80 - 120
			Total Manganese (Mn)	2016/07/21		102	%	80 - 120
			Total Molybdenum (Mo)	2016/07/21		100	%	80 - 120
			Total Nickel (Ni)	2016/07/21		101	%	80 - 120
			Total Phosphorus (P)	2016/07/21		104	%	80 - 120
			Total Potassium (K)	2016/07/21		101	%	80 - 120
			Total Selenium (Se)	2016/07/21		99	%	80 - 120
			Total Silver (Ag)	2016/07/21		99	%	80 - 120
			Total Sodium (Na)	2016/07/21		101	%	80 - 120
			Total Strontium (Sr)	2016/07/21		101	%	80 - 120
			Total Thallium (Tl)	2016/07/21		100	%	80 - 120
			Total Tin (Sn)	2016/07/21		101	%	80 - 120
			Total Titanium (Ti)	2016/07/21		102	%	80 - 120
			Total Uranium (U)	2016/07/21		103	%	80 - 120
			Total Vanadium (V)	2016/07/21		102	%	80 - 120
			Total Zinc (Zn)	2016/07/21		99	%	80 - 120

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
4585662	BAN	Method Blank	Total Aluminum (AI)	2016/07/21	<5.0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ug/L	
.505502	27	memou biann	Total Antimony (Sb)	2016/07/21	<1.0		ug/L	
			Total Arsenic (As)	2016/07/21	<1.0		ug/L	
			Total Barium (Ba)	2016/07/21	<1.0		ug/L	
			Total Beryllium (Be)	2016/07/21	<1.0		ug/L	
			Total Bismuth (Bi)	2016/07/21	<2.0		ug/L	
			Total Boron (B)	2016/07/21	<50		ug/L	
			Total Cadmium (Cd)	2016/07/21	< 0.010		ug/L	
			Total Calcium (Ca)	2016/07/21	<100		ug/L	
			Total Chromium (Cr)	2016/07/21	<1.0		ug/L	
			Total Cobalt (Co)	2016/07/21	< 0.40		ug/L	
			Total Copper (Cu)	2016/07/21	<2.0		ug/L	
			Total Iron (Fe)	2016/07/21	<50		ug/L	
			Total Lead (Pb)	2016/07/21	< 0.50		ug/L	
			Total Magnesium (Mg)	2016/07/21	<100		ug/L	
			Total Manganese (Mn)	2016/07/21	<2.0		ug/L	
			Total Molybdenum (Mo)	2016/07/21	<2.0		ug/L	
			Total Nickel (Ni)	2016/07/21	<2.0		ug/L	
			Total Phosphorus (P)	2016/07/21	<100		ug/L	
			Total Potassium (K)	2016/07/21	<100		ug/L	
			Total Selenium (Se)	2016/07/21	<1.0		ug/L	
			Total Silver (Ag)	2016/07/21	< 0.10		ug/L	
			Total Sodium (Na)	2016/07/21	<100		ug/L	
			Total Strontium (Sr)	2016/07/21	<2.0		ug/L	
			Total Thallium (TI)	2016/07/21	< 0.10		ug/L	
			Total Tin (Sn)	2016/07/21	<2.0		ug/L	
			Total Titanium (Ti)	2016/07/21	<2.0		ug/L	
			Total Uranium (U)	2016/07/21	< 0.10		ug/L	
			Total Vanadium (V)	2016/07/21	<2.0		ug/L	
			Total Zinc (Zn)	2016/07/21	<5.0		ug/L	
4585662	BAN	RPD - Sample/Sample Dup	Total Aluminum (Al)	2016/07/21	0.49		%	20
			Total Iron (Fe)	2016/07/21	NC		%	20
			Total Manganese (Mn)	2016/07/21	0.047		%	20
4585674	JMV	QC Standard	рН	2016/07/20		100	%	97 - 103
4585674	JMV	RPD - Sample/Sample Dup	рН	2016/07/20	0.79		%	N/A
4585675	JMV	Spiked Blank	Conductivity	2016/07/20		101	%	80 - 120
4585675	JMV	Method Blank	Conductivity	2016/07/20	1.4,		uS/cm	
					RDL=1.0			
4585675	JMV	RPD - Sample/Sample Dup	Conductivity	2016/07/20	0.83		%	25
4585717	MM9	QC Standard	Total Suspended Solids	2016/07/20		98	%	80 - 120
4585717	MM9	Method Blank	Total Suspended Solids	2016/07/20	<1.0		mg/L	
4585717	MM9	RPD - Sample/Sample Dup	Total Suspended Solids	2016/07/20	0.93		%	25
4585766	SMT	Matrix Spike	Total Organic Carbon (C)	2016/07/21		101	%	80 - 120
4585766	SMT	Spiked Blank	Total Organic Carbon (C)	2016/07/21		103	%	80 - 120
4585766	SMT	Method Blank	Total Organic Carbon (C)	2016/07/21	<0.50		mg/L	
4585766	SMT	RPD - Sample/Sample Dup	Total Organic Carbon (C)	2016/07/21	4.7		%	20
4585895	BAN	Matrix Spike	Total Aluminum (AI)	2016/07/21		113	%	80 - 120
			Total Antimony (Sb)	2016/07/21		104	%	80 - 120
			Total Arsenic (As)	2016/07/21		96	%	80 - 120
			Total Barium (Ba)	2016/07/21		102	%	80 - 120
			Total Beryllium (Be)	2016/07/21		94	%	80 - 120
			Total Bismuth (Bi)	2016/07/21		103	%	80 - 120

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			Total Boron (B)	2016/07/21		94	%	80 - 120
			Total Cadmium (Cd)	2016/07/21		98	%	80 - 120
			Total Calcium (Ca)	2016/07/21		NC	%	80 - 120
			Total Chromium (Cr)	2016/07/21		96	%	80 - 120
			Total Cobalt (Co)	2016/07/21		96	%	80 - 120
			Total Copper (Cu)	2016/07/21		NC	%	80 - 120
			Total Iron (Fe)	2016/07/21		101	%	80 - 120
			Total Lead (Pb)	2016/07/21		104	%	80 - 120
			Total Magnesium (Mg)	2016/07/21		100	%	80 - 120
			Total Manganese (Mn)	2016/07/21		99	%	80 - 120
			Total Molybdenum (Mo)	2016/07/21		102	%	80 - 120
			Total Nickel (Ni)	2016/07/21		95	%	80 - 120
			Total Phosphorus (P)	2016/07/21		105	%	80 - 120
			Total Potassium (K)	2016/07/21		101	%	80 - 120
			Total Selenium (Se)	2016/07/21		94	%	80 - 120
			Total Silver (Ag)	2016/07/21		NC	%	80 - 120
			Total Sodium (Na)	2016/07/21		98	%	80 - 120
			Total Strontium (Sr)	2016/07/21		103	%	80 - 120
			Total Thallium (TI)	2016/07/21		104	%	80 - 120
			Total Tin (Sn)	2016/07/21		107	%	80 - 120
			Total Titanium (Ti)	2016/07/21		98	%	80 - 120
			Total Uranium (U)	2016/07/21		108	%	80 - 120
			Total Vanadium (V)	2016/07/21		98	%	80 - 120
			Total Zinc (Zn)	2016/07/21		94	%	80 - 120
4585895	BAN	Spiked Blank	Total Aluminum (Al)	2016/07/21		106	%	80 - 120
			Total Antimony (Sb)	2016/07/21		103	%	80 - 120
			Total Arsenic (As)	2016/07/21		94	%	80 - 120
			Total Barium (Ba)	2016/07/21		100	%	80 - 120
			Total Beryllium (Be)	2016/07/21		92	%	80 - 120
			Total Bismuth (Bi)	2016/07/21		104	%	80 - 120
			Total Boron (B)	2016/07/21		92	%	80 - 120
			Total Cadmium (Cd)	2016/07/21		99	%	80 - 120
			Total Calcium (Ca)	2016/07/21		103	%	80 - 120
			Total Chromium (Cr)	2016/07/21		96	%	80 - 120
			Total Cobalt (Co)	2016/07/21		96	%	80 - 120
			Total Copper (Cu)	2016/07/21		95	%	80 - 120
			Total Iron (Fe)	2016/07/21		100	%	80 - 120
			Total Lead (Pb)	2016/07/21		103	%	80 - 120
			Total Magnesium (Mg)	2016/07/21		100	%	80 - 120
			Total Manganese (Mn)	2016/07/21		98	%	80 - 120
			Total Molybdenum (Mo)	2016/07/21		102	%	80 - 120
			Total Nickel (Ni)	2016/07/21		95	%	80 - 120
			Total Phosphorus (P)	2016/07/21		102	%	80 - 120
			Total Potassium (K)	2016/07/21		101	%	80 - 120
			Total Selenium (Se)	2016/07/21		93	%	80 - 120
			Total Silver (Ag)	2016/07/21		99	%	80 - 120
			Total Sodium (Na)	2016/07/21		97	%	80 - 120
			Total Strontium (Sr)	2016/07/21		101	%	80 - 120
			Total Thallium (TI)	2016/07/21		104	%	80 - 120
			Total Tin (Sn)	2016/07/21		104	%	80 - 120
			Total Titanium (Ti)	2016/07/21		99	%	80 - 120
			Total Uranium (U)	2016/07/21		108	%	80 - 120

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			Total Vanadium (V)	2016/07/21		96	%	80 - 120
			Total Zinc (Zn)	2016/07/21		95	%	80 - 120
4585895	BAN	Method Blank	Total Aluminum (Al)	2016/07/21	<5.0		ug/L	
			Total Antimony (Sb)	2016/07/21	<1.0		ug/L	
			Total Arsenic (As)	2016/07/21	<1.0		ug/L	
			Total Barium (Ba)	2016/07/21	<1.0		ug/L	
			Total Beryllium (Be)	2016/07/21	<1.0		ug/L	
			Total Bismuth (Bi)	2016/07/21	<2.0		ug/L	
			Total Boron (B)	2016/07/21	<50		ug/L	
			Total Cadmium (Cd)	2016/07/21	< 0.010		ug/L	
			Total Calcium (Ca)	2016/07/21	<100		ug/L	
			Total Chromium (Cr)	2016/07/21	<1.0		ug/L	
			Total Cobalt (Co)	2016/07/21	< 0.40		ug/L	
			Total Copper (Cu)	2016/07/21	<2.0		ug/L	
			Total Iron (Fe)	2016/07/21	<50		ug/L	
			Total Lead (Pb)	2016/07/21	< 0.50		ug/L	
			Total Magnesium (Mg)	2016/07/21	<100		ug/L	
			Total Manganese (Mn)	2016/07/21	<2.0		ug/L	
			Total Molybdenum (Mo)	2016/07/21	<2.0		ug/L	
			Total Nickel (Ni)	2016/07/21	<2.0		ug/L	
			Total Phosphorus (P)	2016/07/21	<100		ug/L	
			Total Potassium (K)	2016/07/21	<100		ug/L	
			Total Selenium (Se)	2016/07/21	<1.0		ug/L	
			Total Silver (Ag)	2016/07/21	< 0.10		ug/L	
			Total Sodium (Na)	2016/07/21	<100		ug/L	
			Total Strontium (Sr)	2016/07/21	<2.0		ug/L	
			Total Thallium (TI)	2016/07/21	< 0.10		ug/L	
			Total Tin (Sn)	2016/07/21	<2.0		ug/L	
			Total Titanium (Ti)	2016/07/21	<2.0		ug/L	
			Total Uranium (U)	2016/07/21	< 0.10		ug/L	
			Total Vanadium (V)	2016/07/21	<2.0		ug/L	
			Total Zinc (Zn)	2016/07/21	<5.0		ug/L	
4585895	BAN	RPD - Sample/Sample Dup	Total Silver (Ag)	2016/07/21	0.91		%	20
4585899	SMT	Matrix Spike	Total Organic Carbon (C)	2016/07/21		103	%	80 - 120
4585899	SMT	Spiked Blank	Total Organic Carbon (C)	2016/07/21		108	%	80 - 120
4585899	SMT	Method Blank	Total Organic Carbon (C)	2016/07/21	< 0.50		mg/L	
4585899	SMT	RPD - Sample/Sample Dup	Total Organic Carbon (C)	2016/07/21	NC		%	20
4586190	MM9	QC Standard	Total Suspended Solids	2016/07/21		94	%	80 - 120
4586190	MM9	Method Blank	Total Suspended Solids	2016/07/21	<1.0		mg/L	
4586190	MM9	RPD - Sample/Sample Dup	Total Suspended Solids	2016/07/21	3.8		%	25
4586424	NRG	Matrix Spike(CSF366)	Total Alkalinity (Total as CaCO3)	2016/07/22		106	%	80 - 120
4586424	NRG	Spiked Blank	Total Alkalinity (Total as CaCO3)	2016/07/22		104	%	80 - 120
4586424	NRG	Method Blank	Total Alkalinity (Total as CaCO3)	2016/07/22	<5.0		mg/L	
4586424	NRG	RPD - Sample/Sample Dup	Total Alkalinity (Total as CaCO3)	2016/07/22	NC		%	25
4586426	NRG	Matrix Spike(CSF366)	Dissolved Chloride (CI)	2016/07/22		NC	%	80 - 120
4586426	NRG	QC Standard	Dissolved Chloride (CI)	2016/07/22		106	%	80 - 120
4586426	NRG	Spiked Blank	Dissolved Chloride (CI)	2016/07/22		103	%	80 - 120
4586426	NRG	Method Blank	Dissolved Chloride (CI)	2016/07/22	<1.0		mg/L	
4586426	NRG	RPD - Sample/Sample Dup	Dissolved Chloride (CI)	2016/07/22	2.4		%	25
4586428	NRG	Matrix Spike(CSF366)	Dissolved Sulphate (SO4)	2016/07/22		120	%	80 - 120
4586428	NRG	Spiked Blank	Dissolved Sulphate (SO4)	2016/07/22		103	%	80 - 120
4586428	NRG	Method Blank	Dissolved Sulphate (SO4)	2016/07/22	<2.0		mg/L	

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016

0.4./0.0				5 .		0/		
QA/QC	1	OC T	Danamatan	Date	Value	%	LINUTC	001::
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
4586428	NRG	RPD - Sample/Sample Dup	Dissolved Sulphate (SO4)	2016/07/22	NC		%	25
4586433	NRG	Matrix Spike(CSF366)	Reactive Silica (SiO2)	2016/07/21		NC	%	80 - 120
4586433	NRG	Spiked Blank	Reactive Silica (SiO2)	2016/07/21		98	%	80 - 120
4586433	NRG	Method Blank	Reactive Silica (SiO2)	2016/07/21	<0.50		mg/L	
4586433	NRG	RPD - Sample/Sample Dup	Reactive Silica (SiO2)	2016/07/21	1.1		%	25
4586439	NRG	Spiked Blank	Colour	2016/07/21		106	%	80 - 120
4586439	NRG	Method Blank	Colour	2016/07/21	<5.0		TCU	
4586439	NRG	RPD - Sample/Sample Dup	Colour	2016/07/21	4.9		%	20
4586445	KBT	Matrix Spike(CSF366)	Orthophosphate (P)	2016/07/22		86	%	80 - 120
4586445	KBT	Spiked Blank	Orthophosphate (P)	2016/07/22		96	%	80 - 120
4586445	KBT	Method Blank	Orthophosphate (P)	2016/07/22	<0.010		mg/L	
4586445	KBT	RPD - Sample/Sample Dup	Orthophosphate (P)	2016/07/22	NC		%	25
4586447	NRG	Matrix Spike(CSF366)	Nitrate + Nitrite (N)	2016/07/22		103	%	80 - 120
4586447	NRG	Spiked Blank	Nitrate + Nitrite (N)	2016/07/22		104	%	80 - 120
4586447	NRG	Method Blank	Nitrate + Nitrite (N)	2016/07/22	< 0.050		mg/L	
4586447	NRG	RPD - Sample/Sample Dup	Nitrate + Nitrite (N)	2016/07/22	3.5		%	25
4586455	MCN	Matrix Spike(CSF366)	Nitrite (N)	2016/07/22		84	%	80 - 120
4586455	MCN	Spiked Blank	Nitrite (N)	2016/07/22		94	%	80 - 120
4586455	MCN	Method Blank	Nitrite (N)	2016/07/22	< 0.010		mg/L	
4586455	MCN	RPD - Sample/Sample Dup	Nitrite (N)	2016/07/22	NC		%	25
4586538	NRG	Matrix Spike	Total Alkalinity (Total as CaCO3)	2016/07/22		NC	%	80 - 120
4586538	NRG	Spiked Blank	Total Alkalinity (Total as CaCO3)	2016/07/22		109	%	80 - 120
4586538	NRG	Method Blank	Total Alkalinity (Total as CaCO3)	2016/07/22	<5.0		mg/L	
4586538	NRG	RPD - Sample/Sample Dup	Total Alkalinity (Total as CaCO3)	2016/07/22	2.8		%	25
4586550	NRG	Matrix Spike	Dissolved Chloride (CI)	2016/07/22		101	%	80 - 120
4586550	NRG	QC Standard	Dissolved Chloride (CI)	2016/07/22		106	%	80 - 120
4586550	NRG	Spiked Blank	Dissolved Chloride (CI)	2016/07/22		101	%	80 - 120
4586550	NRG	Method Blank	Dissolved Chloride (CI)	2016/07/22	<1.0		mg/L	
4586550	NRG	RPD - Sample/Sample Dup	Dissolved Chloride (CI)	2016/07/22	2.2		%	25
4586555	NRG	Matrix Spike	Dissolved Sulphate (SO4)	2016/07/22		NC	%	80 - 120
4586555	NRG	Spiked Blank	Dissolved Sulphate (SO4)	2016/07/22		103	%	80 - 120
4586555	NRG	Method Blank	Dissolved Sulphate (SO4)	2016/07/22	<2.0	200	mg/L	00 120
4586555	NRG	RPD - Sample/Sample Dup	Dissolved Sulphate (SO4)	2016/07/22	3.0		%	25
4586556	NRG	Matrix Spike	Reactive Silica (SiO2)	2016/07/21	3.0	NC	%	80 - 120
4586556	NRG	Spiked Blank	Reactive Silica (SiO2)	2016/07/21		99	%	80 - 120
4586556	NRG	Method Blank	Reactive Silica (SiO2)	2016/07/21	<0.50	33	mg/L	00 120
4586556	NRG	RPD - Sample/Sample Dup		2016/07/21	0.47		%	25
4586557		Spiked Blank	Colour	2016/07/21	0.47	94	%	80 - 120
4586557		Method Blank			∠E 0	34	TCU	80 - 120
4586557		RPD - Sample/Sample Dup	Colour Colour	2016/07/21 2016/07/21	<5.0		%	20
	NRG				NC	01		80 - 120
4586562	KBT	Matrix Spike	Orthophosphate (P)	2016/07/22		91	%	
4586562	KBT	Spiked Blank	Orthophosphate (P)	2016/07/22	-0.040	95	%	80 - 120
4586562	KBT	Method Blank	Orthophosphate (P)	2016/07/22	<0.010		mg/L	35
4586562	KBT	RPD - Sample/Sample Dup		2016/07/22	NC	00	%	25
4586563	NRG	Matrix Spike	Nitrate + Nitrite (N)	2016/07/22		98	%	80 - 120
4586563	NRG	Spiked Blank	Nitrate + Nitrite (N)	2016/07/22	.0.0=0	99	%	80 - 120
4586563	NRG	Method Blank	Nitrate + Nitrite (N)	2016/07/22	<0.050		mg/L	
4586563	NRG		Nitrate + Nitrite (N)	2016/07/22	NC		%	25
4586568	MCN	Matrix Spike	Nitrite (N)	2016/07/22		96	%	80 - 120
4586568	MCN	Spiked Blank	Nitrite (N)	2016/07/22		95	%	80 - 120
4586568	MCN		Nitrite (N)	2016/07/22	< 0.010		mg/L	
4586568	MCN	RPD - Sample/Sample Dup	Nitrite (N)	2016/07/22	NC		%	25

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
4587708	BAN	Matrix Spike	Total Aluminum (AI)	2016/07/21		104	%	80 - 120
			Total Antimony (Sb)	2016/07/21		100	%	80 - 120
			Total Arsenic (As)	2016/07/21		99	%	80 - 120
			Total Barium (Ba)	2016/07/21		NC	%	80 - 120
			Total Beryllium (Be)	2016/07/21		98	%	80 - 120
			Total Bismuth (Bi)	2016/07/21		101	%	80 - 120
			Total Boron (B)	2016/07/21		98	%	80 - 120
			Total Cadmium (Cd)	2016/07/21		100	%	80 - 120
			Total Calcium (Ca)	2016/07/21		NC	%	80 - 120
			Total Chromium (Cr)	2016/07/21		100	%	80 - 120
			Total Cobalt (Co)	2016/07/21		101	%	80 - 120
			Total Copper (Cu)	2016/07/21		101	%	80 - 120
			Total Iron (Fe)	2016/07/21		103	%	80 - 120
			Total Lead (Pb)	2016/07/21		100	%	80 - 120
			Total Magnesium (Mg)	2016/07/21		102	%	80 - 120
			Total Manganese (Mn)	2016/07/21		102	%	80 - 120
			Total Molybdenum (Mo)	2016/07/21		102	%	80 - 120
			Total Nickel (Ni)	2016/07/21		99	%	80 - 120
			Total Phosphorus (P)	2016/07/21		105	%	80 - 120
			Total Potassium (K)	2016/07/21		101	%	80 - 120
			Total Selenium (Se)	2016/07/21		98	%	80 - 120
			Total Silver (Ag)	2016/07/21		100	%	80 - 120
			Total Sodium (Na)	2016/07/21		99	%	80 - 120
			Total Strontium (Sr)	2016/07/21		NC	%	80 - 120
			Total Thallium (Tl)	2016/07/21		100	%	80 - 120
			Total Tin (Sn)	2016/07/21		104	%	80 - 120
			Total Titanium (Ti)	2016/07/21		103	%	80 - 120
			Total Uranium (U)	2016/07/21		104	%	80 - 120
			Total Vanadium (V)	2016/07/21		101	%	80 - 120
			Total Zinc (Zn)	2016/07/21		98	%	80 - 120
4587708	BAN	Spiked Blank	Total Aluminum (AI)	2016/07/21		105	%	80 - 120
			Total Antimony (Sb)	2016/07/21		101	%	80 - 120
			Total Arsenic (As)	2016/07/21		98	%	80 - 120
			Total Barium (Ba)	2016/07/21		99	%	80 - 120
			Total Beryllium (Be)	2016/07/21		96	%	80 - 120
			Total Bismuth (Bi)	2016/07/21		102	%	80 - 120
			Total Boron (B)	2016/07/21		96	%	80 - 120
			Total Cadmium (Cd)	2016/07/21		100	%	80 - 120
			Total Calcium (Ca)	2016/07/21		100	%	80 - 120
			Total Chromium (Cr)	2016/07/21		100	%	80 - 120
			Total Cobalt (Co)	2016/07/21		100	%	80 - 120
			Total Copper (Cu)	2016/07/21		101	%	80 - 120
			Total Iron (Fe)	2016/07/21		105	%	80 - 120
			Total Lead (Pb)	2016/07/21		100	%	80 - 120
			Total Magnesium (Mg)	2016/07/21		104	%	80 - 120
			Total Manganese (Mn)	2016/07/21		102	%	80 - 120
			Total Molybdenum (Mo)	2016/07/21		101	%	80 - 120
			Total Nickel (Ni)	2016/07/21		100	%	80 - 120
			Total Phosphorus (P)	2016/07/21		106	%	80 - 120
			Total Potassium (K)	2016/07/21		102	%	80 - 120
			Total Selenium (Se)	2016/07/21		96	%	80 - 120
			Total Silver (Ag)	2016/07/21		98	%	80 - 120

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			Total Sodium (Na)	2016/07/21		100	%	80 - 120
			Total Strontium (Sr)	2016/07/21		101	%	80 - 120
			Total Thallium (TI)	2016/07/21		102	%	80 - 120
			Total Tin (Sn)	2016/07/21		104	%	80 - 120
			Total Titanium (Ti)	2016/07/21		100	%	80 - 120
			Total Uranium (U)	2016/07/21		107	%	80 - 120
			Total Vanadium (V)	2016/07/21		101	%	80 - 120
			Total Zinc (Zn)	2016/07/21		99	%	80 - 120
4587708	BAN	Method Blank	Total Aluminum (AI)	2016/07/21	<5.0	33	ug/L	00 120
1307700	<i>D7</i> (14	Wiethou Blank	Total Antimony (Sb)	2016/07/21	<1.0		ug/L	
			Total Arsenic (As)	2016/07/21	<1.0		ug/L	
			Total Barium (Ba)	2016/07/21	<1.0		ug/L	
			Total Beryllium (Be)	2016/07/21	<1.0		ug/L	
			Total Bismuth (Bi)	2016/07/21	<2.0		ug/L	
			Total Boron (B)	2016/07/21	<50		ug/L	
			Total Cadmium (Cd)	2016/07/21	<0.010		ug/L	
			Total Calcium (Ca)	2016/07/21	<100		ug/L	
			Total Chromium (Cr)	2016/07/21	<1.0		ug/L	
			Total Cobalt (Co)		<0.40		ug/L ug/L	
				2016/07/21 2016/07/21	<2.0			
			Total Copper (Cu) Total Iron (Fe)	• •			ug/L	
			· /	2016/07/21	<50		ug/L	
			Total Lead (Pb)	2016/07/21	<0.50		ug/L	
			Total Magnesium (Mg)	2016/07/21	<100		ug/L	
			Total Manganese (Mn)	2016/07/21	<2.0		ug/L	
			Total Molybdenum (Mo)	2016/07/21	<2.0		ug/L	
			Total Nickel (Ni)	2016/07/21	<2.0		ug/L	
			Total Phosphorus (P)	2016/07/21	<100		ug/L	
			Total Potassium (K)	2016/07/21	<100		ug/L	
			Total Selenium (Se)	2016/07/21	<1.0		ug/L	
			Total Silver (Ag)	2016/07/21	<0.10		ug/L	
			Total Sodium (Na)	2016/07/21	<100		ug/L	
			Total Strontium (Sr)	2016/07/21	<2.0		ug/L	
			Total Thallium (TI)	2016/07/21	<0.10		ug/L	
			Total Tin (Sn)	2016/07/21	<2.0		ug/L	
			Total Titanium (Ti)	2016/07/21	<2.0		ug/L	
			Total Uranium (U)	2016/07/21	<0.10		ug/L	
			Total Vanadium (V)	2016/07/21	<2.0		ug/L	
			Total Zinc (Zn)	2016/07/21	<5.0		ug/L	
4587708	BAN	RPD - Sample/Sample Dup	, ,	2016/07/21	NC		%	20
			Total Antimony (Sb)	2016/07/21	NC		%	20
			Total Arsenic (As)	2016/07/21	NC		%	20
			Total Barium (Ba)	2016/07/21	0.65		%	20
			Total Beryllium (Be)	2016/07/21	NC		%	20
			Total Bismuth (Bi)	2016/07/21	NC		%	20
			Total Boron (B)	2016/07/21	NC		%	20
			Total Cadmium (Cd)	2016/07/21	NC		%	20
			Total Calcium (Ca)	2016/07/21	0.22		%	20
			Total Chromium (Cr)	2016/07/21	NC		%	20
			Total Cobalt (Co)	2016/07/21	NC		%	20
			Total Copper (Cu)	2016/07/21	1.8		%	20
			Total Iron (Fe)	2016/07/21	NC		%	20
			Total Lead (Pb)	2016/07/21	NC		%	20

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			Total Magnesium (Mg)	2016/07/21	0.53	·	%	20
			Total Manganese (Mn)	2016/07/21	NC		%	20
			Total Molybdenum (Mo)	2016/07/21	NC		%	20
			Total Nickel (Ni)	2016/07/21	NC		%	20
			Total Phosphorus (P)	2016/07/21	NC		%	20
			Total Potassium (K)	2016/07/21	0.35		%	20
			Total Selenium (Se)	2016/07/21	NC		%	20
			Total Silver (Ag)	2016/07/21	NC		%	20
			Total Sodium (Na)	2016/07/21	1.9		%	20
			Total Strontium (Sr)	2016/07/21	0.24		%	20
			Total Thallium (TI)	2016/07/21	NC		%	20
			Total Tin (Sn)	2016/07/21	NC		%	20
			Total Titanium (Ti)	2016/07/21	NC		%	20
			Total Uranium (U)	2016/07/21	2.1		%	20
			Total Vanadium (V)	2016/07/21	NC		%	20
			Total Zinc (Zn)	2016/07/21	NC		%	20
4587765	BΔN	Matrix Spike	Total Aluminum (Al)	2016/07/22	140	108	%	80 - 120
4307703	D/ (14	Watrix Spike	Total Antimony (Sb)	2016/07/22		104	%	80 - 120
			Total Arsenic (As)	2016/07/22		99	%	80 - 120
			Total Barium (Ba)	2016/07/22		102	%	80 - 120
			Total Beryllium (Be)	2016/07/22		103	%	80 - 120
			Total Bismuth (Bi)	2016/07/22		103	%	80 - 120
			Total Boron (B)	2016/07/22		NC	%	80 - 120
			Total Cadmium (Cd)	2016/07/22		103	%	80 - 120
			Total Calcium (Ca)	2016/07/22		101	%	80 - 120
			Total Chromium (Cr)	2016/07/22		101	%	80 - 120
			Total Cobalt (Co)	2016/07/22		101	%	80 - 120
			Total Copper (Cu)	2016/07/22		NC	%	80 - 120
				2016/07/22		102	%	80 - 120
			Total Iron (Fe) Total Lead (Pb)	2016/07/22		102	%	80 - 120
			Total Magnesium (Mg)	2016/07/22		101	%	80 - 120
				2016/07/22		104	% %	80 - 120
			Total Mahyhdanum (Ma)	2016/07/22		105	%	80 - 120
			Total Molybdenum (Mo)	2016/07/22		100	%	80 - 120
			Total Phorphorus (P)	2016/07/22		102	%	80 - 120
			Total Phosphorus (P) Total Potassium (K)	2016/07/22		105	%	80 - 120
			Total Potassium (K) Total Selenium (Se)	2016/07/22		100	%	80 - 120
			Total Selemum (Se) Total Silver (Ag)	2016/07/22		100		80 - 120
							%	
			Total Sodium (Na) Total Strontium (Sr)	2016/07/22		NC 102	%	80 - 120
				2016/07/22		102	%	80 - 120
			Total Tin (Cn)	2016/07/22		102	%	80 - 120
			Total Tito rives (Ti)	2016/07/22		107	%	80 - 120
			Total Uranium (Ti)	2016/07/22 2016/07/22		103	%	80 - 120
			Total Vanadium (V)			105	%	80 - 120
			Total Vanadium (V)	2016/07/22		101	%	80 - 120
4507765	DAN	Cailead Dlamb	Total Aluminum (Al)	2016/07/22		NC 100	%	80 - 120
4587765	RAN	Spiked Blank	Total Antimony (Sh)	2016/07/22		109	%	80 - 120
			Total Argania (As)	2016/07/22		102	%	80 - 120
			Total Arsenic (As)	2016/07/22		97	%	80 - 120
			Total Barium (Ba)	2016/07/22		98	%	80 - 120
			Total Beryllium (Be)	2016/07/22		98	%	80 - 120
			Total Bismuth (Bi)	2016/07/22		102	%	80 - 120

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			Total Boron (B)	2016/07/22		99	%	80 - 120
			Total Cadmium (Cd)	2016/07/22		102	%	80 - 120
			Total Calcium (Ca)	2016/07/22		100	%	80 - 120
			Total Chromium (Cr)	2016/07/22		100	%	80 - 120
			Total Cobalt (Co)	2016/07/22		102	%	80 - 120
			Total Copper (Cu)	2016/07/22		101	%	80 - 120
			Total Iron (Fe)	2016/07/22		104	%	80 - 120
			Total Lead (Pb)	2016/07/22		100	%	80 - 120
			Total Magnesium (Mg)	2016/07/22		105	%	80 - 120
			Total Manganese (Mn)	2016/07/22		102	%	80 - 120
			Total Molybdenum (Mo)	2016/07/22		102	%	80 - 120
			Total Nickel (Ni)	2016/07/22		102	%	80 - 120
			Total Phosphorus (P)	2016/07/22		99	%	80 - 120
			Total Potassium (K)	2016/07/22		99	%	80 - 120
			Total Selenium (Se)	2016/07/22		98	%	80 - 120
			Total Silver (Ag)	2016/07/22		102	%	80 - 120
			Total Sodium (Na)	2016/07/22		103	%	80 - 120
			Total Strontium (Sr)	2016/07/22		99	%	80 - 120
			Total Thallium (TI)	2016/07/22		101	%	80 - 120
			Total Tin (Sn)	2016/07/22		104	%	80 - 120
			Total Titanium (Ti)	2016/07/22		102	%	80 - 120
			Total Uranium (U)	2016/07/22		103	%	80 - 120
			Total Vanadium (V)	2016/07/22		100	%	80 - 120
			Total Zinc (Zn)	2016/07/22		101	%	80 - 120
587765 BAN	BAN	Method Blank	Total Aluminum (Al)	2016/07/22	5.5,		ug/L	
					RDL=5.0			
			Total Antimony (Sb)	2016/07/22	<1.0		ug/L	
			Total Arsenic (As)	2016/07/22	<1.0		ug/L	
			Total Barium (Ba)	2016/07/22	<1.0		ug/L	
			Total Beryllium (Be)	2016/07/22	<1.0		ug/L	
			Total Bismuth (Bi)	2016/07/22	<2.0		ug/L	
			Total Boron (B)	2016/07/22	<50		ug/L	
			Total Cadmium (Cd)	2016/07/22	< 0.010		ug/L	
			Total Calcium (Ca)	2016/07/22	<100		ug/L	
			Total Chromium (Cr)	2016/07/22	<1.0		ug/L	
			Total Cobalt (Co)	2016/07/22	< 0.40		ug/L	
			Total Copper (Cu)	2016/07/22	<2.0		ug/L	
			Total Iron (Fe)	2016/07/22	<50		ug/L	
			Total Lead (Pb)	2016/07/22	< 0.50		ug/L	
			Total Magnesium (Mg)	2016/07/22	<100		ug/L	
			Total Manganese (Mn)	2016/07/22	<2.0		ug/L	
			Total Molybdenum (Mo)	2016/07/22	<2.0		ug/L	
			Total Nickel (Ni)	2016/07/22	<2.0		ug/L	
			Total Phosphorus (P)	2016/07/22	<100		ug/L	
			Total Potassium (K)	2016/07/22	<100		ug/L	
			Total Selenium (Se)	2016/07/22	<1.0		ug/L	
			Total Silver (Ag)	2016/07/22	<0.10		ug/L	
			Total Sodium (Na)	2016/07/22	<100		ug/L	
			Total Strontium (Sr)	2016/07/22	<2.0		ug/L	
			Total Thallium (TI)	2016/07/22	<0.10		ug/L	
			Total Tin (Sn)	2016/07/22	<2.0		ug/L	
			V - /	,,, - -			- 0, -	

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			Total Uranium (U)	2016/07/22	<0.10	,	ug/L	
			Total Vanadium (V)	2016/07/22	<2.0		ug/L	
			Total Zinc (Zn)	2016/07/22	<5.0		ug/L	
4587765	BAN	RPD - Sample/Sample Dup		2016/07/22	NC		%	20
			Total Antimony (Sb)	2016/07/22	NC		%	20
			Total Arsenic (As)	2016/07/22	NC		%	20
			Total Barium (Ba)	2016/07/22	0.57		%	20
			Total Beryllium (Be)	2016/07/22	NC		%	20
			Total Bismuth (Bi)	2016/07/22	NC		%	20
			Total Boron (B)	2016/07/22	1.4		%	20
			Total Cadmium (Cd)	2016/07/22	NC		%	20
			Total Calcium (Ca)	2016/07/22	0.90		%	20
			Total Chromium (Cr)	2016/07/22	NC		%	20
			Total Cobalt (Co)	2016/07/22	NC		%	20
			Total Copper (Cu)	2016/07/22	0.048		%	20
			Total Iron (Fe)	2016/07/22	NC		%	20
			Total Lead (Pb)	2016/07/22	NC		%	20
			Total Magnesium (Mg)	2016/07/22	0.87		%	20
			Total Manganese (Mn)	2016/07/22	NC		%	20
			Total Molybdenum (Mo)	2016/07/22	NC		%	20
			Total Nickel (Ni)	2016/07/22	NC		%	20
			Total Phosphorus (P)	2016/07/22	NC		%	20
			Total Potassium (K)	2016/07/22	6.6		%	20
			Total Selenium (Se)	2016/07/22	NC		%	20
			Total Silver (Ag)	2016/07/22	NC		%	20
			Total Sodium (Na)	2016/07/22	0.51		%	20
			Total Strontium (Sr)	2016/07/22	NC		%	20
			Total Thallium (Tl)	2016/07/22	NC		%	20
			Total Tin (Sn)	2016/07/22	NC		%	20
			Total Titanium (Ti)	2016/07/22	NC		%	20
			Total Uranium (U)	2016/07/22	NC		%	20
			Total Vanadium (V)	2016/07/22	NC		%	20
			Total Zinc (Zn)	2016/07/22	0.26		%	20
4587845	BAN	Matrix Spike	Dissolved Aluminum (AI)	2016/07/21		107	%	80 - 120
			Dissolved Antimony (Sb)	2016/07/21		104	%	80 - 120
			Dissolved Arsenic (As)	2016/07/21		101	%	80 - 120
			Dissolved Barium (Ba)	2016/07/21		103	%	80 - 120
			Dissolved Beryllium (Be)	2016/07/21		102	%	80 - 120
			Dissolved Bismuth (Bi)	2016/07/21		105	%	80 - 120
			Dissolved Boron (B)	2016/07/21		100	%	80 - 120
			Dissolved Cadmium (Cd)	2016/07/21		103	%	80 - 120
			Dissolved Calcium (Ca)	2016/07/21		104	%	80 - 120
			Dissolved Chromium (Cr)	2016/07/21		102	%	80 - 120
			Dissolved Cobalt (Co)	2016/07/21		102	%	80 - 120
			Dissolved Copper (Cu)	2016/07/21		103	%	80 - 120
			Dissolved Iron (Fe)	2016/07/21		105	%	80 - 120
			Dissolved Lead (Pb)	2016/07/21		104	%	80 - 120
			Dissolved Magnesium (Mg)	2016/07/21		106	%	80 - 120
			Dissolved Manganese (Mn)	2016/07/21		103	%	80 - 120
			Dissolved Molybdenum (Mo)	2016/07/21		105	%	80 - 120
			Dissolved Nickel (Ni)	2016/07/21		104	%	80 - 120
			Dissolved Phosphorus (P)	2016/07/21		108	%	80 - 120

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			Dissolved Potassium (K)	2016/07/21		103	%	80 - 120
			Dissolved Selenium (Se)	2016/07/21		103	%	80 - 120
			Dissolved Silver (Ag)	2016/07/21		103	%	80 - 120
			Dissolved Sodium (Na)	2016/07/21		NC	%	80 - 120
			Dissolved Strontium (Sr)	2016/07/21		NC	%	80 - 120
			Dissolved Thallium (TI)	2016/07/21		104	%	80 - 120
			Dissolved Tin (Sn)	2016/07/21		107	%	80 - 120
			Dissolved Titanium (Ti)	2016/07/21		103	%	80 - 120
			Dissolved Uranium (U)	2016/07/21		107	%	80 - 120
			Dissolved Vanadium (V)	2016/07/21		104	%	80 - 120
			Dissolved Zinc (Zn)	2016/07/21		102	%	80 - 120
4587845	BAN	Spiked Blank	Dissolved Aluminum (AI)	2016/07/21		106	%	80 - 120
			Dissolved Antimony (Sb)	2016/07/21		99	%	80 - 120
			Dissolved Arsenic (As)	2016/07/21		100	%	80 - 120
			Dissolved Barium (Ba)	2016/07/21		101	%	80 - 120
			Dissolved Beryllium (Be)	2016/07/21		103	%	80 - 120
			Dissolved Bismuth (Bi)	2016/07/21		103	%	80 - 120
			Dissolved Boron (B)	2016/07/21		102	%	80 - 120
			Dissolved Cadmium (Cd)	2016/07/21		102	%	80 - 120
			Dissolved Calcium (Ca)	2016/07/21		103	%	80 - 120
			Dissolved Chromium (Cr)	2016/07/21		101	%	80 - 120
			Dissolved Cobalt (Co)	2016/07/21		103	%	80 - 120
			Dissolved Copper (Cu)	2016/07/21		105	%	80 - 120
			Dissolved Iron (Fe)	2016/07/21		105	%	80 - 120
			Dissolved Lead (Pb)	2016/07/21		102	%	80 - 120
			Dissolved Magnesium (Mg)	2016/07/21		106	%	80 - 120
			Dissolved Manganese (Mn)	2016/07/21		103	%	80 - 120
			Dissolved Molybdenum (Mo)	2016/07/21		103	%	80 - 120
			Dissolved Nickel (Ni)	2016/07/21		103	%	80 - 120
			Dissolved Phosphorus (P)	2016/07/21		107	%	80 - 120
			Dissolved Potassium (K)	2016/07/21		103	%	80 - 120
			Dissolved Selenium (Se)	2016/07/21		102	%	80 - 120
			Dissolved Silver (Ag)	2016/07/21		102	%	80 - 120
			Dissolved Sodium (Na)	2016/07/21		102	%	80 - 120
			Dissolved Strontium (Sr)	2016/07/21		102	%	80 - 120
			Dissolved Thallium (TI)	2016/07/21		103	%	80 - 120
			Dissolved Tin (Sn)	2016/07/21		105	%	80 - 120
			Dissolved Titanium (Ti)	2016/07/21		104	%	80 - 120
			Dissolved Uranium (U)	2016/07/21		106	%	80 - 120
			Dissolved Vanadium (V)	2016/07/21		102	%	80 - 120
			Dissolved Zinc (Zn)	2016/07/21		103	%	80 - 120
4587845	BAN	Method Blank	Dissolved Aluminum (AI)	2016/07/21	<5.0		ug/L	
			Dissolved Antimony (Sb)	2016/07/21	<1.0		ug/L	
			Dissolved Arsenic (As)	2016/07/21	<1.0		ug/L	
			Dissolved Barium (Ba)	2016/07/21	<1.0		ug/L	
			Dissolved Beryllium (Be)	2016/07/21	<1.0		ug/L	
			Dissolved Bismuth (Bi)	2016/07/21	<2.0		ug/L	
			Dissolved Boron (B)	2016/07/21	<50		ug/L	
			Dissolved Cadmium (Cd)	2016/07/21	< 0.010		ug/L	
			Dissolved Calcium (Ca)	2016/07/21	<100		ug/L	
			Dissolved Chromium (Cr)	2016/07/21	<1.0		ug/L	
			Dissolved Cobalt (Co)	2016/07/21	< 0.40		ug/L	

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			Dissolved Copper (Cu)	2016/07/21	<2.0		ug/L	
			Dissolved Iron (Fe)	2016/07/21	<50		ug/L	
			Dissolved Lead (Pb)	2016/07/21	< 0.50		ug/L	
			Dissolved Magnesium (Mg)	2016/07/21	<100		ug/L	
			Dissolved Manganese (Mn)	2016/07/21	<2.0		ug/L	
			Dissolved Molybdenum (Mo)	2016/07/21	<2.0		ug/L	
			Dissolved Nickel (Ni)	2016/07/21	<2.0		ug/L	
			Dissolved Phosphorus (P)	2016/07/21	<100		ug/L	
			Dissolved Potassium (K)	2016/07/21	<100		ug/L	
			Dissolved Selenium (Se)	2016/07/21	<1.0		ug/L	
			Dissolved Silver (Ag)	2016/07/21	< 0.10		ug/L	
			Dissolved Sodium (Na)	2016/07/21	<100		ug/L	
			Dissolved Strontium (Sr)	2016/07/21	<2.0		ug/L	
			Dissolved Thallium (TI)	2016/07/21	<0.10		ug/L	
			Dissolved Tin (Sn)	2016/07/21	<2.0		ug/L	
			Dissolved Titanium (Ti)	2016/07/21	<2.0		ug/L	
			Dissolved Uranium (U)	2016/07/21	<0.10		ug/L	
			Dissolved Vanadium (V)	2016/07/21	<2.0		ug/L	
			Dissolved Zinc (Zn)	2016/07/21	<5.0		ug/L	
4587845	BAN	RPD - Sample/Sample Dup	Dissolved Aluminum (Al)	2016/07/21	NC		%	20
4307043			Dissolved Antimony (Sb)	2016/07/21	NC		%	20
			Dissolved Arsenic (As)	2016/07/21	NC		%	20
			Dissolved Barium (Ba)	2016/07/21	NC		%	20
			Dissolved Beryllium (Be)	2016/07/21	NC		%	20
			Dissolved Bismuth (Bi)	2016/07/21	NC		%	20
			Dissolved Boron (B)	2016/07/21	NC		%	20
			Dissolved Cadmium (Cd)	2016/07/21	NC		%	20
			Dissolved Calcium (Ca)	2016/07/21	0.75		%	20
			Dissolved Chromium (Cr)	2016/07/21	NC		%	20
			Dissolved Cobalt (Co)	2016/07/21	NC		%	20
			Dissolved Copper (Cu)	2016/07/21	NC		%	20
			Dissolved Iron (Fe)	2016/07/21	NC		%	20
			Dissolved Lead (Pb)	2016/07/21	NC		%	20
			Dissolved Magnesium (Mg)	2016/07/21	0.68		%	20
			Dissolved Manganese (Mn)	2016/07/21	NC		%	20
			Dissolved Molybdenum (Mo)	2016/07/21	NC		%	20
			Dissolved Nickel (Ni)	2016/07/21	NC		%	20
			Dissolved Phosphorus (P)	2016/07/21	NC		%	20
			Dissolved Potassium (K)	2016/07/21	2.7		%	20
			Dissolved Selenium (Se)	2016/07/21	NC		%	20
			Dissolved Silver (Ag)	2016/07/21	NC		%	20
			Dissolved Sodium (Na)	2016/07/21	1.3		%	20
			Dissolved Strontium (Sr)	2016/07/21	3.0		%	20
			Dissolved Thallium (TI)	2016/07/21	NC		%	20
			Dissolved Tin (Sn)	2016/07/21	NC		%	20
			Dissolved Titanium (Ti)	2016/07/21	NC		%	20
			Dissolved Uranium (U)	2016/07/21	0.67		%	20
			Dissolved Vanadium (V)	2016/07/21	NC		%	20
			Dissolved Zinc (Zn)	2016/07/21	NC		%	20
4587848	BAN	Matrix Spike	Dissolved Aluminum (Al)	2016/07/22		108	%	80 - 120
.50,040	D, 114		Dissolved Antimony (Sb)	2016/07/22		106	%	80 - 120
			Dissolved Aritimoriy (Sb)	2016/07/22		100	%	80 - 120

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			Dissolved Barium (Ba)	2016/07/22		102	%	80 - 120
			Dissolved Beryllium (Be)	2016/07/22		98	%	80 - 120
			Dissolved Bismuth (Bi)	2016/07/22		103	%	80 - 120
			Dissolved Boron (B)	2016/07/22		97	%	80 - 120
			Dissolved Cadmium (Cd)	2016/07/22		103	%	80 - 120
			Dissolved Calcium (Ca)	2016/07/22		NC	%	80 - 120
			Dissolved Chromium (Cr)	2016/07/22		100	%	80 - 120
			Dissolved Cobalt (Co)	2016/07/22		101	%	80 - 120
			Dissolved Copper (Cu)	2016/07/22		101	%	80 - 120
			Dissolved Iron (Fe)	2016/07/22		104	%	80 - 120
			Dissolved Lead (Pb)	2016/07/22		104	%	80 - 120
			Dissolved Magnesium (Mg)	2016/07/22		105	%	80 - 120
			Dissolved Manganese (Mn)	2016/07/22		NC	%	80 - 120
			Dissolved Molybdenum (Mo)	2016/07/22		105	%	80 - 120
			Dissolved Nickel (Ni)	2016/07/22		100	%	80 - 120
			Dissolved Phosphorus (P)	2016/07/22		110	%	80 - 120
			Dissolved Potassium (K)	2016/07/22		103	%	80 - 120
			Dissolved Selenium (Se)	2016/07/22		102	%	80 - 120
			Dissolved Silver (Ag)	2016/07/22		84	%	80 - 120
			Dissolved Sodium (Na)	2016/07/22		NC	%	80 - 120
			Dissolved Strontium (Sr)	2016/07/22		NC	%	80 - 120
			Dissolved Thallium (TI)	2016/07/22		104	%	80 - 120
			Dissolved Tin (Sn)	2016/07/22		108	%	80 - 120
			Dissolved Titanium (Ti)	2016/07/22		101	%	80 - 120
			Dissolved Uranium (U)	2016/07/22		110	%	80 - 120
			Dissolved Vanadium (V)	2016/07/22		102	%	80 - 120
			Dissolved Zinc (Zn)	2016/07/22		101	%	80 - 120
4587848	BAN	Spiked Blank	Dissolved Aluminum (Al)	2016/07/22		109	%	80 - 120
			Dissolved Antimony (Sb)	2016/07/22		106	%	80 - 120
			Dissolved Arsenic (As)	2016/07/22		100	%	80 - 120
			Dissolved Barium (Ba)	2016/07/22		103	%	80 - 120
			Dissolved Beryllium (Be)	2016/07/22		96	%	80 - 120
			Dissolved Bismuth (Bi)	2016/07/22		106	%	80 - 120
			Dissolved Boron (B)	2016/07/22		95	%	80 - 120
			Dissolved Cadmium (Cd)	2016/07/22		103	%	80 - 120
			Dissolved Calcium (Ca)	2016/07/22		105	%	80 - 120
			Dissolved Chromium (Cr)	2016/07/22		101	%	80 - 120
			Dissolved Cobalt (Co)	2016/07/22		100	%	80 - 120
			Dissolved Copper (Cu)	2016/07/22		102	%	80 - 120
			Dissolved Iron (Fe)	2016/07/22		104	%	80 - 120
			Dissolved Lead (Pb)	2016/07/22		105	%	80 - 120
			Dissolved Magnesium (Mg)	2016/07/22		104	%	80 - 120
			Dissolved Manganese (Mn)	2016/07/22		102	%	80 - 120
			Dissolved Molybdenum (Mo)	2016/07/22		100	%	80 - 120
			Dissolved Nickel (Ni)	2016/07/22		100	%	80 - 120
			Dissolved Phosphorus (P)	2016/07/22		108	%	80 - 120
			Dissolved Potassium (K)	2016/07/22		104	%	80 - 120
			Dissolved Selenium (Se)	2016/07/22		101	%	80 - 120
			Dissolved Silver (Ag)	2016/07/22		102	%	80 - 120
			Dissolved Sodium (Na)	2016/07/22		102	%	80 - 120
			Dissolved Strontium (Sr)	2016/07/22		104	%	80 - 120
			Dissolved Thallium (TI)	2016/07/22		105	%	80 - 120

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			Dissolved Tin (Sn)	2016/07/22		107	%	80 - 120
			Dissolved Titanium (Ti)	2016/07/22		104	%	80 - 120
			Dissolved Uranium (U)	2016/07/22		109	%	80 - 120
			Dissolved Vanadium (V)	2016/07/22		103	%	80 - 120
			Dissolved Zinc (Zn)	2016/07/22		101	%	80 - 120
4587848	BAN	Method Blank	Dissolved Aluminum (Al)	2016/07/22	<5.0		ug/L	
			Dissolved Antimony (Sb)	2016/07/22	<1.0		ug/L	
			Dissolved Arsenic (As)	2016/07/22	<1.0		ug/L	
			Dissolved Barium (Ba)	2016/07/22	<1.0		ug/L	
			Dissolved Beryllium (Be)	2016/07/22	<1.0		ug/L	
			Dissolved Bismuth (Bi)	2016/07/22	<2.0		ug/L	
			Dissolved Boron (B)	2016/07/22	<50		ug/L	
			Dissolved Cadmium (Cd)	2016/07/22	< 0.010		ug/L	
			Dissolved Calcium (Ca)	2016/07/22	<100		ug/L	
			Dissolved Chromium (Cr)	2016/07/22	<1.0		ug/L	
			Dissolved Cobalt (Co)	2016/07/22	< 0.40		ug/L	
			Dissolved Copper (Cu)	2016/07/22	<2.0		ug/L	
			Dissolved Iron (Fe)	2016/07/22	<50		ug/L	
			Dissolved Lead (Pb)	2016/07/22	< 0.50		ug/L	
			Dissolved Magnesium (Mg)	2016/07/22	<100		ug/L	
			Dissolved Manganese (Mn)	2016/07/22	<2.0		ug/L	
			Dissolved Molybdenum (Mo)	2016/07/22	<2.0		ug/L	
			Dissolved Nickel (Ni)	2016/07/22	<2.0		ug/L	
			Dissolved Phosphorus (P)	2016/07/22	<100		ug/L	
			Dissolved Potassium (K)	2016/07/22	<100		ug/L	
			Dissolved Selenium (Se)	2016/07/22	<1.0		ug/L	
			Dissolved Silver (Ag)	2016/07/22	< 0.10		ug/L	
			Dissolved Sodium (Na)	2016/07/22	<100		ug/L	
			Dissolved Strontium (Sr)	2016/07/22	<2.0		ug/L	
			Dissolved Thallium (TI)	2016/07/22	<0.10		ug/L	
			Dissolved Tin (Sn)	2016/07/22	<2.0		ug/L	
			Dissolved Titanium (Ti)	2016/07/22	<2.0		ug/L	
			Dissolved Uranium (U)	2016/07/22	<0.10		ug/L	
			Dissolved Vanadium (V)	2016/07/22	<2.0		ug/L	
			Dissolved Zinc (Zn)	2016/07/22	<5.0		ug/L	
4587848	BAN	RPD - Sample/Sample Dup	Dissolved Aluminum (Al)	2016/07/22	0.22		wg/ L %	20
4307040	DAIN	M D Sample/Sample Dup	Dissolved Antimony (Sb)	2016/07/22	NC		%	20
			Dissolved Arsenic (As)	2016/07/22	NC		%	20
			Dissolved Barium (Ba)	2016/07/22	0.27		%	20
			Dissolved Beryllium (Be)	2016/07/22	NC		%	20
			Dissolved Boron (B)	2016/07/22	NC		% %	20
			Dissolved Cadmium (Cd)	2016/07/22			%	20
			Dissolved Chromium (Cr)	2016/07/22	0.15		%	
			` ,	2016/07/22	NC NC		% %	20 20
			Dissolved Cobalt (Co)					
			Dissolved Copper (Cu)	2016/07/22	NC 0.17		%	20
			Dissolved Iron (Fe)	2016/07/22	0.17		%	20
			Dissolved Lead (Pb)	2016/07/22	NC 0.16		%	20
			Dissolved Manganese (Mn)	2016/07/22	0.16		%	20
			Dissolved Molybdenum (Mo)	2016/07/22	NC		%	20
			Dissolved Nickel (Ni)	2016/07/22	NC		%	20
			Dissolved Selenium (Se)	2016/07/22	NC		%	20
			Dissolved Silver (Ag)	2016/07/22	NC		%	20

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			Dissolved Strontium (Sr)	2016/07/22	1.0	-	%	20
			Dissolved Thallium (TI)	2016/07/22	NC		%	20
			Dissolved Tin (Sn)	2016/07/22	NC		%	20
			Dissolved Uranium (U)	2016/07/22	NC		%	20
			Dissolved Vanadium (V)	2016/07/22	NC		%	20
			Dissolved Zinc (Zn)	2016/07/22	NC		%	20
4587902	NRG	Matrix Spike(CSR326)	Nitrogen (Ammonia Nitrogen)	2016/07/21		102	%	80 - 120
4587902	NRG	Spiked Blank	Nitrogen (Ammonia Nitrogen)	2016/07/22		108	%	80 - 120
4587902	NRG	Method Blank	Nitrogen (Ammonia Nitrogen)	2016/07/22	< 0.050		mg/L	
4587902	NRG	RPD - Sample/Sample Dup	Nitrogen (Ammonia Nitrogen)	2016/07/21	NC		%	20
4587911	NRG	Matrix Spike	Nitrogen (Ammonia Nitrogen)	2016/07/22		103	%	80 - 120
4587911	NRG	Spiked Blank	Nitrogen (Ammonia Nitrogen)	2016/07/21		105	%	80 - 120
4587911	NRG	Method Blank	Nitrogen (Ammonia Nitrogen)	2016/07/21	< 0.050		mg/L	
4587911	NRG	RPD - Sample/Sample Dup	Nitrogen (Ammonia Nitrogen)	2016/07/22	NC		%	20
4588194	ARS	Matrix Spike	Total Mercury (Hg)	2016/07/22		101	%	80 - 120
4588194	ARS	Spiked Blank	Total Mercury (Hg)	2016/07/22		103	%	80 - 120
4588194	ARS	Method Blank	Total Mercury (Hg)	2016/07/22	< 0.013		ug/L	
4588194	ARS	RPD - Sample/Sample Dup	Total Mercury (Hg)	2016/07/22	NC		%	20
4589406	BAN	Matrix Spike	Dissolved Aluminum (AI)	2016/07/22		104	%	80 - 120
		•	Dissolved Antimony (Sb)	2016/07/22		96	%	80 - 120
			Dissolved Arsenic (As)	2016/07/22		101	%	80 - 120
			Dissolved Barium (Ba)	2016/07/22		104	%	80 - 120
			Dissolved Beryllium (Be)	2016/07/22		110	%	80 - 120
			Dissolved Bismuth (Bi)	2016/07/22		102	%	80 - 120
			Dissolved Boron (B)	2016/07/22		106	%	80 - 120
			Dissolved Cadmium (Cd)	2016/07/22		103	%	80 - 120
			Dissolved Calcium (Ca)	2016/07/22		101	%	80 - 120
			Dissolved Chromium (Cr)	2016/07/22		103	%	80 - 120
			Dissolved Cobalt (Co)	2016/07/22		105	%	80 - 120
			Dissolved Copper (Cu)	2016/07/22		105	%	80 - 120
			Dissolved Iron (Fe)	2016/07/22		103	%	80 - 120
			Dissolved Lead (Pb)	2016/07/22		103	%	80 - 120
			Dissolved Magnesium (Mg)	2016/07/22		103	%	80 - 120
			Dissolved Manganese (Mn)	2016/07/22		103	%	80 - 120
			Dissolved Molybdenum (Mo)	2016/07/22		104	%	80 - 120
			Dissolved Nickel (Ni)	2016/07/22		103	%	80 - 120
			Dissolved Phosphorus (P)	2016/07/22		105	%	80 - 120
			Dissolved Potassium (K)	2016/07/22		104	%	80 - 120
			Dissolved Selenium (Se)	2016/07/22		104	%	80 - 120
			Dissolved Silver (Ag)	2016/07/22		94	%	80 - 120
			Dissolved Sodium (Na)	2016/07/22		102	%	80 - 120
			Dissolved Strontium (Sr)	2016/07/22		101	%	80 - 120
			Dissolved Thallium (TI)	2016/07/22		103	%	80 - 120
			Dissolved Tin (Sn)	2016/07/22		100	%	80 - 120
			Dissolved Titanium (Ti)	2016/07/22		106	%	80 - 120
			Dissolved Uranium (U)	2016/07/22		105	%	80 - 120
			Dissolved Vanadium (V)	2016/07/22		106	%	80 - 120
			Dissolved Zinc (Zn)	2016/07/22		102	%	80 - 120
4589406	BAN	Spiked Blank	Dissolved Aluminum (AI)	2016/07/22		106	%	80 - 120
		•	Dissolved Antimony (Sb)	2016/07/22		97	%	80 - 120
			Dissolved Arsenic (As)	2016/07/22		101	%	80 - 120
			Dissolved Barium (Ba)	2016/07/22		103		80 - 120

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016

				· · · · · · · · · · · · · · · · · · ·				
QA/QC	1. **	007	Dansarata	Date		%	1111-0	0011
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	
			Dissolved Beryllium (Be)	2016/07/22		107	%	80 - 120
			Dissolved Bismuth (Bi)	2016/07/22		103	%	80 - 120
			Dissolved Boron (B)	2016/07/22		103	%	80 - 120
			Dissolved Cadmium (Cd)	2016/07/22		103	%	80 - 120
			Dissolved Calcium (Ca)	2016/07/22		102	%	80 - 120
			Dissolved Chromium (Cr)	2016/07/22		103	%	80 - 120
			Dissolved Cobalt (Co)	2016/07/22		105	%	80 - 120
			Dissolved Copper (Cu)	2016/07/22		104	%	80 - 120
			Dissolved Iron (Fe)	2016/07/22		104	%	80 - 120
			Dissolved Lead (Pb)	2016/07/22		103	%	80 - 120
			Dissolved Magnesium (Mg)	2016/07/22		103	%	80 - 120
			Dissolved Manganese (Mn)	2016/07/22		104	%	80 - 120
			Dissolved Molybdenum (Mo)	2016/07/22		102	%	80 - 120
			Dissolved Nickel (Ni)	2016/07/22		103	%	80 - 120
			Dissolved Phosphorus (P)	2016/07/22		107	%	80 - 120
			Dissolved Potassium (K)	2016/07/22		104	%	80 - 120
			Dissolved Selenium (Se)	2016/07/22		102	%	80 - 120
			Dissolved Silver (Ag)	2016/07/22		99	%	80 - 120
			Dissolved Sodium (Na)	2016/07/22		103	%	80 - 120
			Dissolved Strontium (Sr)	2016/07/22		102	%	80 - 120
			Dissolved Thallium (TI)	2016/07/22		103	%	80 - 120
			Dissolved Tin (Sn)	2016/07/22		102	%	80 - 12
			Dissolved Titanium (Ti)	2016/07/22		104	%	80 - 12
			Dissolved Uranium (U)	2016/07/22		106	%	80 - 12
			Dissolved Vanadium (V)	2016/07/22		106	%	80 - 120
			Dissolved Zinc (Zn)	2016/07/22		103	%	80 - 120
4589406	BAN	Method Blank	Dissolved Aluminum (Al)	2016/07/22	<5.0		ug/L	
			Dissolved Antimony (Sb)	2016/07/22	<1.0		ug/L	
			Dissolved Arsenic (As)	2016/07/22	<1.0		ug/L	
			Dissolved Barium (Ba)	2016/07/22	<1.0		ug/L	
			Dissolved Beryllium (Be)	2016/07/22	<1.0		ug/L	
			Dissolved Bismuth (Bi)	2016/07/22	<2.0		ug/L	
			Dissolved Boron (B)	2016/07/22	<50		ug/L	
			Dissolved Cadmium (Cd)	2016/07/22	< 0.010		ug/L	
			Dissolved Calcium (Ca)	2016/07/22	<100		ug/L	
			Dissolved Chromium (Cr)	2016/07/22	<1.0		ug/L	
			Dissolved Cobalt (Co)	2016/07/22	< 0.40		ug/L	
			Dissolved Copper (Cu)	2016/07/22	<2.0		ug/L	
			Dissolved Iron (Fe)	2016/07/22	<50		ug/L	
			Dissolved Lead (Pb)	2016/07/22	< 0.50		ug/L	
			Dissolved Magnesium (Mg)	2016/07/22	<100		ug/L	
			Dissolved Manganese (Mn)	2016/07/22	<2.0		ug/L	
			Dissolved Molybdenum (Mo)	2016/07/22	<2.0		ug/L	
			Dissolved Nickel (Ni)	2016/07/22	<2.0		ug/L	
			Dissolved Phosphorus (P)	2016/07/22	<100		ug/L	
			Dissolved Potassium (K)	2016/07/22	<100		ug/L	
			Dissolved Selenium (Se)	2016/07/22	<1.0		ug/L	
			Dissolved Silver (Ag)	2016/07/22	<0.10		ug/L	
			Dissolved Sodium (Na)	2016/07/22	<100		ug/L	
			Dissolved Strontium (Sr)	2016/07/22	<2.0		ug/L	
					<0.10			
			Dissolved Thallium (TI)	2016/07/22	<0.10		ug/L	

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			Dissolved Titanium (Ti)	2016/07/22	<2.0		ug/L	
			Dissolved Uranium (U)	2016/07/22	< 0.10		ug/L	
			Dissolved Vanadium (V)	2016/07/22	<2.0		ug/L	
			Dissolved Zinc (Zn)	2016/07/22	<5.0		ug/L	
4589406	BAN	RPD - Sample/Sample Dup	Dissolved Aluminum (AI)	2016/07/22	NC		%	20
			Dissolved Antimony (Sb)	2016/07/22	NC		%	20
			Dissolved Arsenic (As)	2016/07/22	NC		%	20
			Dissolved Barium (Ba)	2016/07/22	NC		%	20
			Dissolved Beryllium (Be)	2016/07/22	NC		%	20
			Dissolved Bismuth (Bi)	2016/07/22	NC		%	20
			Dissolved Boron (B)	2016/07/22	NC		%	20
			Dissolved Cadmium (Cd)	2016/07/22	NC		%	20
			Dissolved Calcium (Ca)	2016/07/22	NC		%	20
			Dissolved Chromium (Cr)	2016/07/22	NC		%	20
			Dissolved Cobalt (Co)	2016/07/22	NC		%	20
			Dissolved Copper (Cu)	2016/07/22	NC		%	20
			Dissolved Iron (Fe)	2016/07/22	NC		%	20
			Dissolved Lead (Pb)	2016/07/22	NC		%	20
			Dissolved Magnesium (Mg)	2016/07/22	NC		%	20
			Dissolved Manganese (Mn)	2016/07/22	NC		%	20
			Dissolved Molybdenum (Mo)	2016/07/22	NC		%	20
			Dissolved Nickel (Ni)	2016/07/22	NC		%	20
			Dissolved Phosphorus (P)	2016/07/22	NC		%	20
			Dissolved Potassium (K)	2016/07/22	NC		%	20
			Dissolved Selenium (Se)	2016/07/22	NC		%	20
			Dissolved Silver (Ag)	2016/07/22	NC		%	20
			Dissolved Sodium (Na)	2016/07/22	NC		%	20
			Dissolved Strontium (Sr)	2016/07/22	NC		%	20
			Dissolved Thallium (TI)	2016/07/22	NC		%	20
			Dissolved Tin (Sn)	2016/07/22	NC		%	20
			Dissolved Titanium (Ti)	2016/07/22	NC		%	20
			Dissolved Uranium (U)	2016/07/22	NC		%	20
			Dissolved Vanadium (V)	2016/07/22	NC		%	20
			Dissolved Zinc (Zn)	2016/07/22	NC		%	20
4589410	JMV	QC Standard	рН	2016/07/22		100	%	97 - 103
4589410	JMV		рН	2016/07/22	0.70		%	N/A
4589411	JMV	Spiked Blank	Conductivity	2016/07/22		100	%	80 - 120
4589411	JMV	Method Blank	Conductivity	2016/07/22	1.1,		uS/cm	
					RDL=1.0			
4589411	JMV	RPD - Sample/Sample Dup	Conductivity	2016/07/22	0.66		%	25
4589412	JMV	QC Standard	рН	2016/07/22		100	%	97 - 103
4589412	JMV	RPD - Sample/Sample Dup	рН	2016/07/22	1.1		%	N/A
4589413	JMV	Spiked Blank	Conductivity	2016/07/22		100	%	80 - 120
4589413	JMV	Method Blank	Conductivity	2016/07/22	1.1,		uS/cm	
					RDL=1.0			
4589413	JMV	RPD - Sample/Sample Dup	Conductivity	2016/07/22	0.60		%	25
4589508	JMV	QC Standard	Turbidity	2016/07/22		97	%	80 - 120
4589508	JMV	Spiked Blank	Turbidity	2016/07/22		98	%	80 - 120
4589508	JMV	Method Blank	Turbidity	2016/07/22	< 0.10		NTU	
4589508	JMV	RPD - Sample/Sample Dup	Turbidity	2016/07/22	2.4		%	20
4589515	JMV	QC Standard	Turbidity	2016/07/22		98	%	80 - 120
4589515	JMV	Spiked Blank	Turbidity	2016/07/22		98	%	80 - 120

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
4589515	JMV	Method Blank	Turbidity	2016/07/22	<0.10		NTU	
4589515	JMV	RPD - Sample/Sample Dup	Turbidity	2016/07/22	3.4		%	20

N/A = Not Applicable

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than 2x that of the native sample concentration).

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Eric Dearman, Scientific Specialist

Mike The July

Mike MacGillivray, Scientific Specialist (Inorganics)

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

			INVOICE TO:			Report Information	don				Project Information	ation		Laboratory Use Only	e Only
Control Property Control Pro	Money Mano	#41009 Engl	lobe Corp.	Commune Name					N.	Production il	863657			Маххат Јов #	Bottle Order #:
CONTRICTION CONTRICTION	Contact Name	Accounts Pay	rable	Contact Name	Aven Co	isa				PO #	Po Leo	91		3627556	
Control Approximate Cont	dress	Dartmouth NS	S B3B 2A7	Address						Project #	2000000			Chain Of Custody Record	Project Manager
The control of the	av.	(902) 468-648		H	(902) 468-6	186	1	902) 468-	1919	Site #	LAKE GEOR	GE			Avery Wilhrow
Since Transferred to the Committee of th	lle.	Datumonth	(Gengloberoip.con)		311	Sandinocomit				Sampled By	1		ŀ	TATA TIME TATA	- Secretarian Secr
Common C	egulatory Gr	denia		Special	nstructions				ANALY	'SIS REQUESTED (PLEAS	E BE SPECIFIC)			Please provide advance notice for	nan projects
The Note The Surpeose The Surp			O THE STATE OF THE			pev	ŗ	(TT'∀∀/	spilo	is rec'd)			Regular (S (will be app Standard T Phase not days - conf	tandard) TAT: led # Rush TAT is not specified): AT = 5.7 Working days for most tests. s. Standard TAT for cention leads such as included Manager for details.	30D and Dicwins/Furans ove > 5
10 10 10 10 10 10 10 10	M Alcoholo	Potatie/Nonpotable	TissueSoliSlargeMalai			naan4 & b	n Required	Total (CV	S babna	s) sisteM			Job Spec	Rush TAT (If applies to entire	saion) equired
SW3 SW3 T/LL/16 11 N SO SW3 SW4 P3 SW4 P3 SW4 P3 SW4 P4 P5 SW4 P4 P4 SW4 P4 P5 SW4 P4 P5 SW4 P4 P5 SW4 P4 P4 P5 SW4 P4 P4 P4 P4 P4 P4 P4 P4 P4		AMPLES MUST BE	KEPT COOL * 10-C FROM TIME UF SAME	HUNG LINTL DELIVERY TI	3 MAXXAM	Fillere	obeatil	- Auno	dsng	pavlo			10	Community / Hazards / Otto	Received Analysis
SW2 7/14/16 11/100 SW3 X X X X X X X X X	Sample	Barcode Label	Sample (Location) Identification	H	Time Sampled		qeq	Mer	stoT	ssiQ			Bottles		
SWS 7/1-1/16 11 125 5W X X X X X X X X X X X X X X X X X X			SM3	71-1/61	Dayla	SW	×	×	W.	Mr.			7	50013	
SHOP P.3 3/1-1/16 11n.55 S.W. X X X X X X X X X X X X X X X X X X			SW2	7/14/16		-		×	×	×			9		
SWS 子/14/16 15 14 SS SSU X X X X X X X X X X X X X X X X			SH48-P3	1 91/1-1/16	1455	SN	×	×	本	N. S. S. S. S. S. S. S. S. S. S. S. S. S.			I	PS	
SW5 \$W6			SUN SU DUP	1 7/12/16		Sw	×	×					I	SwDup 1	
SW7 3/14/16 17436 SW X X X X X X X X X X X X X X X X X X			SW5		5450		×	×					I		
SW9 7/14/16 5W X X X K 6 5WDMP3 ***SW9 7/14/16 5W X X X X K 6 5WDMP3 ***SW9 7/14/16 1			EME BACKS	1 1 1 1	7430	-		×	X	×			9	Backa	
SW9 7/14/16/11/4-10 SW3 × × × × × × × × × × × × × × × × × × ×		*	Î	7/11/16 1		38	×	×					I		
SW9 3/14/10/11/4-10 SW A X X X X X X X X X X X X X X X X X X					Ī	Sw	×	×	×	×			9	SWDWPD	
Date: (YYMMADD) Time AECEVED BY: (Signature)Print) Date: (YYMMADD) Time (signature) (C) on Receipt (C) on Recei			SW9	FAMILIE	0	SW	×	×	28				I		
Date: (YYMM/DD) Time RECEIVED BY: (Signature/Print) Date: (YYMM/DD) Time signature/Print) Date: (YYMM/DD) Time signature (YC) on Receive			CARLE AND	CARROLL OF THE PARTY OF THE PAR	2	SE SE SE SE SE SE SE SE SE SE SE SE SE S	(*)	1	K	*	K	1	R	1	2816 JUL 15 11:56
S S S S S S S S S S S S S S S S S S S	REL	NOUISHED BY: (SI		\mathbb{H}	8	RECEIVED	3Y: (Signaturi	Print)		Date: (YY/MM/DD)	1	jars used and not submitted	Time Samulites	Lab Use Only	
					8	9	3							Camperature (C) on kocoupi	Custody Saal Intact on Cools

200 Bhewaler Road, Smith 115, Bordord, Nova Scotia 848 1G9 Tal: 802-420-0203 Fax; 902-420-8612 Toll Free: 1-810-565-7227 Tal: 709-754-8612 Toll Free: 1-810-565-7227 Tal: 709-754-0203 Fax; 709-754-8612 Toll Free: 1-888-492-7227 49 Elizabeth Avenue, St John's, NL A1A 1W9 465 George Straet, Sydney, NS B1P 1K5 Maxxam A Bureacu Vections Group Company

E-mail: Custo

Tel: 902-567-1255 Fax: 902-539-5504 Toll Free: 1-888-535-7770

CHAIN OF CUSTODY RECORD

2016 JUL 18 15:25 PLEASE PROVIDE ADVANCE NOTICE FOR RUSH PROJECTS Regular TAT (5 business days) Mostanalyses RUSH please specify date (Surcharges will be app OTHER (Please Specify) 11596 Page 1 of Turnaround Time (TAT) Required COMMENTS Regulationy PHN Tier 1 MAXXAM JOB # ush Confirmation # TZATVNV LON OG - ETIO COC#: D P-0011903-0-00-95 TIME: (HH:MM) K X 100, R63657 A06016 7 WAL PARE In water (with Acridina, Quinoline) DATE: (YYYY/MM/DD) Analysis Requested He Location Sampled By: D, III AFEB. oject ID: Metals (Soff) The SE lenged (sidelievA) sidentering book flue) × RECEIVED BY: (Signature/Print) COMEA 8 1 Z A JUCK (bodieM flusted) rasgid let-又又 X Postal Code: Fax. Thencolo X 9 CEVREEER A CENTER OF CEREBOYED 7 0 SE MATTHIX SAMPLES MUST BE KEPT COOL | < 10 °C | FROM TIME OF SAMPLING UNTIL DELIVERY TO MAKKAM 3 VES (NO INTEGRATY TIME (HHUMM) 10m30 SMYD DATE SAMPLED TIME SAMPLED (YYYY/MM/DD) (HH:MM) STY15 10/4/01 11150 Darburgath Proses code BBB 3A7 AVERAGE DATE (YYYY/MM/DD) Postesbuse on 9 03 465 4919 #41009 Exclobe Laboratory Use Only COOLER TEMPERATURES 7 Theop Are REINCRASHED BY: (Separatere/Print) SAMPLE IDENTIFICATION Act Pay 55.17 SWH 503 A)d CUSTOON SEAL. mpany Name: INTACT NAME: one

7

4 in 9 7 10

00

White: Maxxam

Pink: Client

Your P.O. #: A06016 Your Project #: P-0010903 Site#: LAKE GEORGE

Site Location: LAKE GEORGE Your C.O.C. #: 568683-01-01

Attention:Aven Cole

Englobe Corp.
97 Troop Ave
Dartmouth, NS
CANADA B3B 2A7

Report Date: 2016/07/26 Report #: R4082484

Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B6F0147 Received: 2016/07/18, 15:25

Sample Matrix: Water # Samples Received: 3

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Carbonate, Bicarbonate and Hydroxide	2	N/A	2016/07/22	N/A	SM 22 4500-CO2 D
Alkalinity	2	N/A	2016/07/25	ATL SOP 00013	EPA 310.2 R1974 m
Chloride	2	N/A	2016/07/26	ATL SOP 00014	SM 22 4500-Cl- E m
Colour	2	N/A	2016/07/25	ATL SOP 00020	SM 22 2120C m
Conductance - water	2	N/A	2016/07/22	ATL SOP 00004	SM 22 2510B m
Hardness (calculated as CaCO3)	2	N/A	2016/07/22	ATL SOP 00048	SM 22 2340 B
Metals Water Total MS	3	2016/07/21	2016/07/22	ATL SOP 00058	EPA 6020A R1 m
Ion Balance (% Difference)	2	N/A	2016/07/26		Auto Calc.
Anion and Cation Sum	2	N/A	2016/07/26		Auto Calc.
Nitrogen Ammonia - water	2	N/A	2016/07/25	ATL SOP 00015	EPA 350.1 R2 m
Nitrogen - Nitrate + Nitrite	2	N/A	2016/07/26	ATL SOP 00016	USGS SOPINCF0452.2 m
Nitrogen - Nitrite	2	N/A	2016/07/25	ATL SOP 00017	SM 22 4500-NO2- B m
Nitrogen - Nitrate (as N)	2	N/A	2016/07/26	ATL SOP 00018	ASTM D3867
pH (1)	2	N/A	2016/07/22	ATL SOP 00003	SM 22 4500-H+ B m
Phosphorus - ortho	2	N/A	2016/07/25	ATL SOP 00021	EPA 365.2 m
Sat. pH and Langelier Index (@ 20C)	2	N/A	2016/07/26	ATL SOP 00049	Auto Calc.
Sat. pH and Langelier Index (@ 4C)	2	N/A	2016/07/26	ATL SOP 00049	Auto Calc.
Reactive Silica	2	N/A	2016/07/26	ATL SOP 00022	EPA 366.0 m
Sulphate	2	N/A	2016/07/25	ATL SOP 00023	ASTMD516-11 m
Total Dissolved Solids (TDS calc)	2	N/A	2016/07/26		Auto Calc.
Organic carbon - Total (TOC) (2)	2	N/A	2016/07/22	ATL SOP 00037	SM 22 5310C m
Turbidity	2	N/A	2016/07/22	ATL SOP 00011	EPA 180.1 R2 m

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

⁽¹⁾ The APHA Standard Method require pH to be analyzed within 15 minutes of sampling and therefore field analysis is required for compliance. All Laboratory pH analyses in this report are reported past the APHA Standard Method holding time.

⁽²⁾ TOC / DOC present in the sample should be considered as non-purgeable TOC / DOC.

Attention:Aven Cole

Englobe Corp.
97 Troop Ave
Dartmouth, NS
CANADA B3B 2A7

Your P.O. #: A06016 Your Project #: P-0010903 Site#: LAKE GEORGE

Site Location: LAKE GEORGE Your C.O.C. #: 568683-01-01

Report Date: 2016/07/26

Report #: R4082484 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B6F0147 Received: 2016/07/18, 15:25

Encryption Key

Maxxam 26 Jul 2016 17:25:09 -03:00

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Avery Withrow, Project Manager Email: AWithrow@maxxam.ca Phone# (902)420-0203 Ext:233

This report has been generated and distributed using a secure automated process.

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016 Sampler Initials: LL

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Maxxam ID		CSQ877	CSQ877		CSQ878			
Sampling Date		2016/07/15 11:20	2016/07/15 11:20		2016/07/15 07:55			
COC Number		568683-01-01	568683-01-01		568683-01-01			
	UNITS	PW3	PW3 Lab-Dup	RDL	PW8	RDL	QC Batch	MDL
Calculated Parameters								
Anion Sum	me/L	5.54		N/A	2.63	N/A	4583968	N/A
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	9.1		1.0	63	1.0	4583964	0.20
Calculated TDS	mg/L	320		1.0	160	1.0	4583973	0.20
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0		1.0	<1.0	1.0	4583964	0.20
Cation Sum	me/L	5.20		N/A	2.50	N/A	4583968	N/A
Hardness (CaCO3)	mg/L	34		1.0	85	1.0	4583966	1.0
Ion Balance (% Difference)	%	3.17		N/A	2.53	N/A	4583967	N/A
Langelier Index (@ 20C)	N/A	-3.30			-0.469		4583971	
Langelier Index (@ 4C)	N/A	-3.55			-0.719		4583972	
Nitrate (N)	mg/L	0.11		0.050	<0.050	0.050	4583969	N/A
Saturation pH (@ 20C)	N/A	9.50			8.18		4583971	
Saturation pH (@ 4C)	N/A	9.75			8.43		4583972	
Inorganics	•					•		•
Total Alkalinity (Total as CaCO3)	mg/L	9.1		5.0	63	5.0	4589670	N/A
Dissolved Chloride (CI)	mg/L	180		10	41	2.0	4589676	N/A
Colour	TCU	<5.0		5.0	5.4	5.0	4589683	N/A
Nitrate + Nitrite (N)	mg/L	0.11		0.050	<0.050	0.050	4589689	N/A
Nitrite (N)	mg/L	<0.010		0.010	<0.010	0.010	4589692	N/A
Nitrogen (Ammonia Nitrogen)	mg/L	<0.050		0.050	<0.050	0.050	4589837	N/A
Total Organic Carbon (C)	mg/L	0.95		0.50	0.50	0.50	4589466	N/A
Orthophosphate (P)	mg/L	<0.010		0.010	0.016	0.010	4589687	N/A
рН	рН	6.20		N/A	7.71	N/A	4589410	N/A
Reactive Silica (SiO2)	mg/L	7.4		0.50	22	0.50	4589680	N/A
Dissolved Sulphate (SO4)	mg/L	17		2.0	9.9	2.0	4589679	N/A
Turbidity	NTU	1.2		0.10	14	0.10	4589515	0.10
Conductivity	uS/cm	560		1.0	240	1.0	4589411	N/A
Metals								
Total Aluminum (AI)	ug/L	170	170	5.0	7.5	5.0	4587985	N/A
Total Antimony (Sb)	ug/L	<1.0	<1.0	1.0	<1.0	1.0	4587985	N/A
Total Arsenic (As)	ug/L	<1.0	<1.0	1.0	2.3	1.0	4587985	N/A
Total Barium (Ba)	ug/L	41	41	1.0	18	1.0	4587985	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016 Sampler Initials: LL

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Maxxam ID		CSQ877	CSQ877		CSQ878			
Sampling Date		2016/07/15 11:20	2016/07/15 11:20		2016/07/15 07:55			
COC Number		568683-01-01	568683-01-01		568683-01-01			
	UNITS	PW3	PW3 Lab-Dup	RDL	PW8	RDL	QC Batch	MDL
Total Beryllium (Be)	ug/L	<1.0	<1.0	1.0	<1.0	1.0	4587985	N/A
Total Bismuth (Bi)	ug/L	<2.0	<2.0	2.0	<2.0	2.0	4587985	N/A
Total Boron (B)	ug/L	<50	<50	50	<50	50	4587985	N/A
Total Cadmium (Cd)	ug/L	0.11	0.10	0.010	<0.010	0.010	4587985	N/A
Total Calcium (Ca)	ug/L	9400	9300	100	25000	100	4587985	N/A
Total Chromium (Cr)	ug/L	<1.0	<1.0	1.0	<1.0	1.0	4587985	N/A
Total Cobalt (Co)	ug/L	0.62	0.59	0.40	<0.40	0.40	4587985	N/A
Total Copper (Cu)	ug/L	8.3	8.3	2.0	<2.0	2.0	4587985	N/A
Total Iron (Fe)	ug/L	380	380	50	1600	50	4587985	N/A
Total Lead (Pb)	ug/L	1.9	1.8	0.50	<0.50	0.50	4587985	N/A
Total Magnesium (Mg)	ug/L	2700	2700	100	5600	100	4587985	N/A
Total Manganese (Mn)	ug/L	110	110	2.0	260	2.0	4587985	N/A
Total Molybdenum (Mo)	ug/L	<2.0	<2.0	2.0	<2.0	2.0	4587985	N/A
Total Nickel (Ni)	ug/L	<2.0	<2.0	2.0	<2.0	2.0	4587985	N/A
Total Phosphorus (P)	ug/L	<100	<100	100	<100	100	4587985	N/A
Total Potassium (K)	ug/L	1000	1000	100	1600	100	4587985	N/A
Total Selenium (Se)	ug/L	<1.0	<1.0	1.0	<1.0	1.0	4587985	N/A
Total Silver (Ag)	ug/L	<0.10	<0.10	0.10	<0.10	0.10	4587985	N/A
Total Sodium (Na)	ug/L	100000	100000	100	16000	100	4587985	N/A
Total Strontium (Sr)	ug/L	65	65	2.0	150	2.0	4587985	N/A
Total Thallium (TI)	ug/L	<0.10	<0.10	0.10	<0.10	0.10	4587985	N/A
Total Tin (Sn)	ug/L	<2.0	<2.0	2.0	<2.0	2.0	4587985	N/A
Total Titanium (Ti)	ug/L	<2.0	<2.0	2.0	<2.0	2.0	4587985	N/A
Total Uranium (U)	ug/L	<0.10	<0.10	0.10	<0.10	0.10	4587985	N/A
Total Vanadium (V)	ug/L	<2.0	<2.0	2.0	<2.0	2.0	4587985	N/A
Total Zinc (Zn)	ug/L	30	31	5.0	<5.0	5.0	4587985	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016 Sampler Initials: LL

ELEMENTS BY ICP/MS (WATER)

		I			
Maxxam ID		CSQ879			
Sampling Date		2016/07/15 11:15			
COC Number		568683-01-01			
	UNITS	PW3-TAP	RDL	QC Batch	MDL
Metals					
Total Aluminum (Al)	ug/L	160	5.0	4587985	N/A
Total Antimony (Sb)	ug/L	<1.0	1.0	4587985	N/A
Total Arsenic (As)	ug/L	<1.0	1.0	4587985	N/A
Total Barium (Ba)	ug/L	40	1.0	4587985	N/A
Total Beryllium (Be)	ug/L	<1.0	1.0	4587985	N/A
Total Bismuth (Bi)	ug/L	<2.0	2.0	4587985	N/A
Total Boron (B)	ug/L	<50	50	4587985	N/A
Total Cadmium (Cd)	ug/L	0.10	0.010	4587985	N/A
Total Calcium (Ca)	ug/L	9300	100	4587985	N/A
Total Chromium (Cr)	ug/L	<1.0	1.0	4587985	N/A
Total Cobalt (Co)	ug/L	0.61	0.40	4587985	N/A
Total Copper (Cu)	ug/L	69	2.0	4587985	N/A
Total Iron (Fe)	ug/L	180	50	4587985	N/A
Total Lead (Pb)	ug/L	0.69	0.50	4587985	N/A
Total Magnesium (Mg)	ug/L	2600	100	4587985	N/A
Total Manganese (Mn)	ug/L	100	2.0	4587985	N/A
Total Molybdenum (Mo)	ug/L	<2.0	2.0	4587985	N/A
Total Nickel (Ni)	ug/L	<2.0	2.0	4587985	N/A
Total Phosphorus (P)	ug/L	<100	100	4587985	N/A
Total Potassium (K)	ug/L	1000	100	4587985	N/A
Total Selenium (Se)	ug/L	<1.0	1.0	4587985	N/A
Total Silver (Ag)	ug/L	<0.10	0.10	4587985	N/A
Total Sodium (Na)	ug/L	98000	100	4587985	N/A
Total Strontium (Sr)	ug/L	64	2.0	4587985	N/A
Total Thallium (TI)	ug/L	<0.10	0.10	4587985	N/A
Total Tin (Sn)	ug/L	<2.0	2.0	4587985	N/A
Total Titanium (Ti)	ug/L	<2.0	2.0	4587985	N/A
Total Uranium (U)	ug/L	<0.10	0.10	4587985	N/A
Total Vanadium (V)	ug/L	<2.0	2.0	4587985	N/A
Total Zinc (Zn)	ug/L	11	5.0	4587985	N/A
RDL = Reportable Detection	Limit				

QC Batch = Quality Control Batch

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016 Sampler Initials: LL

TEST SUMMARY

Maxxam ID: CSQ877 Sample ID: PW3 Matrix: Water

Collected:

2016/07/15

Shipped:

Received: 2016/07/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4583964	N/A	2016/07/22	Automated Statchk
Alkalinity	KONE	4589670	N/A	2016/07/25	Nancy Rogers
Chloride	KONE	4589676	N/A	2016/07/26	Mary Clancey
Colour	KONE	4589683	N/A	2016/07/25	Nancy Rogers
Conductance - water	AT	4589411	N/A	2016/07/22	Julia McGovern
Hardness (calculated as CaCO3)		4583966	N/A	2016/07/22	Automated Statchk
Metals Water Total MS	CICP/MS	4587985	2016/07/21	2016/07/22	Bryon Angevine
Ion Balance (% Difference)	CALC	4583967	N/A	2016/07/26	Automated Statchk
Anion and Cation Sum	CALC	4583968	N/A	2016/07/26	Automated Statchk
Nitrogen Ammonia - water	KONE	4589837	N/A	2016/07/25	Nancy Rogers
Nitrogen - Nitrate + Nitrite	KONE	4589689	N/A	2016/07/26	Nancy Rogers
Nitrogen - Nitrite	KONE	4589692	N/A	2016/07/25	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4583969	N/A	2016/07/26	Automated Statchk
рН	AT	4589410	N/A	2016/07/22	Julia McGovern
Phosphorus - ortho	KONE	4589687	N/A	2016/07/25	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4583971	N/A	2016/07/26	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4583972	N/A	2016/07/26	Automated Statchk
Reactive Silica	KONE	4589680	N/A	2016/07/26	Nancy Rogers
Sulphate	KONE	4589679	N/A	2016/07/25	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4583973	N/A	2016/07/26	Automated Statchk
Organic carbon - Total (TOC)	TECH	4589466	N/A	2016/07/22	Soraya Merchant
Turbidity	TURB	4589515	N/A	2016/07/22	Julia McGovern

Maxxam ID: CSQ877 Dup Sample ID: PW3 Matrix: Water

Collected: Shipped:

2016/07/15

2016/07/18 Received:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Metals Water Total MS	CICP/MS	4587985	2016/07/21	2016/07/22	Bryon Angevine

Maxxam ID: CSQ878 Sample ID: PW8 Matrix: Water

Collected: 2016/07/15

Shipped:

2016/07/18 Received:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4583964	N/A	2016/07/22	Automated Statchk
Alkalinity	KONE	4589670	N/A	2016/07/25	Nancy Rogers
Chloride	KONE	4589676	N/A	2016/07/26	Mary Clancey
Colour	KONE	4589683	N/A	2016/07/25	Nancy Rogers
Conductance - water	AT	4589411	N/A	2016/07/22	Julia McGovern
Hardness (calculated as CaCO3)		4583966	N/A	2016/07/22	Automated Statchk
Metals Water Total MS	CICP/MS	4587985	2016/07/21	2016/07/22	Bryon Angevine
Ion Balance (% Difference)	CALC	4583967	N/A	2016/07/26	Automated Statchk

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016 Sampler Initials: LL

TEST SUMMARY

Maxxam ID: CSQ878 Sample ID: PW8 Matrix: Water

Collected:

2016/07/15

Shipped:

Received: 2016/07/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Anion and Cation Sum	CALC	4583968	N/A	2016/07/26	Automated Statchk
Nitrogen Ammonia - water	KONE	4589837	N/A	2016/07/25	Nancy Rogers
Nitrogen - Nitrate + Nitrite	KONE	4589689	N/A	2016/07/26	Nancy Rogers
Nitrogen - Nitrite	KONE	4589692	N/A	2016/07/25	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4583969	N/A	2016/07/26	Automated Statchk
рН	AT	4589410	N/A	2016/07/22	Julia McGovern
Phosphorus - ortho	KONE	4589687	N/A	2016/07/25	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4583971	N/A	2016/07/26	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4583972	N/A	2016/07/26	Automated Statchk
Reactive Silica	KONE	4589680	N/A	2016/07/26	Nancy Rogers
Sulphate	KONE	4589679	N/A	2016/07/25	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4583973	N/A	2016/07/26	Automated Statchk
Organic carbon - Total (TOC)	TECH	4589466	N/A	2016/07/22	Soraya Merchant
Turbidity	TURB	4589515	N/A	2016/07/22	Julia McGovern

Maxxam ID: CSQ879 Sample ID: PW3-TAP Matrix: Water

Collected: 2016/07/15

Shipped:

Received: 2016/07/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Metals Water Total MS	CICP/MS	4587985	2016/07/21	2016/07/22	Bryon Angevine

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016 Sampler Initials: LL

GENERAL COMMENTS

Each to	emperature is the	average of up to	hree cooler temper	ratures taken a	at receipt		
	Package 1	2.3°C					
		·	·				
Result	s relate only to th	ne items tested.					

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016 Sampler Initials: LL

QUALITY ASSURANCE REPORT

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
4587985	BAN	Matrix Spike(CSQ878)	Total Aluminum (Al)	2016/07/22		107	%	80 - 120
			Total Antimony (Sb)	2016/07/22		102	%	80 - 120
			Total Arsenic (As)	2016/07/22		100	%	80 - 120
			Total Barium (Ba)	2016/07/22		101	%	80 - 120
			Total Beryllium (Be)	2016/07/22		102	%	80 - 120
			Total Bismuth (Bi)	2016/07/22		102	%	80 - 120
			Total Boron (B)	2016/07/22		103	%	80 - 120
			Total Cadmium (Cd)	2016/07/22		103	%	80 - 120
			Total Calcium (Ca)	2016/07/22		NC	%	80 - 120
			Total Chromium (Cr)	2016/07/22		102	%	80 - 120
			Total Cobalt (Co)	2016/07/22		103	%	80 - 120
			Total Copper (Cu)	2016/07/22		102	%	80 - 120
			Total Iron (Fe)	2016/07/22		NC	%	80 - 120
			Total Lead (Pb)	2016/07/22		100	%	80 - 120
			Total Magnesium (Mg)	2016/07/22		NC	%	80 - 120
			Total Manganese (Mn)	2016/07/22		NC	%	80 - 120
			Total Molybdenum (Mo)	2016/07/22		108	%	80 - 120
			Total Nickel (Ni)	2016/07/22		102	%	80 - 120
			Total Phosphorus (P)	2016/07/22		106	%	80 - 120
			Total Potassium (K)	2016/07/22		106	%	80 - 120
			Total Selenium (Se)	2016/07/22		101	%	80 - 120
			Total Silver (Ag)	2016/07/22		102	%	80 - 120
			Total Sodium (Na)	2016/07/22		NC	%	80 - 120
			Total Strontium (Sr)	2016/07/22		NC	%	80 - 120
			Total Thallium (Tl)	2016/07/22		103	%	80 - 120
			Total Tin (Sn)	2016/07/22		108	%	80 - 120
			Total Titanium (Ti)	2016/07/22		106	%	80 - 120
			Total Uranium (U)	2016/07/22		106	%	80 - 120
			Total Vanadium (V)	2016/07/22		102	%	80 - 120
			Total Zinc (Zn)	2016/07/22		101	%	80 - 120
4587985	BAN	Spiked Blank	Total Aluminum (Al)	2016/07/22		108	%	80 - 120
			Total Antimony (Sb)	2016/07/22		97	%	80 - 120
			Total Arsenic (As)	2016/07/22		99	%	80 - 120
			Total Barium (Ba)	2016/07/22		98	%	80 - 120
			Total Beryllium (Be)	2016/07/22		102	%	80 - 120
			Total Bismuth (Bi)	2016/07/22		102	%	80 - 120
			Total Boron (B)	2016/07/22		103	%	80 - 120
			Total Cadmium (Cd)	2016/07/22		102	%	80 - 120
			Total Calcium (Ca)	2016/07/22		100	%	80 - 120
			Total Chromium (Cr)	2016/07/22		101	%	80 - 120
			Total Cobalt (Co)	2016/07/22		103	%	80 - 120
			Total Copper (Cu)	2016/07/22		102	%	80 - 120
			Total Iron (Fe)	2016/07/22		105	%	80 - 120
			Total Lead (Pb)	2016/07/22		101	%	80 - 120
			Total Magnesium (Mg)	2016/07/22		105	%	80 - 120
			Total Manganese (Mn)	2016/07/22		103	%	80 - 120
			Total Molybdenum (Mo)	2016/07/22		99	%	80 - 120
			Total Nickel (Ni)	2016/07/22		103	%	80 - 120
			Total Phosphorus (P)	2016/07/22		104	%	80 - 120
			Total Potassium (K)	2016/07/22		104	%	80 - 120
			Total Selenium (Se)	2016/07/22		99	%	80 - 120

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016 Sampler Initials: LL

QA/QC Batch Ini	nit QC Type AN Method Blank	Parameter Total Silver (Ag) Total Sodium (Na) Total Strontium (Sr) Total Thallium (TI) Total Tin (Sn) Total Titanium (Ti) Total Uranium (U) Total Vanadium (V) Total Zinc (Zn) Total Aluminum (Al) Total Antimony (Sb) Total Arsenic (As) Total Barium (Ba) Total Beryllium (Be)	Date Analyzed 2016/07/22 2016/07/22 2016/07/22 2016/07/22 2016/07/22 2016/07/22 2016/07/22 2016/07/22 2016/07/22 2016/07/22 2016/07/22 2016/07/22 2016/07/22	8.5, RDL=5.0 <1.0	% Recovery 99 103 101 102 102 105 105 105 101	WNITS % % % % % % % % % ug/L	QC Limits 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120
4587985 BA		Total Sodium (Na) Total Strontium (Sr) Total Thallium (Tl) Total Tin (Sn) Total Titanium (Ti) Total Uranium (U) Total Vanadium (V) Total Zinc (Zn) Total Aluminum (Al) Total Antimony (Sb) Total Arsenic (As) Total Barium (Ba)	2016/07/22 2016/07/22 2016/07/22 2016/07/22 2016/07/22 2016/07/22 2016/07/22 2016/07/22 2016/07/22 2016/07/22	8.5, RDL=5.0 <1.0	103 101 102 102 105 105 105	% % % % % %	80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120
4587985 BA	AN Method Blank	Total Sodium (Na) Total Strontium (Sr) Total Thallium (Tl) Total Tin (Sn) Total Titanium (Ti) Total Uranium (U) Total Vanadium (V) Total Zinc (Zn) Total Aluminum (Al) Total Antimony (Sb) Total Arsenic (As) Total Barium (Ba)	2016/07/22 2016/07/22 2016/07/22 2016/07/22 2016/07/22 2016/07/22 2016/07/22 2016/07/22 2016/07/22	RDL=5.0 <1.0	103 101 102 102 105 105 105	% % % % %	80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120
4587985 BA	AN Method Blank	Total Strontium (Sr) Total Thallium (Tl) Total Tin (Sn) Total Titanium (Ti) Total Uranium (U) Total Vanadium (V) Total Zinc (Zn) Total Aluminum (Al) Total Antimony (Sb) Total Arsenic (As) Total Barium (Ba)	2016/07/22 2016/07/22 2016/07/22 2016/07/22 2016/07/22 2016/07/22 2016/07/22 2016/07/22	RDL=5.0 <1.0	101 102 102 105 105 102	% % % % %	80 - 120 80 - 120 80 - 120 80 - 120 80 - 120
4587985 BA	AN Method Blank	Total Tin (Sn) Total Titanium (Ti) Total Uranium (U) Total Vanadium (V) Total Zinc (Zn) Total Aluminum (Al) Total Antimony (Sb) Total Arsenic (As) Total Barium (Ba)	2016/07/22 2016/07/22 2016/07/22 2016/07/22 2016/07/22 2016/07/22	RDL=5.0 <1.0	102 102 105 105 102	% % % %	80 - 120 80 - 120 80 - 120 80 - 120 80 - 120
4587985 BA	AN Method Blank	Total Tin (Sn) Total Titanium (Ti) Total Uranium (U) Total Vanadium (V) Total Zinc (Zn) Total Aluminum (Al) Total Antimony (Sb) Total Arsenic (As) Total Barium (Ba)	2016/07/22 2016/07/22 2016/07/22 2016/07/22 2016/07/22 2016/07/22	RDL=5.0 <1.0	102 105 105 102	% % %	80 - 120 80 - 120 80 - 120 80 - 120
4587985 BA	AN Method Blank	Total Titanium (Ti) Total Uranium (U) Total Vanadium (V) Total Zinc (Zn) Total Aluminum (Al) Total Antimony (Sb) Total Arsenic (As) Total Barium (Ba)	2016/07/22 2016/07/22 2016/07/22 2016/07/22 2016/07/22	RDL=5.0 <1.0	105 105 102	% % %	80 - 120 80 - 120 80 - 120
4587985 BA	AN Method Blank	Total Uranium (U) Total Vanadium (V) Total Zinc (Zn) Total Aluminum (Al) Total Antimony (Sb) Total Arsenic (As) Total Barium (Ba)	2016/07/22 2016/07/22 2016/07/22 2016/07/22	RDL=5.0 <1.0	105 102	% %	80 - 120 80 - 120
4587985 BA	AN Method Blank	Total Zinc (Zn) Total Aluminum (Al) Total Antimony (Sb) Total Arsenic (As) Total Barium (Ba)	2016/07/22 2016/07/22 2016/07/22 2016/07/22	RDL=5.0 <1.0	102	%	
4587985 BA	AN Method Blank	Total Aluminum (AI) Total Antimony (Sb) Total Arsenic (As) Total Barium (Ba)	2016/07/22 2016/07/22 2016/07/22	RDL=5.0 <1.0			
4587985 BA	AN Method Blank	Total Aluminum (AI) Total Antimony (Sb) Total Arsenic (As) Total Barium (Ba)	2016/07/22 2016/07/22	RDL=5.0 <1.0			
		Total Antimony (Sb) Total Arsenic (As) Total Barium (Ba)	2016/07/22	RDL=5.0 <1.0		O.	
		Total Arsenic (As) Total Barium (Ba)					
		Total Barium (Ba)				ug/L	
		Total Barium (Ba)		<1.0		ug/L	
			2016/07/22	<1.0		ug/L	
			2016/07/22	<1.0		ug/L	
		Total Bismuth (Bi)	2016/07/22	<2.0		ug/L	
		Total Boron (B)	2016/07/22	<50		ug/L	
		Total Cadmium (Cd)	2016/07/22	< 0.010		ug/L	
		Total Calcium (Ca)	2016/07/22	<100		ug/L	
		Total Chromium (Cr)	2016/07/22	<1.0		ug/L	
		Total Cobalt (Co)	2016/07/22	< 0.40		ug/L	
		Total Copper (Cu)	2016/07/22	<2.0		ug/L	
		Total Iron (Fe)	2016/07/22	<50		ug/L	
		Total Lead (Pb)	2016/07/22	<0.50		ug/L	
		Total Magnesium (Mg)	2016/07/22	<100		ug/L	
		Total Manganese (Mn)	2016/07/22	<2.0		ug/L	
		Total Molybdenum (Mo)	2016/07/22	<2.0		ug/L	
		Total Nickel (Ni)	2016/07/22	<2.0		ug/L	
		Total Phosphorus (P)	2016/07/22	<100		ug/L	
		Total Potassium (K)	2016/07/22	<100		ug/L	
		Total Selenium (Se)	2016/07/22	<1.0		ug/L	
		Total Silver (Ag)	2016/07/22	<0.10		ug/L	
		Total Sodium (Na)	2016/07/22	<100		ug/L	
		Total Strontium (Sr)	2016/07/22	<2.0		ug/L	
		Total Thallium (TI)	2016/07/22	<0.10		ug/L	
		Total Tin (Sn)	2016/07/22	<2.0		ug/L	
		Total Titanium (Ti)	2016/07/22	<2.0		ug/L	
		Total Uranium (U)	2016/07/22	<0.10		ug/L	
		Total Vanadium (V)	2016/07/22	<2.0		ug/L	
		Total Zinc (Zn)	2016/07/22	<5.0		ug/L	
4587985 BA	AN RPD - Sample/Sample Dup		2016/07/22	0.12		%	20
.007500 27	and the Danipie, Danipie Dap	Total Antimony (Sb)	2016/07/22	NC		%	20
		Total Arsenic (As)	2016/07/22	NC		%	20
		Total Barium (Ba)	2016/07/22	0.38		%	20
		Total Beryllium (Be)	2016/07/22	NC		%	20
		Total Bismuth (Bi)	2016/07/22	NC		%	20
		Total Boron (B)	2016/07/22	NC		%	20
		Total Cadmium (Cd)	2016/07/22	8.9		%	20
		Total Calcium (Ca)	2016/07/22	0.79		%	20
		Total Chromium (Cr)	2016/07/22	NC		%	20
		Total Cobalt (Co)	2016/07/22	NC		% %	20

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016 Sampler Initials: LL

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			Total Copper (Cu)	2016/07/22	NC		%	20
			Total Iron (Fe)	2016/07/22	0.17		%	20
			Total Lead (Pb)	2016/07/22	NC		%	20
			Total Magnesium (Mg)	2016/07/22	0.065		%	20
			Total Manganese (Mn)	2016/07/22	0.57		%	20
			Total Molybdenum (Mo)	2016/07/22	NC		%	20
			Total Nickel (Ni)	2016/07/22	NC		%	20
			Total Phosphorus (P)	2016/07/22	NC		%	20
			Total Potassium (K)	2016/07/22	0.79		%	20
			Total Selenium (Se)	2016/07/22	NC		%	20
			Total Silver (Ag)	2016/07/22	NC		%	20
			Total Sodium (Na)	2016/07/22	0.23		%	20
			Total Strontium (Sr)	2016/07/22	0.97		%	20
			Total Thallium (TI)	2016/07/22	NC		%	20
			Total Tin (Sn)	2016/07/22	NC		%	20
			Total Titanium (Ti)	2016/07/22	NC		%	20
			Total Uranium (U)	2016/07/22	NC		%	20
			Total Vanadium (V)	2016/07/22	NC		%	20
			Total Zinc (Zn)	2016/07/22	3.6		%	20
4589410	JMV	QC Standard	рН	2016/07/22		100	%	97 - 103
4589410	JMV	RPD - Sample/Sample Dup	pH	2016/07/22	0.70		%	N/A
4589411	JMV	Spiked Blank	Conductivity	2016/07/22		100	%	80 - 120
4589411	JMV	Method Blank	Conductivity	2016/07/22	1.1,		uS/cm	
			,		RDL=1.0		,	
4589411	JMV	RPD - Sample/Sample Dup	Conductivity	2016/07/22	0.66		%	25
4589466	SMT	Matrix Spike	Total Organic Carbon (C)	2016/07/22		99	%	80 - 120
4589466	SMT	Spiked Blank	Total Organic Carbon (C)	2016/07/22		112	%	80 - 120
4589466	SMT	Method Blank	Total Organic Carbon (C)	2016/07/22	<0.50		mg/L	
4589466	SMT	RPD - Sample/Sample Dup		2016/07/22	NC		%	20
4589515	JMV	QC Standard	Turbidity	2016/07/22		98	%	80 - 120
4589515	JMV	Spiked Blank	Turbidity	2016/07/22		98	%	80 - 120
4589515	JMV	Method Blank	Turbidity	2016/07/22	< 0.10		NTU	
4589515	JMV	RPD - Sample/Sample Dup	· · · · · · · · · · · · · · · · · · ·	2016/07/22	3.4		%	20
4589670	NRG	Matrix Spike	Total Alkalinity (Total as CaCO3)	2016/07/25		NC	%	80 - 120
4589670	NRG	Spiked Blank	Total Alkalinity (Total as CaCO3)	2016/07/25		99	%	80 - 120
4589670	NRG	Method Blank	Total Alkalinity (Total as CaCO3)	2016/07/25	<5.0		mg/L	
4589670	NRG		Total Alkalinity (Total as CaCO3)	2016/07/25	0.51		%	25
4589676			Dissolved Chloride (CI)	2016/07/26		NC	%	80 - 120
4589676	MCN	Spiked Blank	Dissolved Chloride (CI)	2016/07/26		102	%	80 - 120
4589676		Method Blank	Dissolved Chloride (CI)	2016/07/26	1.1,		mg/L	
					RDL=1.0			
4589676	MCN	RPD - Sample/Sample Dup	Dissolved Chloride (CI)	2016/07/26	0.91		%	25
4589679	NRG	Matrix Spike	Dissolved Sulphate (SO4)	2016/07/25	- 	NC	%	80 - 120
4589679	NRG	Spiked Blank	Dissolved Sulphate (SO4)	2016/07/25		110	%	80 - 120
4589679	NRG	Method Blank	Dissolved Sulphate (SO4)	2016/07/25	<2.0		mg/L	
4589679	NRG	RPD - Sample/Sample Dup	, , ,	2016/07/25	2.1		%	25
4589680	NRG	Matrix Spike	Reactive Silica (SiO2)	2016/07/26		NC	%	80 - 120
4589680	NRG	Spiked Blank	Reactive Silica (SiO2)	2016/07/26		100	%	80 - 120
4589680	NRG	Method Blank	Reactive Silica (SiO2)	2016/07/26	<0.50		mg/L	
4589680	NRG	RPD - Sample/Sample Dup	` ,	2016/07/26	2.4		%	25
	NRG	Spiked Blank	Colour	2016/07/25		97	%	80 - 120

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016 Sampler Initials: LL

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
4589683	NRG	Method Blank	Colour	2016/07/25	<5.0		TCU	
4589683	NRG	RPD - Sample/Sample Dup	Colour	2016/07/25	NC		%	20
4589687	NRG	Matrix Spike	Orthophosphate (P)	2016/07/25		89	%	80 - 120
4589687	NRG	Spiked Blank	Orthophosphate (P)	2016/07/25		95	%	80 - 120
4589687	NRG	Method Blank	Orthophosphate (P)	2016/07/25	< 0.010		mg/L	
4589687	NRG	RPD - Sample/Sample Dup	Orthophosphate (P)	2016/07/25	NC		%	25
4589689	NRG	Matrix Spike	Nitrate + Nitrite (N)	2016/07/26		98	%	80 - 120
4589689	NRG	Spiked Blank	Nitrate + Nitrite (N)	2016/07/26		93	%	80 - 120
4589689	NRG	Method Blank	Nitrate + Nitrite (N)	2016/07/26	< 0.050		mg/L	
4589689	NRG	RPD - Sample/Sample Dup	Nitrate + Nitrite (N)	2016/07/26	0.91		%	25
4589692	NRG	Matrix Spike	Nitrite (N)	2016/07/25		94	%	80 - 120
4589692	NRG	Spiked Blank	Nitrite (N)	2016/07/25		98	%	80 - 120
4589692	NRG	Method Blank	Nitrite (N)	2016/07/25	< 0.010		mg/L	
4589692	NRG	RPD - Sample/Sample Dup	Nitrite (N)	2016/07/25	NC		%	25
4589837	NRG	Matrix Spike	Nitrogen (Ammonia Nitrogen)	2016/07/25		103	%	80 - 120
4589837	NRG	Spiked Blank	Nitrogen (Ammonia Nitrogen)	2016/07/25		106	%	80 - 120
4589837	NRG	Method Blank	Nitrogen (Ammonia Nitrogen)	2016/07/25	< 0.050		mg/L	
4589837	NRG	RPD - Sample/Sample Dup	Nitrogen (Ammonia Nitrogen)	2016/07/25	NC		%	20

N/A = Not Applicable

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than 2x that of the native sample concentration).

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016 Sampler Initials: LL

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Mike MacGillivray, Scientific Specialist (Inorganics)

Mike Mac Galle

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Page 14 of 14

Your P.O. #: A06016

Your Project #: P-00903-0-00-205

Your C.O.C. #: D 11595

Attention:Aven Cole

Englobe Corp.
97 Troop Ave
Dartmouth, NS
CANADA B3B 2A7

Report Date: 2016/07/26

Report #: R4082082 Version: 1 - Partial

CERTIFICATE OF ANALYSIS – PARTIAL RESULTS

MAXXAM JOB #: B6F0237 Received: 2016/07/18, 15:25 Sample Matrix: SEDIMENT # Samples Received: 6

AnalysesDateDateMetals Solids Acid Extr. ICPMS62016/07/222016/07/22ATL SOP 00058EPA 6020A R1 m

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Maxxam 26 Jul 2016 15:06:49 -03:00

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Avery Withrow, Project Manager Email: AWithrow@maxxam.ca Phone# (902)420-0203 Ext:233

This was at her been generated and distributed using a secure outcometed assess

This report has been generated and distributed using a secure automated process.

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Englobe Corp.
Client Project #: P-00903-0-00-205
Your P.O. #: A06016
Sampler Initials: LL

ELEMENTS BY ATOMIC SPECTROSCOPY (SEDIMENT)

Maxxam ID		CSR357	CSR357	CSR358	CSR359	CSR360	CSR361		
Sampling Date		2016/07/15	2016/07/15	2016/07/14	2016/07/15	2016/07/15	2016/07/15		
Sampling Date		13:30	13:30	10:35	10:45	14:00	11:50		
COC Number		D 11595	D 11595	D 11595	D 11595	D 11595	D 11595		
	UNITS	SW1	SW1 Lab-Dup	SW2	SW3	SW12	SW14	RDL	QC Batch
Metals									
Acid Extractable Aluminum (AI)	mg/kg	12000	12000	2800	5300	6600	13000	10	4589661
Acid Extractable Antimony (Sb)	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	4589661
Acid Extractable Arsenic (As)	mg/kg	2.7	2.8	4.0	8.0	2.5	21	2.0	4589661
Acid Extractable Barium (Ba)	mg/kg	15	15	21	33	44	19	5.0	4589661
Acid Extractable Beryllium (Be)	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	4589661
Acid Extractable Bismuth (Bi)	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	4589661
Acid Extractable Boron (B)	mg/kg	<50	<50	<50	<50	<50	<50	50	4589661
Acid Extractable Cadmium (Cd)	mg/kg	<0.30	<0.30	<0.30	<0.30	0.52	<0.30	0.30	4589661
Acid Extractable Chromium (Cr)	mg/kg	26	27	3.2	9.5	7.0	25	2.0	4589661
Acid Extractable Cobalt (Co)	mg/kg	9.1	9.0	1.5	4.4	2.9	24	1.0	4589661
Acid Extractable Copper (Cu)	mg/kg	5.8	6.2	5.9	6.4	14	6.5	2.0	4589661
Acid Extractable Iron (Fe)	mg/kg	19000	19000	3000	16000	7900	31000	50	4589661
Acid Extractable Lead (Pb)	mg/kg	13	13	20	13	41	26	0.50	4589661
Acid Extractable Lithium (Li)	mg/kg	27	28	<2.0	7.3	<2.0	25	2.0	4589661
Acid Extractable Manganese (Mn)	mg/kg	370	370	68	400	66	1100	2.0	4589661
Acid Extractable Mercury (Hg)	mg/kg	0.10	<0.10	0.24	0.12	0.34	<0.10	0.10	4589661
Acid Extractable Molybdenum (Mo)	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	4589661
Acid Extractable Nickel (Ni)	mg/kg	24	24	4.1	7.8	10	21	2.0	4589661
Acid Extractable Rubidium (Rb)	mg/kg	6.4	6.2	2.3	6.5	2.6	5.4	2.0	4589661
Acid Extractable Selenium (Se)	mg/kg	<1.0	<1.0	<1.0	<1.0	1.1	1.2	1.0	4589661
Acid Extractable Silver (Ag)	mg/kg	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	4589661
Acid Extractable Strontium (Sr)	mg/kg	7.8	8.2	23	20	24	11	5.0	4589661
Acid Extractable Thallium (TI)	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	4589661
Acid Extractable Tin (Sn)	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	4589661
Acid Extractable Uranium (U)	mg/kg	0.40	0.38	0.26	0.48	0.67	0.62	0.10	4589661
Acid Extractable Vanadium (V)	mg/kg	17	17	3.5	9.1	11	37	2.0	4589661
Acid Extractable Zinc (Zn)	mg/kg	49	52	17	38	25	52	5.0	4589661

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Englobe Corp.
Client Project #: P-00903-0-00-205
Your P.O. #: A06016
Sampler Initials: LL

ELEMENTS BY ATOMIC SPECTROSCOPY (SEDIMENT)

Maxxam ID		CSR362		
Sampling Date		2016/07/14		
Sampling Date		17:30		
COC Number		D 11595		
	UNITS	BACK2	RDL	QC Batcl
Metals				
Acid Extractable Aluminum (Al)	mg/kg	10000	10	4589662
Acid Extractable Antimony (Sb)	mg/kg	<2.0	2.0	4589662
Acid Extractable Arsenic (As)	mg/kg	21	2.0	4589663
Acid Extractable Barium (Ba)	mg/kg	55	5.0	4589663
Acid Extractable Beryllium (Be)	mg/kg	<2.0	2.0	4589663
Acid Extractable Bismuth (Bi)	mg/kg	<2.0	2.0	4589663
Acid Extractable Boron (B)	mg/kg	<50	50	4589663
Acid Extractable Cadmium (Cd)	mg/kg	<0.30	0.30	4589663
Acid Extractable Chromium (Cr)	mg/kg	23	2.0	4589663
Acid Extractable Cobalt (Co)	mg/kg	9.6	1.0	4589663
Acid Extractable Copper (Cu)	mg/kg	8.6	2.0	4589663
Acid Extractable Iron (Fe)	mg/kg	36000	50	4589663
Acid Extractable Lead (Pb)	mg/kg	10	0.50	4589663
Acid Extractable Lithium (Li)	mg/kg	35	2.0	4589663
Acid Extractable Manganese (Mn)	mg/kg	270	2.0	4589663
Acid Extractable Mercury (Hg)	mg/kg	<0.10	0.10	4589663
Acid Extractable Molybdenum (Mo)	mg/kg	2.2	2.0	4589663
Acid Extractable Nickel (Ni)	mg/kg	12	2.0	4589663
Acid Extractable Rubidium (Rb)	mg/kg	27	2.0	4589663
Acid Extractable Selenium (Se)	mg/kg	<1.0	1.0	4589663
Acid Extractable Silver (Ag)	mg/kg	<0.50	0.50	4589663
Acid Extractable Strontium (Sr)	mg/kg	5.6	5.0	4589663
Acid Extractable Thallium (TI)	mg/kg	0.14	0.10	4589663
Acid Extractable Tin (Sn)	mg/kg	<2.0	2.0	4589663
Acid Extractable Uranium (U)	mg/kg	0.69	0.10	4589663
Acid Extractable Vanadium (V)	mg/kg	47	2.0	4589663
Acid Extractable Zinc (Zn)	mg/kg	39	5.0	458966

Englobe Corp.
Client Project #: P-00903-0-00-205
Your P.O. #: A06016
Sampler Initials: LL

GENERAL COMMENTS

Each t	emperature is the	average of up to	hree cooler temperatures taken at receipt
	Package 1	2.3°C	
Result	s relate only to th	e items tested.	

Englobe Corp.
Client Project #: P-00903-0-00-205

Your P.O. #: A06016 Sampler Initials: LL

QUALITY ASSURANCE REPORT

QA/QC				Date				
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
4589661	BAN	Matrix Spike [CSR357-01]	Acid Extractable Antimony (Sb)	2016/07/22		101	%	75 - 125
			Acid Extractable Arsenic (As)	2016/07/22		103	%	75 - 125
			Acid Extractable Barium (Ba)	2016/07/22		117	%	75 - 125
			Acid Extractable Beryllium (Be)	2016/07/22		113	%	75 - 125
			Acid Extractable Bismuth (Bi)	2016/07/22		107	%	75 - 125
			Acid Extractable Boron (B)	2016/07/22		100	%	75 - 125
			Acid Extractable Cadmium (Cd)	2016/07/22		110	%	75 - 125
			Acid Extractable Chromium (Cr)	2016/07/22		NC	%	75 - 125
			Acid Extractable Cobalt (Co)	2016/07/22		107	%	75 - 125
			Acid Extractable Copper (Cu)	2016/07/22		108	%	75 - 125
			Acid Extractable Lead (Pb)	2016/07/22		107	%	75 - 125
			Acid Extractable Lithium (Li)	2016/07/22		NC	%	75 - 125
			Acid Extractable Manganese (Mn)	2016/07/22		NC	%	75 - 125
			Acid Extractable Mercury (Hg)	2016/07/22		100	%	75 - 125
			Acid Extractable Molybdenum (Mo)	2016/07/22		109	%	75 - 125
			Acid Extractable Nickel (Ni)	2016/07/22		111	%	75 - 125
			Acid Extractable Rubidium (Rb)	2016/07/22		103	%	75 - 125
			Acid Extractable Selenium (Se)	2016/07/22		103	%	75 - 125
			Acid Extractable Silver (Ag)	2016/07/22		103	%	75 - 125
			Acid Extractable Strontium (Sr)	2016/07/22		112	%	75 - 125
			Acid Extractable Thallium (TI)	2016/07/22		108	%	75 - 125
			Acid Extractable Tin (Sn)	2016/07/22		109	%	75 - 125
			Acid Extractable Uranium (U)	2016/07/22		108	%	75 - 125
			Acid Extractable Vanadium (V)	2016/07/22		109	%	75 - 125
			Acid Extractable Zinc (Zn)	2016/07/22		NC	%	75 - 125
4589661	BAN	Spiked Blank	Acid Extractable Antimony (Sb)	2016/07/22		100	%	75 - 125
		·	Acid Extractable Arsenic (As)	2016/07/22		101	%	75 - 125
			Acid Extractable Barium (Ba)	2016/07/22		107	%	75 - 125
			Acid Extractable Beryllium (Be)	2016/07/22		109	%	75 - 125
			Acid Extractable Bismuth (Bi)	2016/07/22		102	%	75 - 125
			Acid Extractable Boron (B)	2016/07/22		105	%	75 - 125
			Acid Extractable Cadmium (Cd)	2016/07/22		105	%	75 - 125
			Acid Extractable Chromium (Cr)	2016/07/22		103	%	75 - 125
			Acid Extractable Cobalt (Co)	2016/07/22		103	%	75 - 125
			Acid Extractable Copper (Cu)	2016/07/22		102	%	75 - 125
			Acid Extractable Lead (Pb)	2016/07/22		103	%	75 - 125
			Acid Extractable Lithium (Li)	2016/07/22		101	%	75 - 125
			Acid Extractable Manganese (Mn)	2016/07/22		102	%	75 - 125
			Acid Extractable Mercury (Hg)	2016/07/22		102	%	75 - 125
			Acid Extractable Molybdenum (Mo)	2016/07/22		104	%	75 - 125
			Acid Extractable Nickel (Ni)	2016/07/22		103	%	75 - 125
			Acid Extractable Rubidium (Rb)	2016/07/22		100	%	75 - 125
			Acid Extractable Selenium (Se)	2016/07/22		102	%	75 - 125
			Acid Extractable Silver (Ag)	2016/07/22		98	%	75 - 125
			Acid Extractable Strontium (Sr)	2016/07/22		102	%	75 - 125
			Acid Extractable Thallium (TI)	2016/07/22		106	%	75 - 125
			Acid Extractable Tin (Sn)	2016/07/22		105	%	75 - 125
			Acid Extractable Uranium (U)	2016/07/22		104	%	75 - 125
			Acid Extractable Vanadium (V)	2016/07/22		101	%	75 - 125
			Acid Extractable Zinc (Zn)	2016/07/22		113	%	75 - 125
4589661	BAN	Method Blank	Acid Extractable Aluminum (AI)	2016/07/22	<10		mg/kg	
			Acid Extractable Antimony (Sb)	2016/07/22	<2.0		mg/kg	

Englobe Corp.

Client Project #: P-00903-0-00-205

Your P.O. #: A06016 Sampler Initials: LL

			QUALITY ASSURANCE REPO	• • •		
QA/QC				Date		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery UNITS QC Limits
			Acid Extractable Arsenic (As)	2016/07/22	<2.0	mg/kg
			Acid Extractable Barium (Ba)	2016/07/22	<5.0	mg/kg
			Acid Extractable Beryllium (Be)	2016/07/22	<2.0	mg/kg
			Acid Extractable Bismuth (Bi)	2016/07/22	<2.0	mg/kg
			Acid Extractable Boron (B)	2016/07/22	<50	mg/kg
			Acid Extractable Cadmium (Cd)	2016/07/22	< 0.30	mg/kg
			Acid Extractable Chromium (Cr)	2016/07/22	<2.0	mg/kg
			Acid Extractable Cobalt (Co)	2016/07/22	<1.0	mg/kg
			Acid Extractable Copper (Cu)	2016/07/22	<2.0	mg/kg
			Acid Extractable Iron (Fe)	2016/07/22	<50	mg/kg
			Acid Extractable Lead (Pb)	2016/07/22	< 0.50	mg/kg
			Acid Extractable Lithium (Li)	2016/07/22	<2.0	mg/kg
			Acid Extractable Manganese (Mn)	2016/07/22	<2.0	mg/kg
			Acid Extractable Mercury (Hg)	2016/07/22	< 0.10	mg/kg
			Acid Extractable Molybdenum (Mo)	2016/07/22	<2.0	mg/kg
			Acid Extractable Nickel (Ni)	2016/07/22	<2.0	mg/kg
			Acid Extractable Rubidium (Rb)	2016/07/22	<2.0	mg/kg
			Acid Extractable Selenium (Se)	2016/07/22	<1.0	mg/kg
			Acid Extractable Silver (Ag)	2016/07/22	< 0.50	mg/kg
			Acid Extractable Strontium (Sr)	2016/07/22	<5.0	mg/kg
			Acid Extractable Thallium (Tl)	2016/07/22	< 0.10	mg/kg
			Acid Extractable Tin (Sn)	2016/07/22	<2.0	mg/kg
			Acid Extractable Uranium (U)	2016/07/22	< 0.10	mg/kg
			Acid Extractable Vanadium (V)	2016/07/22	<2.0	mg/kg
			Acid Extractable Zinc (Zn)	2016/07/22	<5.0	mg/kg
4589661	BAN	RPD [CSR357-01]	Acid Extractable Aluminum (Al)	2016/07/22	1.0	% 35
			Acid Extractable Antimony (Sb)	2016/07/22	NC	% 35
			Acid Extractable Arsenic (As)	2016/07/22	NC	% 35
			Acid Extractable Barium (Ba)	2016/07/22	NC	% 35
			Acid Extractable Beryllium (Be)	2016/07/22	NC	% 35
			Acid Extractable Bismuth (Bi)	2016/07/22	NC	% 35
			Acid Extractable Boron (B)	2016/07/22	NC	% 35
			Acid Extractable Cadmium (Cd)	2016/07/22	NC	% 35
			Acid Extractable Chromium (Cr)	2016/07/22	1.9	% 35
			Acid Extractable Cobalt (Co)	2016/07/22	1.6	% 35
			Acid Extractable Copper (Cu)	2016/07/22	NC	% 35
			Acid Extractable Iron (Fe)	2016/07/22	1.1	% 35
			Acid Extractable Lead (Pb)	2016/07/22	0.74	% 35
			Acid Extractable Lithium (Li)	2016/07/22	2.2	% 35
			Acid Extractable Manganese (Mn)	2016/07/22	0.52	% 35
			Acid Extractable Mercury (Hg)	2016/07/22	NC	% 35
			Acid Extractable Molybdenum (Mo)	2016/07/22	NC	% 35
			Acid Extractable Nickel (Ni)	2016/07/22	0.96	% 35
			Acid Extractable Rubidium (Rb)	2016/07/22	NC	% 35
			Acid Extractable Selenium (Se)	2016/07/22	NC	% 35
			Acid Extractable Silver (Ag)	2016/07/22	NC	% 35
			Acid Extractable Strontium (Sr)	2016/07/22	NC	% 35
			Acid Extractable Thallium (Tl)	2016/07/22	NC	% 35
			Acid Extractable Tin (Sn)	2016/07/22	NC	% 35
			Acid Extractable Uranium (U)	2016/07/22	NC	% 35
			Acid Extractable Vanadium (V)	2016/07/22	0.11	% 35
			. Tota Extractable Validation (V)	2010/07/22	0.11	,° 33

Englobe Corp.
Client Project #: P-00903-0-00-205
Your P.O. #: A06016
Sampler Initials: LL

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC				Date			
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery UNIT	S QC Limits
			Acid Extractable Zinc (Zn)	2016/07/22	6.0	%	35

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than 2x that of the native sample concentration).

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

ATL FCD 00149 / 20

11595 Page

COC#: D

200 Bluewater Road, Suite 10ft, Bedford, Nova Sootia B48 1G9 Teil, 802 420,0203 Fax; 902 420-9812 Toil Free; 1-800-855-7227 49 Elizabeth Averue, St. John's, N.L. A1A 1W8 Teil, 709-754-0203 Fax; 709-754-980(2 Toil Free; 1-888-492-7227 465 Goorge Street, Sydney, NS B1P 1K5 Maxxam A Bureau Verfass Group Company

E-mail: Custo

CHAIN OF CUSTODY RECORD Tet 002-587-1255 Fax 902-539-6504 Tall Free 1-888-535-7770

2816 JUL 18 15:25 PLEASE PROVIDE AUVANCE NOTICE FOR RUSH PROJEC B6F0237 Regular TAT (5 business days) Most analyse RUSH please specify date (Surcharges will be ap (Please Specify) COMMENTS PIRI Tier 1 OTHER SEVLANA TON OO -010 X P-00905-0-00-305 TIME: (HH:MM) OC X Accord 363657 500. 580 トト B Potable Water BTEK, VPH, LOW, 6V81 TE.H DATE: (YYYY/MM/DD) Analysis Requested P.O. W/ AFEB. ibe Incation pject (D: Metals (Soll) N N K OX. 1 N MARKEN Ason Cola/List MIOMEA RECEIVED BY: (Signature/Print) SANE Postal Code Fak. GEARSTERS GERSTER OUT 6/3/5 Bh30 SED -> MATRIX SAMPLES MUST BE KEPT COOL (< 18 °C) FROM TIME OF SAMPLING UNTIL DELIVERY TO MAXXAN 6 TIME: (BH:NIM) TIME SAMPLED TIME SAMPLED (YOYVY/MM/DD) (HOUMM) 4/3/15 10h45 WANSI-1400 SEMO1 HI14/91 W7/15 11/2 05×151 47479 Conglobe long Sa hearth Parent code B3B 3A7 DATE: [YYYY/MM/DD] 1918- 301 609 ans olerason 609 me Laboratory Use Only COOLER TEMPERATURES 100014# Act Day 97 Troop RELINQUISHED BY: (Stgnature/Print) SAMPLE IDENTIFICATION SEL SRK SWB SW13 533 500

N

9

00

White: Maxxam

Pink: Client

Your P.O. #: A06016

Your Project #: P-00903-0-00-205

Your C.O.C. #: D 11595

Attention:Aven Cole

Englobe Corp.
97 Troop Ave
Dartmouth, NS
CANADA B3B 2A7

Report Date: 2016/07/29

Report #: R4085911 Version: 2 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B6F0237 Received: 2016/07/18, 15:25 Sample Matrix: SEDIMENT # Samples Received: 6

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Metals Solids Acid Extr. ICPMS	6	2016/07/22	2016/07/22	ATL SOP 00058	EPA 6020A R1 m
Particle size in solids (pipette&sieve) (1)	3	N/A	2016/07/28	ATL SOP 00012	MSAMS 1978 m
Particle size in solids (pipette&sieve) (1)	3	N/A	2016/07/29	ATL SOP 00012	MSAMS 1978 m

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

(1) Note: Graphical representation of larger fractions (PHI-4, PHI -3 and PHI -2) not applicable unless these optional parameters are specifically requested.

Encryption Key

Maxxam 29 Jul 2016 10:41:02 -03:00

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Avery Withrow, Project Manager Email: AWithrow@maxxam.ca Phone# (902)420-0203 Ext:233

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Englobe Corp.
Client Project #: P-00903-0-00-205
Your P.O. #: A06016
Sampler Initials: LL

RESULTS OF ANALYSES OF SEDIMENT

Maxxam ID		CSR357	CSR357		CSR358	CSR359	CSR360			
Sampling Date		2016/07/15 13:30	2016/07/15 13:30		2016/07/14 10:35	2016/07/15 10:45	2016/07/15 14:00			
COC Number		D 11595	D 11595		D 11595	D 11595	D 11595			
	UNITS	SW1	SW1 Lab-Dup	QC Batch	SW2	SW3	SW12	RDL	QC Batch	MDL
Inorganics		·	<u> </u>	<u> </u>	·	·	·		<u> </u>	
< -1 Phi (2 mm)	%	100	100	4589403	96	97	94	0.10	4589400	N/A
< 0 Phi (1 mm)	%	97	96	4589403	85	87	84	0.10	4589400	N/A
< +1 Phi (0.5 mm)	%	94	93	4589403	78	78	73	0.10	4589400	N/A
< +2 Phi (0.25 mm)	%	92	90	4589403	73	71	67	0.10	4589400	N/A
< +3 Phi (0.12 mm)	%	85	84	4589403	70	59	63	0.10	4589400	N/A
< +4 Phi (0.062 mm)	%	77	76	4589403	69	47	61	0.10	4589400	N/A
< +5 Phi (0.031 mm)	%	76	74	4589403	67	39	61	0.10	4589400	N/A
< +6 Phi (0.016 mm)	%	57	55	4589403	66	24	59	0.10	4589400	N/A
< +7 Phi (0.0078 mm)	%	27	23	4589403	54	13	56	0.10	4589400	N/A
< +8 Phi (0.0039 mm)	%	18	19	4589403	50	10	53	0.10	4589400	N/A
< +9 Phi (0.0020 mm)	%	11	12	4589403	44	5.5	55	0.10	4589400	N/A
Gravel	%	<0.10	0.20	4589403	3.9	3.4	6.0	0.10	4589400	N/A
Sand	%	23	24	4589403	28	50	33	0.10	4589400	N/A
Silt	%	60	57	4589403	18	36	8.0	0.10	4589400	N/A
Clay	%	18	19	4589403	50	10	53	0.10	4589400	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Englobe Corp.
Client Project #: P-00903-0-00-205
Your P.O. #: A06016
Sampler Initials: LL

RESULTS OF ANALYSES OF SEDIMENT

Maxxam ID		CSR361	CSR362			
Sampling Date		2016/07/15	2016/07/14			
Sampling Date		11:50	17:30			
COC Number		D 11595	D 11595			
	UNITS	SW14	ВАСК2	RDL	QC Batch	MDL
Inorganics						
< -1 Phi (2 mm)	%	95	71	0.10	4589403	N/A
< 0 Phi (1 mm)	%	88	45	0.10	4589403	N/A
< +1 Phi (0.5 mm)	%	81	25	0.10	4589403	N/A
< +2 Phi (0.25 mm)	%	71	14	0.10	4589403	N/A
< +3 Phi (0.12 mm)	%	62	9.6	0.10	4589403	N/A
< +4 Phi (0.062 mm)	%	52	5.7	0.10	4589403	N/A
< +5 Phi (0.031 mm)	%	49	5.3	0.10	4589403	N/A
< +6 Phi (0.016 mm)	%	31	3.5	0.10	4589403	N/A
< +7 Phi (0.0078 mm)	%	11	2.0	0.10	4589403	N/A
< +8 Phi (0.0039 mm)	%	8.2	1.6	0.10	4589403	N/A
< +9 Phi (0.0020 mm)	%	4.6	1.1	0.10	4589403	N/A
Gravel	%	5.4	29	0.10	4589403	N/A
Sand	%	42	65	0.10	4589403	N/A
Silt	%	44	4.1	0.10	4589403	N/A
Clay	%	8.2	1.6	0.10	4589403	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Englobe Corp.

Client Project #: P-00903-0-00-205

Your P.O. #: A06016 Sampler Initials: LL

ELEMENTS BY ATOMIC SPECTROSCOPY (SEDIMENT)

Maxxam ID CSR357 CSR357 CSR358 CSR359 CSR360 CSR361 Sampling Date 2016/07/15 2016/07/15 2016/07/14 2016/07/15 2016/07/15 2016/07/15 2016/07/15 2016/07/15 11:50 COC Number D 11595 RD		
13:30 13:30 10:35 10:45 14:00 11:50		
COC Number D 11595 D 1		
LINITS SW1 SW2 SW2 SW12 SW14 PD		
Lab-Dup Sw2 Sw3 Sw12 Sw14 RD	L QC Batch	MDL
Metals		
Acid Extractable Aluminum (Al) mg/kg 12000 12000 2800 5300 6600 13000 10	4589661	N/A
Acid Extractable Antimony (Sb)	4589661	N/A
Acid Extractable Arsenic (As) mg/kg 2.7 2.8 4.0 8.0 2.5 21 2.0	4589661	N/A
Acid Extractable Barium (Ba) mg/kg 15 15 21 33 44 19 5.0	4589661	N/A
Acid Extractable Beryllium (Be)	4589661	N/A
Acid Extractable Bismuth (Bi) mg/kg <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 2.0	4589661	N/A
Acid Extractable Boron (B)	4589661	N/A
Acid Extractable Cadmium (Cd)	0 4589661	N/A
Acid Extractable Chromium (Cr) mg/kg 26 27 3.2 9.5 7.0 25 2.0	4589661	N/A
Acid Extractable Cobalt (Co) mg/kg 9.1 9.0 1.5 4.4 2.9 24 1.0	4589661	N/A
Acid Extractable Copper (Cu) mg/kg 5.8 6.2 5.9 6.4 14 6.5 2.0	4589661	N/A
Acid Extractable Iron (Fe) mg/kg 19000 19000 3000 16000 7900 31000 50	4589661	N/A
Acid Extractable Lead (Pb) mg/kg 13 20 13 41 26 0.5	0 4589661	N/A
Acid Extractable Lithium (Li) mg/kg 27 28 <2.0 7.3 <2.0 25 2.0	4589661	N/A
Acid Extractable Manganese (Mn) mg/kg 370 370 68 400 66 1100 2.0	4589661	N/A
Acid Extractable Mercury (Hg)	0 4589661	N/A
Acid Extractable Molybdenum (Mo) mg/kg <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0	4589661	N/A
Acid Extractable Nickel (Ni) mg/kg 24 24 4.1 7.8 10 21 2.0	4589661	N/A
Acid Extractable Rubidium (Rb) mg/kg 6.4 6.2 2.3 6.5 2.6 5.4 2.0	4589661	N/A
Acid Extractable Selenium (Se) mg/kg <1.0 <1.0 <1.0 1.1 1.2 1.0	4589661	N/A
Acid Extractable Silver (Ag) mg/kg <0.50 <0.50 <0.50 <0.50 <0.50 <0.50	0 4589661	N/A
Acid Extractable Strontium (Sr) mg/kg 7.8 8.2 23 20 24 11 5.0	4589661	N/A
Acid Extractable Thallium (TI)	0 4589661	N/A
Acid Extractable Tin (Sn) mg/kg <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 2.0	4589661	N/A
Acid Extractable Uranium (U) mg/kg 0.40 0.38 0.26 0.48 0.67 0.62 0.1	0 4589661	N/A
Acid Extractable Vanadium (V) mg/kg 17 17 3.5 9.1 11 37 2.0	4589661	N/A
Acid Extractable Zinc (Zn) mg/kg 49 52 17 38 25 52 5.0	4589661	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Englobe Corp. Client Project #: P-00903-0-00-205 Your P.O. #: A06016 Sampler Initials: LL

ELEMENTS BY ATOMIC SPECTROSCOPY (SEDIMENT)

Moteals	Maxxam ID		CSR362			
17:30	Consulting Bate		2016/07/14			
Moteals	Sampling Date		17:30			
Metals Acid Extractable Aluminum (AI) mg/kg 10000 10 4589661 N/A Acid Extractable Antimony (Sb) mg/kg <2.0 2.0 4589661 N/A Acid Extractable Arsenic (As) mg/kg 21 2.0 4589661 N/A Acid Extractable Barium (Ba) mg/kg 55 5.0 4589661 N/A Acid Extractable Beryllium (Be) mg/kg <2.0 2.0 4589661 N/A Acid Extractable Bismuth (Bi) mg/kg <2.0 2.0 4589661 N/A Acid Extractable Bismuth (Bi) mg/kg <50 50 4589661 N/A Acid Extractable Boron (B) mg/kg <0.30 0.30 4589661 N/A Acid Extractable Codmium (Cd) mg/kg <0.30 0.30 4589661 N/A Acid Extractable Chromium (Cr) mg/kg 23 2.0 4589661 N/A Acid Extractable Cobalt (Co) mg/kg 8.6 2.0 4589661 N/A Acid Extractable Cobalt (Co)	COC Number		D 11595			
Acid Extractable Aluminum (AI) mg/kg 10000 10 4589661 N/A Acid Extractable Antimony (Sb) mg/kg 22.0 2.0 4589661 N/A Acid Extractable Arsenic (As) mg/kg 21 2.0 4589661 N/A Acid Extractable Barium (Ba) mg/kg 55 5.0 4589661 N/A Acid Extractable Beryllium (Be) mg/kg 22.0 2.0 4589661 N/A Acid Extractable Bismuth (Bi) mg/kg 22.0 2.0 4589661 N/A Acid Extractable Bismuth (Bi) mg/kg 22.0 2.0 4589661 N/A Acid Extractable Cadmium (Cd) mg/kg 23 2.0 4589661 N/A Acid Extractable Cobalt (Co) mg/kg 9.6 1.0 4589661 N/A Acid Extractable Copper (Cu) mg/kg 8.6 2.0 4589661 N/A Acid Extractable Iron (Fe) mg/kg 36000 50 4589661 N/A Acid Extractable Lead (Pb) mg/kg 10 0.50 4589661 N/A Acid Extractable Lithium (Li) mg/kg 35 2.0 4589661 N/A Acid Extractable Manganese (Mn) mg/kg 270 2.0 4589661 N/A Acid Extractable Manganese (Mn) mg/kg 270 2.0 4589661 N/A Acid Extractable Molybdenum (Mo) mg/kg 2.2 2.0 4589661 N/A Acid Extractable Molybdenum (Mo) mg/kg 2.2 2.0 4589661 N/A Acid Extractable Nickel (Ni) mg/kg 2.2 2.0 4589661 N/A Acid Extractable Rubidium (Rb) mg/kg 2.2 2.0 4589661 N/A Acid Extractable Selenium (Se) mg/kg 2.1 0 1.0 4589661 N/A Acid Extractable Selenium (Se) mg/kg 2.2 2.0 4589661 N/A Acid Extractable Silver (Ag) mg/kg 2.2 2.0 4589661 N/A Acid Extractable Silver (Ag) mg/kg 2.0 1.0 1.0 4589661 N/A Acid Extractable Silver (Ag) mg/kg 2.2 2.0 4589661 N/A Acid Extractable Silver (Ag) mg/kg 2.2 2.0 4589661 N/A Acid Extractable Vinclum (Ti) mg/kg 2.0 2.0 4589661 N/A Acid Extractable Vinclum (Vinclum Mg/kg 2.0 2.0 4589661 N/A Acid Extractable Vinclum (Vinclum Mg/kg 2.0 2.0 4589661 N/A Acid Extractable Vinclum (Vinclum Mg/kg 2.0 2.0 4589661 N/A Acid Extractable Vinclum (Vinclum Mg/kg 2.0 2.0 4589661 N/A Acid Extractable Vinclum (Vinclum Mg/kg 2.0 2.0 4589661 N/A Acid Extractable Vinclum (Vinclum Mg/kg 2.0 2.0 4589661 N/A Acid Extractable Vinclum (Vinclum Mg/kg 2.0 2.0 4589661 N/A Acid Extractable Vinclum (Vinclum Mg/kg 2.0 2.0 4589661 N/A Acid Extractable Vinclum (Vinclum Mg/kg 2.0 2.0 4589661 N/A Acid Extractable Vinclum (Vinclum Mg/kg		UNITS	BACK2	RDL	QC Batch	MDL
Acid Extractable Antimony (Sb) mg/kg	Metals					
Acid Extractable Arsenic (As) Acid Extractable Barium (Ba) Acid Extractable Barium (Ba) Acid Extractable Barium (Ba) Acid Extractable Beryllium (Be) Acid Extractable Bismuth (Bi) Acid Extractable Bismuth (Bi) Acid Extractable Bismuth (Bi) Acid Extractable Boron (B) Acid Extractable Cadmium (Cd) Acid Extractable Chromium (Cr) Acid Extractable Cobalt (Co) Acid Extractable Copper (Cu) Acid Extractable Iron (Fe) Acid Extractable Lead (Pb) Acid Extractable Lead (Pb) Acid Extractable Lithium (Li) Acid Extractable Manganese (Mn) Acid Extractable Manganese (Mn) Acid Extractable Mercury (Hg) Acid Extractable Molybdenum (Mo) Acid Extractable Nickel (Ni) Acid Extractable Selenium (Se) Macid Extractable Selenium (Se) Macid Extractable Silver (Ag) Macid Extractable Strontium (Sr) Macid Extractable Tin (Sn) Macid Extractable Tin (Sn) Macid Extractable Vanadium (V) Macid Extractable Vanadium (V) Macid Extractable Vanadium (V) Macid Extractable Vanadium (V) Macid Extractable Detection Limit QC Batch = Quality Control Batch	Acid Extractable Aluminum (Al)	mg/kg	10000	10	4589661	N/A
Acid Extractable Barium (Ba) mg/kg 55 5.0 4589661 N/A Acid Extractable Beryllium (Be) mg/kg <2.0 2.0 4589661 N/A Acid Extractable Bismuth (Bi) mg/kg <2.0 2.0 4589661 N/A Acid Extractable Boron (B) mg/kg <50 50 4589661 N/A Acid Extractable Cadmium (Cd) mg/kg <0.30 0.30 4589661 N/A Acid Extractable Chromium (Cr) mg/kg 23 2.0 4589661 N/A Acid Extractable Cobalt (Co) mg/kg 9.6 1.0 4589661 N/A Acid Extractable Copper (Cu) mg/kg 8.6 2.0 4589661 N/A Acid Extractable Iron (Fe) mg/kg 36000 50 4589661 N/A Acid Extractable Lead (Pb) mg/kg 10 0.50 4589661 N/A Acid Extractable Lithium (Li) mg/kg 35 2.0 4589661 N/A Acid Extractable Manganese (Mn) mg/kg 270 2.0 4589661 N/A Acid Extractable Mercury (Hg) mg/kg <0.10 0.10 4589661 N/A Acid Extractable Molybdenum (Mo) mg/kg 2.2 2.0 4589661 N/A Acid Extractable Nickel (Ni) mg/kg 12 2.0 4589661 N/A Acid Extractable Rubidium (Rb) mg/kg 12 2.0 4589661 N/A Acid Extractable Selenium (Se) mg/kg <0.50 0.50 4589661 N/A Acid Extractable Selenium (Se) mg/kg <0.50 0.50 4589661 N/A Acid Extractable Silver (Ag) mg/kg <0.50 0.50 4589661 N/A Acid Extractable Silver (Ag) mg/kg <0.50 0.50 4589661 N/A Acid Extractable Silver (Ag) mg/kg <0.50 0.50 4589661 N/A Acid Extractable Thallium (Ti) mg/kg 0.14 0.10 4589661 N/A Acid Extractable Thallium (Ti) mg/kg 0.14 0.10 4589661 N/A Acid Extractable Thallium (Ti) mg/kg 0.14 0.10 4589661 N/A Acid Extractable Thallium (Ti) mg/kg 0.14 0.10 4589661 N/A Acid Extractable Vanadium (V) mg/kg 47 2.0 4589661 N/A Acid Extractable Vanadium (V) mg/kg 39 5.0 4589661 N/A Acid Extractable Detection Limit QC Batch = Quality Control Batch	Acid Extractable Antimony (Sb)	mg/kg	<2.0	2.0	4589661	N/A
Acid Extractable Beryllium (Be) mg/kg <2.0 2.0 4589661 N/A Acid Extractable Bismuth (Bi) mg/kg <50 50 4589661 N/A Acid Extractable Cadmium (Cd) mg/kg <0.30 0.30 4589661 N/A Acid Extractable Chromium (Cr) mg/kg 23 2.0 4589661 N/A Acid Extractable Cobalt (Co) mg/kg 9.6 1.0 4589661 N/A Acid Extractable Copper (Cu) mg/kg 8.6 2.0 4589661 N/A Acid Extractable Copper (Cu) mg/kg 8.6 2.0 4589661 N/A Acid Extractable Lead (Pb) mg/kg 10 0.50 4589661 N/A Acid Extractable Lithium (Li) mg/kg 35 2.0 4589661 N/A Acid Extractable Manganese (Mn) mg/kg 270 2.0 4589661 N/A Acid Extractable Mercury (Hg) mg/kg 0.10 0.10 4589661 N/A Acid Extractable Molybdenum (Mo) mg/kg 2.2 2.0 4589661 N/A Acid Extractable Nickel (Ni) mg/kg 12 2.0 4589661 N/A Acid Extractable Rubidium (Rb) mg/kg 27 2.0 4589661 N/A Acid Extractable Rubidium (Rb) mg/kg 12 2.0 4589661 N/A Acid Extractable Selenium (Se) mg/kg 47 2.0 4589661 N/A Acid Extractable Strontium (Sr) mg/kg 0.69 0.10 4589661 N/A Acid Extractable Tin (Sn) mg/kg 47 2.0 4589661 N/A Acid Extractable Uranium (U) mg/kg 0.69 0.10 4589661 N/A Acid Extractable Vanadium (V) mg/kg 39 5.0 4589661 N/A Acid Extractable Detection Limit QC Batch = Quality Control Batch	Acid Extractable Arsenic (As)	mg/kg	21	2.0	4589661	N/A
Acid Extractable Bismuth (Bi) mg/kg <2.0 2.0 4589661 N/A Acid Extractable Cadmium (Cd) mg/kg <0.30 0.30 4589661 N/A Acid Extractable Chromium (Cr) mg/kg 23 2.0 4589661 N/A Acid Extractable Cobalt (Co) mg/kg 9.6 1.0 4589661 N/A Acid Extractable Copper (Cu) mg/kg 8.6 2.0 4589661 N/A Acid Extractable Iron (Fe) mg/kg 36000 50 4589661 N/A Acid Extractable Lead (Pb) mg/kg 36000 50 4589661 N/A Acid Extractable Lithium (Li) mg/kg 35 2.0 4589661 N/A Acid Extractable Manganese (Mn) mg/kg 270 2.0 4589661 N/A Acid Extractable Mercury (Hg) mg/kg 20.10 0.10 4589661 N/A Acid Extractable Molybdenum (Mo) mg/kg 2.2 2.0 4589661 N/A Acid Extractable Nickel (Ni) mg/kg 12 2.0 4589661 N/A Acid Extractable Rubidium (Rb) mg/kg 27 2.0 4589661 N/A Acid Extractable Selenium (Se) mg/kg 41.0 1.0 4589661 N/A Acid Extractable Selenium (Se) mg/kg 41.0 1.0 4589661 N/A Acid Extractable Selenium (Se) mg/kg 5.6 5.0 4589661 N/A Acid Extractable Silver (Ag) mg/kg 5.6 5.0 4589661 N/A Acid Extractable Thallium (TI) mg/kg 0.14 0.10 4589661 N/A Acid Extractable Thallium (TI) mg/kg 0.14 0.10 4589661 N/A Acid Extractable Thallium (TI) mg/kg 0.14 0.10 4589661 N/A Acid Extractable Tin (Sn) mg/kg 47 2.0 4589661 N/A Acid Extractable Vanadium (V) mg/kg 0.69 0.10 4589661 N/A Acid Extractable Vanadium (V) mg/kg 47 2.0 4589661 N/A Acid Extractable Dranium (U) mg/kg 0.69 0.10 4589661 N/A Acid Extractable Dranium (U) mg/kg 0.69 0.10 4589661 N/A Acid Extractable Dranium (U) mg/kg 0.69 0.10 4589661 N/A Acid Extractable Dranium (U) mg/kg 0.69 0.10 4589661 N/A Acid Extractable Dranium (U) mg/kg 0.69 0.10 4589661 N/A Acid Extractable Dranium (U) mg/kg 0.69 0.10 4589661 N/A Acid Extractable Dranium (U) mg/kg 0.69 0.10 4589661 N/A Acid Extractable Dranium (U) mg/kg 0.69 0.10 4589661 N/A Acid Extractable Dranium (U) mg/kg 0.69 0.10 4589661 N/A Acid Extractable Dranium (U) mg/kg 0.69 0.10 4589661 N/A Acid Extractable Dranium (U) mg/kg 0.69 0.10 4589661 N/A Acid Extractable Dranium (U) mg/kg 0.69 0.10 4589661 N/A	Acid Extractable Barium (Ba)	mg/kg	55	5.0	4589661	N/A
Acid Extractable Boron (B) mg/kg <50 50 4589661 N/A Acid Extractable Cadmium (Cd) mg/kg 23 2.0 4589661 N/A Acid Extractable Chromium (Cr) mg/kg 23 2.0 4589661 N/A Acid Extractable Cobalt (Co) mg/kg 9.6 1.0 4589661 N/A Acid Extractable Copper (Cu) mg/kg 8.6 2.0 4589661 N/A Acid Extractable Iron (Fe) mg/kg 36000 50 4589661 N/A Acid Extractable Lead (Pb) mg/kg 10 0.50 4589661 N/A Acid Extractable Lithium (Li) mg/kg 35 2.0 4589661 N/A Acid Extractable Manganese (Mn) mg/kg 270 2.0 4589661 N/A Acid Extractable Mercury (Hg) mg/kg <0.10 0.10 4589661 N/A Acid Extractable Molybdenum (Mo) mg/kg 2.2 2.0 4589661 N/A Acid Extractable Nickel (Ni) mg/kg 12 2.0 4589661 N/A Acid Extractable Rubidium (Rb) mg/kg 12 2.0 4589661 N/A Acid Extractable Selenium (Se) mg/kg 41.0 1.0 4589661 N/A Acid Extractable Selenium (Se) mg/kg <0.50 0.50 4589661 N/A Acid Extractable Silver (Ag) mg/kg <0.50 0.50 4589661 N/A Acid Extractable Strontium (Sr) mg/kg 5.6 5.0 4589661 N/A Acid Extractable Thallium (TI) mg/kg 0.14 0.10 4589661 N/A Acid Extractable Thallium (TI) mg/kg 0.14 0.10 4589661 N/A Acid Extractable Tin (Sn) mg/kg 0.69 0.10 4589661 N/A Acid Extractable Uranium (U) mg/kg 0.69 0.10 4589661 N/A Acid Extractable Vanadium (V) mg/kg 47 2.0 4589661 N/A Acid Extractable Vanadium (V) mg/kg 47 2.0 4589661 N/A Acid Extractable Detection Limit Acid Extractable Detection Limit Acid Extractable Detection Limit Acid Extractable Detection Limit Acid Extractable Quality Control Batch	Acid Extractable Beryllium (Be)	mg/kg	<2.0	2.0	4589661	N/A
Acid Extractable Cadmium (Cd) mg/kg	Acid Extractable Bismuth (Bi)	mg/kg	<2.0	2.0	4589661	N/A
Acid Extractable Chromium (Cr) mg/kg 23 2.0 4589661 N/A Acid Extractable Cobalt (Co) mg/kg 9.6 1.0 4589661 N/A Acid Extractable Copper (Cu) mg/kg 8.6 2.0 4589661 N/A Acid Extractable Iron (Fe) mg/kg 36000 50 4589661 N/A Acid Extractable Lead (Pb) mg/kg 10 0.50 4589661 N/A Acid Extractable Lithium (Li) mg/kg 35 2.0 4589661 N/A Acid Extractable Manganese (Mn) mg/kg 270 2.0 4589661 N/A Acid Extractable Mercury (Hg) mg/kg 40.10 0.10 4589661 N/A Acid Extractable Molybdenum (Mo) mg/kg 2.2 2.0 4589661 N/A Acid Extractable Nickel (Ni) mg/kg 12 2.0 4589661 N/A Acid Extractable Rubidium (Rb) mg/kg 27 2.0 4589661 N/A Acid Extractable Rubidium (Rb) mg/kg 27 2.0 4589661 N/A Acid Extractable Selenium (Se) mg/kg 41.0 1.0 4589661 N/A Acid Extractable Silver (Ag) mg/kg 41.0 1.0 4589661 N/A Acid Extractable Strontium (Sr) mg/kg 5.6 5.0 4589661 N/A Acid Extractable Thallium (Tl) mg/kg 0.14 0.10 4589661 N/A Acid Extractable Thallium (Tl) mg/kg 0.14 0.10 4589661 N/A Acid Extractable Tin (Sn) mg/kg 47 2.0 4589661 N/A Acid Extractable Uranium (U) mg/kg 0.69 0.10 4589661 N/A Acid Extractable Vanadium (V) mg/kg 47 2.0 4589661 N/A Acid Extractable Detection Limit ACID Batch = Quality Control Batch	Acid Extractable Boron (B)	mg/kg	<50	50	4589661	N/A
Acid Extractable Cobalt (Co) mg/kg 9.6 1.0 4589661 N/A Acid Extractable Copper (Cu) mg/kg 8.6 2.0 4589661 N/A Acid Extractable Iron (Fe) mg/kg 36000 50 4589661 N/A Acid Extractable Lead (Pb) mg/kg 10 0.50 4589661 N/A Acid Extractable Lithium (Li) mg/kg 35 2.0 4589661 N/A Acid Extractable Manganese (Mn) mg/kg 270 2.0 4589661 N/A Acid Extractable Mercury (Hg) mg/kg 0.10 0.10 4589661 N/A Acid Extractable Molybdenum (Mo) mg/kg 2.2 2.0 4589661 N/A Acid Extractable Nickel (Ni) mg/kg 12 2.0 4589661 N/A Acid Extractable Rubidium (Rb) mg/kg 27 2.0 4589661 N/A Acid Extractable Selenium (Se) mg/kg 41.0 1.0 4589661 N/A Acid Extractable Silver (Ag) mg/kg <0.50 0.50 4589661 N/A Acid Extractable Silver (Ag) mg/kg 5.6 5.0 4589661 N/A Acid Extractable Thallium (Tl) mg/kg 0.14 0.10 4589661 N/A Acid Extractable Tin (Sn) mg/kg <2.0 2.0 4589661 N/A Acid Extractable Uranium (U) mg/kg 0.69 0.10 4589661 N/A Acid Extractable Vanadium (V) mg/kg 47 2.0 4589661 N/A Acid Extractable Vanadium (V) mg/kg 39 5.0 4589661 N/A Acid Extractable Detection Limit ACID Batch = Quality Control Batch	Acid Extractable Cadmium (Cd)	mg/kg	<0.30	0.30	4589661	N/A
Acid Extractable Copper (Cu) mg/kg 8.6 2.0 4589661 N/A Acid Extractable Iron (Fe) mg/kg 36000 50 4589661 N/A Acid Extractable Lead (Pb) mg/kg 10 0.50 4589661 N/A Acid Extractable Lithium (Li) mg/kg 35 2.0 4589661 N/A Acid Extractable Manganese (Mn) mg/kg 270 2.0 4589661 N/A Acid Extractable Mercury (Hg) mg/kg <0.10 0.10 4589661 N/A Acid Extractable Molybdenum (Mo) mg/kg 2.2 2.0 4589661 N/A Acid Extractable Nickel (Ni) mg/kg 12 2.0 4589661 N/A Acid Extractable Rubidium (Rb) mg/kg 27 2.0 4589661 N/A Acid Extractable Rubidium (Rb) mg/kg 27 2.0 4589661 N/A Acid Extractable Selenium (Se) mg/kg <1.0 1.0 4589661 N/A Acid Extractable Silver (Ag) mg/kg <0.50 0.50 4589661 N/A Acid Extractable Strontium (Sr) mg/kg 5.6 5.0 4589661 N/A Acid Extractable Tin (Sn) mg/kg 0.14 0.10 4589661 N/A Acid Extractable Tin (Sn) mg/kg <2.0 2.0 4589661 N/A Acid Extractable Uranium (U) mg/kg 0.69 0.10 4589661 N/A Acid Extractable Vanadium (V) mg/kg 47 2.0 4589661 N/A Acid Extractable Detection Limit ACID Batch = Quality Control Batch	Acid Extractable Chromium (Cr)	mg/kg	23	2.0	4589661	N/A
Acid Extractable Iron (Fe) mg/kg 36000 50 4589661 N/A Acid Extractable Lead (Pb) mg/kg 10 0.50 4589661 N/A Acid Extractable Lithium (Li) mg/kg 35 2.0 4589661 N/A Acid Extractable Manganese (Mn) mg/kg 270 2.0 4589661 N/A Acid Extractable Mercury (Hg) mg/kg <0.10 0.10 4589661 N/A Acid Extractable Molybdenum (Mo) mg/kg 2.2 2.0 4589661 N/A Acid Extractable Nickel (Ni) mg/kg 12 2.0 4589661 N/A Acid Extractable Rubidium (Rb) mg/kg 27 2.0 4589661 N/A Acid Extractable Rubidium (Rb) mg/kg 27 2.0 4589661 N/A Acid Extractable Selenium (Se) mg/kg <1.0 1.0 4589661 N/A Acid Extractable Silver (Ag) mg/kg <0.50 0.50 4589661 N/A Acid Extractable Strontium (Sr) mg/kg 5.6 5.0 4589661 N/A Acid Extractable Thallium (Tl) mg/kg 0.14 0.10 4589661 N/A Acid Extractable Tin (Sn) mg/kg <2.0 2.0 4589661 N/A Acid Extractable Uranium (U) mg/kg 0.69 0.10 4589661 N/A Acid Extractable Vanadium (V) mg/kg 47 2.0 4589661 N/A Acid Extractable Zinc (Zn) mg/kg 39 5.0 4589661 N/A ACID Extractable Detection Limit ACID Batch = Quality Control Batch	Acid Extractable Cobalt (Co)	mg/kg	9.6	1.0	4589661	N/A
Acid Extractable Lead (Pb) mg/kg 10 0.50 4589661 N/A Acid Extractable Lithium (Li) mg/kg 35 2.0 4589661 N/A Acid Extractable Manganese (Mn) mg/kg 270 2.0 4589661 N/A Acid Extractable Mercury (Hg) mg/kg <0.10 0.10 4589661 N/A Acid Extractable Molybdenum (Mo) mg/kg 2.2 2.0 4589661 N/A Acid Extractable Nickel (Ni) mg/kg 12 2.0 4589661 N/A Acid Extractable Rubidium (Rb) mg/kg 27 2.0 4589661 N/A Acid Extractable Selenium (Se) mg/kg <1.0 1.0 4589661 N/A Acid Extractable Silver (Ag) mg/kg <0.50 0.50 4589661 N/A Acid Extractable Silver (Ag) mg/kg <0.50 0.50 4589661 N/A Acid Extractable Strontium (Sr) mg/kg 5.6 5.0 4589661 N/A Acid Extractable Thallium (TI) mg/kg 0.14 0.10 4589661 N/A Acid Extractable Tin (Sn) mg/kg <2.0 2.0 4589661 N/A Acid Extractable Uranium (U) mg/kg 0.69 0.10 4589661 N/A Acid Extractable Vanadium (V) mg/kg 47 2.0 4589661 N/A Acid Extractable Vanadium (V) mg/kg 39 5.0 4589661 N/A Acid Extractable Detection Limit ACID Batch = Quality Control Batch	Acid Extractable Copper (Cu)	mg/kg	8.6	2.0	4589661	N/A
Acid Extractable Lithium (Li) mg/kg 35 2.0 4589661 N/A Acid Extractable Manganese (Mn) mg/kg 270 2.0 4589661 N/A Acid Extractable Mercury (Hg) mg/kg <0.10 0.10 4589661 N/A Acid Extractable Molybdenum (Mo) mg/kg 2.2 2.0 4589661 N/A Acid Extractable Nickel (Ni) mg/kg 12 2.0 4589661 N/A Acid Extractable Rubidium (Rb) mg/kg 27 2.0 4589661 N/A Acid Extractable Selenium (Se) mg/kg <1.0 1.0 4589661 N/A Acid Extractable Silver (Ag) mg/kg <0.50 0.50 4589661 N/A Acid Extractable Silver (Ag) mg/kg 5.6 5.0 4589661 N/A Acid Extractable Strontium (Sr) mg/kg 5.6 5.0 4589661 N/A Acid Extractable Thallium (TI) mg/kg 0.14 0.10 4589661 N/A Acid Extractable Tin (Sn) mg/kg <2.0 2.0 4589661 N/A Acid Extractable Uranium (U) mg/kg 0.69 0.10 4589661 N/A Acid Extractable Vanadium (V) mg/kg 47 2.0 4589661 N/A Acid Extractable Vanadium (V) mg/kg 39 5.0 4589661 N/A Acid Extractable Detection Limit ACID Batch = Quality Control Batch	Acid Extractable Iron (Fe)	mg/kg	36000	50	4589661	N/A
Acid Extractable Manganese (Mn) mg/kg 270 2.0 4589661 N/A Acid Extractable Mercury (Hg) mg/kg <0.10 0.10 4589661 N/A Acid Extractable Molybdenum (Mo) mg/kg 2.2 2.0 4589661 N/A Acid Extractable Nickel (Ni) mg/kg 12 2.0 4589661 N/A Acid Extractable Rubidium (Rb) mg/kg 27 2.0 4589661 N/A Acid Extractable Selenium (Se) mg/kg <1.0 1.0 4589661 N/A Acid Extractable Silver (Ag) mg/kg <0.50 0.50 4589661 N/A Acid Extractable Strontium (Sr) mg/kg 5.6 5.0 4589661 N/A Acid Extractable Thallium (TI) mg/kg 0.14 0.10 4589661 N/A Acid Extractable Tin (Sn) mg/kg <2.0 2.0 4589661 N/A Acid Extractable Uranium (U) mg/kg 0.69 0.10 4589661 N/A Acid Extractable Vanadium (V) mg/kg 47 2.0 4589661 N/A Acid Extractable Vanadium (V) mg/kg 39 5.0 4589661 N/A Acid Extractable Detection Limit ACID Batch = Quality Control Batch	Acid Extractable Lead (Pb)	mg/kg	10	0.50	4589661	N/A
Acid Extractable Mercury (Hg) mg/kg <0.10 0.10 4589661 N/A Acid Extractable Molybdenum (Mo) mg/kg 2.2 2.0 4589661 N/A Acid Extractable Nickel (Ni) mg/kg 12 2.0 4589661 N/A Acid Extractable Rubidium (Rb) mg/kg 27 2.0 4589661 N/A Acid Extractable Selenium (Se) mg/kg <1.0 1.0 4589661 N/A Acid Extractable Silver (Ag) mg/kg <0.50 0.50 4589661 N/A Acid Extractable Strontium (Sr) mg/kg 5.6 5.0 4589661 N/A Acid Extractable Thallium (TI) mg/kg 0.14 0.10 4589661 N/A Acid Extractable Tin (Sn) mg/kg <2.0 2.0 4589661 N/A Acid Extractable Uranium (U) mg/kg 0.69 0.10 4589661 N/A Acid Extractable Vanadium (V) mg/kg 47 2.0 4589661 N/A Acid Extractable Vanadium (V) mg/kg 39 5.0 4589661 N/A Acid Extractable Detection Limit ACID Batch = Quality Control Batch	Acid Extractable Lithium (Li)	mg/kg	35	2.0	4589661	N/A
Acid Extractable Nickel (Ni) mg/kg 12 2.0 4589661 N/A Acid Extractable Rubidium (Rb) mg/kg 27 2.0 4589661 N/A Acid Extractable Selenium (Se) mg/kg 27 2.0 4589661 N/A Acid Extractable Selenium (Se) mg/kg <1.0 1.0 4589661 N/A Acid Extractable Silver (Ag) mg/kg <0.50 0.50 4589661 N/A Acid Extractable Strontium (Sr) mg/kg 5.6 5.0 4589661 N/A Acid Extractable Thallium (TI) mg/kg 0.14 0.10 4589661 N/A Acid Extractable Tin (Sn) mg/kg <2.0 2.0 4589661 N/A Acid Extractable Uranium (U) mg/kg 0.69 0.10 4589661 N/A Acid Extractable Vanadium (V) mg/kg 47 2.0 4589661 N/A Acid Extractable Vanadium (V) mg/kg 39 5.0 4589661 N/A Acid Extractable Detection Limit ACID Batch = Quality Control Batch	Acid Extractable Manganese (Mn)	mg/kg	270	2.0	4589661	N/A
Acid Extractable Nickel (Ni) mg/kg 12 2.0 4589661 N/A Acid Extractable Rubidium (Rb) mg/kg 27 2.0 4589661 N/A Acid Extractable Selenium (Se) mg/kg <1.0 1.0 4589661 N/A Acid Extractable Silver (Ag) mg/kg <0.50 0.50 4589661 N/A Acid Extractable Strontium (Sr) mg/kg 5.6 5.0 4589661 N/A Acid Extractable Thallium (Tl) mg/kg 0.14 0.10 4589661 N/A Acid Extractable Tin (Sn) mg/kg <2.0 2.0 4589661 N/A Acid Extractable Uranium (U) mg/kg 0.69 0.10 4589661 N/A Acid Extractable Vanadium (V) mg/kg 0.69 0.10 4589661 N/A Acid Extractable Vanadium (V) mg/kg 0.69 0.10 4589661 N/A Acid Extractable Vanadium (V) mg/kg 0.69 0.10 4589661 N/A Acid Extractable Vanadium (V) mg/kg 39 5.0 4589661 N/A Acid Extractable Detection Limit ACC Batch = Quality Control Batch	Acid Extractable Mercury (Hg)	mg/kg	<0.10	0.10	4589661	N/A
Acid Extractable Rubidium (Rb) mg/kg 27 2.0 4589661 N/A Acid Extractable Selenium (Se) mg/kg <1.0 1.0 4589661 N/A Acid Extractable Silver (Ag) mg/kg <0.50 0.50 4589661 N/A Acid Extractable Strontium (Sr) mg/kg 5.6 5.0 4589661 N/A Acid Extractable Thallium (Tl) mg/kg 0.14 0.10 4589661 N/A Acid Extractable Tin (Sn) mg/kg <2.0 2.0 4589661 N/A Acid Extractable Uranium (U) mg/kg 0.69 0.10 4589661 N/A Acid Extractable Uranium (V) mg/kg 47 2.0 4589661 N/A Acid Extractable Vanadium (V) mg/kg 47 2.0 4589661 N/A Acid Extractable Zinc (Zn) mg/kg 39 5.0 4589661 N/A RDL = Reportable Detection Limit QC Batch = Quality Control Batch	Acid Extractable Molybdenum (Mo)	mg/kg	2.2	2.0	4589661	N/A
Acid Extractable Selenium (Se) mg/kg <1.0 1.0 4589661 N/A Acid Extractable Silver (Ag) mg/kg <0.50 0.50 4589661 N/A Acid Extractable Strontium (Sr) mg/kg 5.6 5.0 4589661 N/A Acid Extractable Thallium (TI) mg/kg 0.14 0.10 4589661 N/A Acid Extractable Tin (Sn) mg/kg <2.0 2.0 4589661 N/A Acid Extractable Uranium (U) mg/kg 0.69 0.10 4589661 N/A Acid Extractable Vanadium (V) mg/kg 47 2.0 4589661 N/A Acid Extractable Vanadium (V) mg/kg 39 5.0 4589661 N/A Acid Extractable Detection Limit ACID Extractable Detection Limit ACID Extractable Detection Limit ACID Extractable QC Batch = Quality Control Batch	Acid Extractable Nickel (Ni)	mg/kg	12	2.0	4589661	N/A
Acid Extractable Silver (Ag) mg/kg <0.50 0.50 4589661 N/A Acid Extractable Strontium (Sr) mg/kg 5.6 5.0 4589661 N/A Acid Extractable Thallium (TI) mg/kg 0.14 0.10 4589661 N/A Acid Extractable Tin (Sn) mg/kg <2.0 2.0 4589661 N/A Acid Extractable Uranium (U) mg/kg 0.69 0.10 4589661 N/A Acid Extractable Vanadium (V) mg/kg 47 2.0 4589661 N/A Acid Extractable Vanadium (V) mg/kg 39 5.0 4589661 N/A Acid Extractable Zinc (Zn) mg/kg 39 5.0 4589661 N/A ACID Extractable Detection Limit ACID Extractable Detection Limit ACID Extractable Detection Limit ACID Extractable Uranium (V) Mg/kg 39 5.0 4589661 N/A ACID Extractable Detection Limit ACID Extractable Detection Limit	Acid Extractable Rubidium (Rb)	mg/kg	27	2.0	4589661	N/A
Acid Extractable Strontium (Sr) mg/kg 5.6 5.0 4589661 N/A Acid Extractable Thallium (TI) mg/kg 0.14 0.10 4589661 N/A Acid Extractable Tin (Sn) mg/kg <2.0 2.0 4589661 N/A Acid Extractable Uranium (U) mg/kg 0.69 0.10 4589661 N/A Acid Extractable Vanadium (V) mg/kg 47 2.0 4589661 N/A Acid Extractable Zinc (Zn) mg/kg 39 5.0 4589661 N/A RDL = Reportable Detection Limit QC Batch = Quality Control Batch	Acid Extractable Selenium (Se)	mg/kg	<1.0	1.0	4589661	N/A
Acid Extractable Thallium (TI) mg/kg 0.14 0.10 4589661 N/A Acid Extractable Tin (Sn) mg/kg <2.0 2.0 4589661 N/A Acid Extractable Uranium (U) mg/kg 0.69 0.10 4589661 N/A Acid Extractable Vanadium (V) mg/kg 47 2.0 4589661 N/A Acid Extractable Zinc (Zn) mg/kg 39 5.0 4589661 N/A RDL = Reportable Detection Limit QC Batch = Quality Control Batch	Acid Extractable Silver (Ag)	mg/kg	<0.50	0.50	4589661	N/A
Acid Extractable Tin (Sn) mg/kg <2.0 2.0 4589661 N/A Acid Extractable Uranium (U) mg/kg 0.69 0.10 4589661 N/A Acid Extractable Vanadium (V) mg/kg 47 2.0 4589661 N/A Acid Extractable Zinc (Zn) mg/kg 39 5.0 4589661 N/A RDL = Reportable Detection Limit QC Batch = Quality Control Batch	Acid Extractable Strontium (Sr)	mg/kg	5.6	5.0	4589661	N/A
Acid Extractable Uranium (U) mg/kg 0.69 0.10 4589661 N/A Acid Extractable Vanadium (V) mg/kg 47 2.0 4589661 N/A Acid Extractable Zinc (Zn) mg/kg 39 5.0 4589661 N/A RDL = Reportable Detection Limit QC Batch = Quality Control Batch	Acid Extractable Thallium (Tl)	mg/kg	0.14	0.10	4589661	N/A
Acid Extractable Vanadium (V) mg/kg 47 2.0 4589661 N/A Acid Extractable Zinc (Zn) mg/kg 39 5.0 4589661 N/A RDL = Reportable Detection Limit QC Batch = Quality Control Batch	Acid Extractable Tin (Sn)	mg/kg	<2.0	2.0	4589661	N/A
Acid Extractable Vanadium (V) mg/kg 47 2.0 4589661 N/A Acid Extractable Zinc (Zn) mg/kg 39 5.0 4589661 N/A RDL = Reportable Detection Limit QC Batch = Quality Control Batch	Acid Extractable Uranium (U)	mg/kg	0.69	0.10	4589661	N/A
Acid Extractable Zinc (Zn) mg/kg 39 5.0 4589661 N/A RDL = Reportable Detection Limit QC Batch = Quality Control Batch	Acid Extractable Vanadium (V)	+	47	2.0	4589661	N/A
RDL = Reportable Detection Limit QC Batch = Quality Control Batch	Acid Extractable Zinc (Zn)		39	5.0	4589661	N/A
·	RDL = Reportable Detection Limit					
N/A = Not Applicable	QC Batch = Quality Control Batch					
	N/A = Not Applicable					

Englobe Corp.

Client Project #: P-00903-0-00-205

Your P.O. #: A06016 Sampler Initials: LL

TEST SUMMARY

Maxxam ID: CSR357 Sample ID: SW1

Matrix: SEDIMENT

Collected: 2016/07/15

Shipped:

Received: 2016/07/18

Date Analyzed Test Description Instrumentation **Batch Extracted** Analyst Metals Solids Acid Extr. ICPMS ICP/MS 4589661 2016/07/22 2016/07/22 Bryon Angevine Particle size in solids (pipette&sieve) PSIV 4589403 2016/07/29 N/A **Amber Davison**

Maxxam ID: CSR357 Dup Sample ID: SW1 Matrix: SEDIMENT Collected: 2016/07/15

Shipped:

Received: 2016/07/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Metals Solids Acid Extr. ICPMS	ICP/MS	4589661	2016/07/22	2016/07/22	Bryon Angevine
Particle size in solids (pipette&sieve)	PSIV	4589403	N/A	2016/07/29	Amber Davison

Maxxam ID: CSR358 Sample ID: SW2

Matrix: SEDIMENT

Collected: 2016/07/14

Shipped:

Received: 2016/07/18

Test Description	Instrumentation Batch		Extracted	Date Analyzed	Analyst
Metals Solids Acid Extr. ICPMS	ICP/MS	4589661	2016/07/22	2016/07/22	Bryon Angevine
Particle size in solids (pipette&sieve)	PSIV	4589400	N/A	2016/07/28	Amber Davison

Maxxam ID: CSR359

Collected: 20

ed: 2016/07/15

Sample ID: SW3
Matrix: SEDIMENT

Shipped: Received: 2016/07/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Metals Solids Acid Extr. ICPMS	ICP/MS	4589661	2016/07/22	2016/07/22	Bryon Angevine
Particle size in solids (pipette&sieve)	PSIV	4589400	N/A	2016/07/28	Amber Davison

Maxxam ID: CSR360 Sample ID: SW12

mple ID: SW12

Matrix: SEDIMENT

Collected: 2016/07/15

Shipped:

Received: 2016/07/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Metals Solids Acid Extr. ICPMS	ICP/MS	4589661	2016/07/22	2016/07/22	Bryon Angevine
Particle size in solids (ninette&sieve)	PSIV	4589400	N/A	2016/07/28	Amher Davison

Maxxam ID: CSR361 Sample ID: SW14 Collected: 20 Shipped:

2016/07/15

Matrix: SEDIMENT

Received: 2016/07/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Metals Solids Acid Extr. ICPMS	ICP/MS	4589661	2016/07/22	2016/07/22	Bryon Angevine
Particle size in solids (pipette&sieve)	PSIV	4589403	N/A	2016/07/29	Amber Davison

Englobe Corp. Client Project #: P-00903-0-00-205 Your P.O. #: A06016 Sampler Initials: LL

TEST SUMMARY

Maxxam ID: CSR362 **Collected:** 2016/07/14 Sample ID: BACK2

Shipped:

Matrix: SEDIMENT **Received:** 2016/07/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Metals Solids Acid Extr. ICPMS	ICP/MS	4589661	2016/07/22	2016/07/22	Bryon Angevine
Particle size in solids (pipette&sieve)	PSIV	4589403	N/A	2016/07/29	Amber Davison

Englobe Corp. Client Project #: P-00903-0-00-205 Your P.O. #: A06016 Sampler Initials: LL

GENERAL COMMENTS

Each to	emperature is the	average of up to t	hree cooler temperatures taken at receipt
	Package 1	2.3°C	7
			_
Result	s relate only to the	e items tested.	

Englobe Corp.
Client Project #: P-00903-0-00-205
Your P.O. #: A06016
Sampler Initials: LL

QUALITY ASSURANCE REPORT

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
4589400	AD8	RPD - Sample/Sample Dup	Gravel	2016/07/28	NC		%	35
			Sand	2016/07/28	0.25		%	35
			Silt	2016/07/28	NC (1)		%	35
			Clay	2016/07/28	84 (1)		%	35
4589403	AD8	RPD - Sample/Sample Dup	Gravel	2016/07/29	NC		%	35
			Sand	2016/07/29	5.0		%	35
			Silt	2016/07/29	3.5		%	35
			Clay	2016/07/29	4.1		%	35
4589661	BAN	Matrix Spike(CSR357)	Acid Extractable Antimony (Sb)	2016/07/22		101	%	75 - 125
		, , ,	Acid Extractable Arsenic (As)	2016/07/22		103	%	75 - 125
			Acid Extractable Barium (Ba)	2016/07/22		117	%	75 - 125
			Acid Extractable Beryllium (Be)	2016/07/22		113	%	75 - 125
			Acid Extractable Bismuth (Bi)	2016/07/22		107	%	75 - 125
			Acid Extractable Boron (B)	2016/07/22		100	%	75 - 125
			Acid Extractable Cadmium (Cd)	2016/07/22		110	%	75 - 125
			Acid Extractable Chromium (Cr)	2016/07/22		NC	%	75 - 125
			Acid Extractable Cobalt (Co)	2016/07/22		107	%	75 - 125
			Acid Extractable Copper (Cu)	2016/07/22		108	%	75 - 125
			Acid Extractable Lead (Pb)	2016/07/22		107	%	75 - 125
			Acid Extractable Lithium (Li)	2016/07/22		NC	%	75 - 125
			Acid Extractable Manganese (Mn)	2016/07/22		NC	%	75 - 125
			Acid Extractable Mercury (Hg)	2016/07/22		100	%	75 - 125
			Acid Extractable Molybdenum (Mo)	2016/07/22		109	%	75 - 125
			Acid Extractable Nickel (Ni)	2016/07/22		111	%	75 - 125
			Acid Extractable Rubidium (Rb)	2016/07/22		103	%	75 - 125
			Acid Extractable Selenium (Se)	2016/07/22		103	%	75 - 125
			Acid Extractable Silver (Ag)	2016/07/22		103	%	75 - 125
			Acid Extractable Strontium (Sr)	2016/07/22		112	%	75 - 125
			Acid Extractable Thallium (TI)	2016/07/22		108	%	75 - 125
			Acid Extractable Tin (Sn)	2016/07/22		109	%	75 - 125
			Acid Extractable Uranium (U)	2016/07/22		108	%	75 - 125
			Acid Extractable Vanadium (V)	2016/07/22		109	%	75 - 125
			Acid Extractable Zinc (Zn)	2016/07/22		NC	%	75 - 125
4589661	BAN	Spiked Blank	Acid Extractable Antimony (Sb)	2016/07/22		100	%	75 - 125
			Acid Extractable Arsenic (As)	2016/07/22		101	%	75 - 125
			Acid Extractable Barium (Ba)	2016/07/22		107	%	75 - 125
			Acid Extractable Beryllium (Be)	2016/07/22		109	%	75 - 125
			Acid Extractable Bismuth (Bi)	2016/07/22		102	%	75 - 125
			Acid Extractable Boron (B)	2016/07/22		105	%	75 - 125
			Acid Extractable Cadmium (Cd)	2016/07/22		105	%	75 - 125
			Acid Extractable Chromium (Cr)	2016/07/22		103	%	75 - 125
			Acid Extractable Cobalt (Co)	2016/07/22		103	%	75 - 125
			Acid Extractable Copper (Cu)	2016/07/22		102	%	75 - 125
			Acid Extractable Lead (Pb)	2016/07/22		103	%	75 - 125
			Acid Extractable Lithium (Li)	2016/07/22		101	%	75 - 125
			Acid Extractable Manganese (Mn)	2016/07/22		102	%	75 - 125
			Acid Extractable Mercury (Hg)	2016/07/22		102	%	75 - 125
			Acid Extractable Molybdenum (Mo)	2016/07/22		104	%	75 - 125
			Acid Extractable Nickel (Ni)	2016/07/22		103	%	75 - 125
			Acid Extractable Rubidium (Rb)	2016/07/22		100	%	75 - 125
			Acid Extractable Selenium (Se)	2016/07/22		102	%	75 - 125
			Acid Extractable Silver (Ag)	2016/07/22		98	%	75 - 125

Englobe Corp. Client Project #: P-00903-0-00-205 Your P.O. #: A06016

Sampler Initials: LL

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC			QUALITY ASSURANCE RE	Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
Dateii		QC Type	Acid Extractable Strontium (Sr)	2016/07/22	value	102	%	75 - 125
			Acid Extractable Strontium (SI)	2016/07/22		106	%	75 - 125
			Acid Extractable Tin (Sn)	2016/07/22		105	%	75 - 125
			Acid Extractable Uranium (U)	2016/07/22		104	%	75 - 125
			Acid Extractable Vanadium (V)	2016/07/22		104	%	75 - 125
			Acid Extractable Variation (V) Acid Extractable Zinc (Zn)	2016/07/22		113	% %	75 - 125 75 - 125
4589661	BAN	Method Blank	Acid Extractable Aluminum (Al)	2016/07/22	<10	113	mg/kg	73 - 123
4363001	DAIN	WELLIOU BIATIK	Acid Extractable Antimony (Sb)	2016/07/22	<2.0		mg/kg	
			Acid Extractable Aritimony (3b) Acid Extractable Arsenic (As)	2016/07/22	<2.0		mg/kg	
			Acid Extractable Arsenic (AS) Acid Extractable Barium (Ba)	2016/07/22				
				2016/07/22	<5.0 <2.0		mg/kg	
			Acid Extractable Beryllium (Be) Acid Extractable Bismuth (Bi)	2016/07/22	<2.0		mg/kg	
							mg/kg	
			Acid Extractable Boron (B)	2016/07/22	<50 <0.20		mg/kg	
			Acid Extractable Cadmium (Cd)	2016/07/22	<0.30		mg/kg	
			Acid Extractable Chromium (Cr)	2016/07/22	<2.0		mg/kg	
			Acid Extractable Cobalt (Co)	2016/07/22	<1.0		mg/kg	
			Acid Extractable Copper (Cu)	2016/07/22	<2.0		mg/kg	
			Acid Extractable Iron (Fe)	2016/07/22	<50		mg/kg	
			Acid Extractable Lead (Pb)	2016/07/22	<0.50		mg/kg	
			Acid Extractable Lithium (Li)	2016/07/22	<2.0		mg/kg	
			Acid Extractable Manganese (Mn)	2016/07/22	<2.0		mg/kg	
			Acid Extractable Mercury (Hg)	2016/07/22	<0.10		mg/kg	
			Acid Extractable Molybdenum (Mo)	2016/07/22	<2.0		mg/kg	
			Acid Extractable Nickel (Ni)	2016/07/22	<2.0		mg/kg	
			Acid Extractable Rubidium (Rb)	2016/07/22	<2.0		mg/kg	
			Acid Extractable Selenium (Se)	2016/07/22	<1.0		mg/kg	
			Acid Extractable Silver (Ag)	2016/07/22	<0.50		mg/kg	
			Acid Extractable Strontium (Sr)	2016/07/22	<5.0		mg/kg	
			Acid Extractable Thallium (TI)	2016/07/22	<0.10		mg/kg	
			Acid Extractable Tin (Sn)	2016/07/22	<2.0		mg/kg	
			Acid Extractable Uranium (U)	2016/07/22	<0.10		mg/kg	
			Acid Extractable Vanadium (V)	2016/07/22	<2.0		mg/kg	
			Acid Extractable Zinc (Zn)	2016/07/22	<5.0		mg/kg	
4589661	BAN	RPD - Sample/Sample Dup	. ,	2016/07/22	1.0		%	35
			Acid Extractable Antimony (Sb)	2016/07/22	NC		%	35
			Acid Extractable Arsenic (As)	2016/07/22	NC		%	35
			Acid Extractable Barium (Ba)	2016/07/22	NC		%	35
			Acid Extractable Beryllium (Be)	2016/07/22	NC		%	35
			Acid Extractable Bismuth (Bi)	2016/07/22	NC		%	35
			Acid Extractable Boron (B)	2016/07/22	NC		%	35
			Acid Extractable Cadmium (Cd)	2016/07/22	NC		%	35
			Acid Extractable Chromium (Cr)	2016/07/22	1.9		%	35
			Acid Extractable Cobalt (Co)	2016/07/22	1.6		%	35
			Acid Extractable Copper (Cu)	2016/07/22	NC		%	35
			Acid Extractable Iron (Fe)	2016/07/22	1.1		%	35
			Acid Extractable Lead (Pb)	2016/07/22	0.74		%	35
			Acid Extractable Lithium (Li)	2016/07/22	2.2		%	35
			Acid Extractable Manganese (Mn)	2016/07/22	0.52		%	35
			Acid Extractable Mercury (Hg)	2016/07/22	NC		%	35
			Acid Extractable Molybdenum (Mo)	2016/07/22	NC		%	35
			Acid Extractable Nickel (Ni)	2016/07/22	0.96		%	35
			Acid Extractable Rubidium (Rb)	2016/07/22	NC		%	35

Englobe Corp.
Client Project #: P-00903-0-00-205

Your P.O. #: A06016 Sampler Initials: LL

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			Acid Extractable Selenium (Se)	2016/07/22	NC		%	35
			Acid Extractable Silver (Ag)	2016/07/22	NC		%	35
			Acid Extractable Strontium (Sr)	2016/07/22	NC		%	35
			Acid Extractable Thallium (TI)	2016/07/22	NC		%	35
			Acid Extractable Tin (Sn)	2016/07/22	NC		%	35
			Acid Extractable Uranium (U)	2016/07/22	NC		%	35
			Acid Extractable Vanadium (V)	2016/07/22	0.11		%	35
			Acid Extractable Zinc (Zn)	2016/07/22	6.0		%	35

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than 2x that of the native sample concentration).

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

(1) %RPD acceptable. Duplicate values agree within 10% absolute.

Englobe Corp.
Client Project #: P-00903-0-00-205
Your P.O. #: A06016
Sampler Initials: LL

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Mike MacGillivray, Scientific Specialist (Inorganics)

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Maxxam A Burnau Verlas Group Company

200 Bluewnter Rozat, Suite 105, Bardont, Nova, Scotia B48 109 Tei: 802 420-0203 Fax: 902 420 9612 Toil Free: 1-800-655-7227 Teil 709-754-0205 Fax: 709-754-9612 Toil Free: 1-888-492-7227 465 Goorge Streat, Sydney, NS B1P 1K5

E-mail: Custo

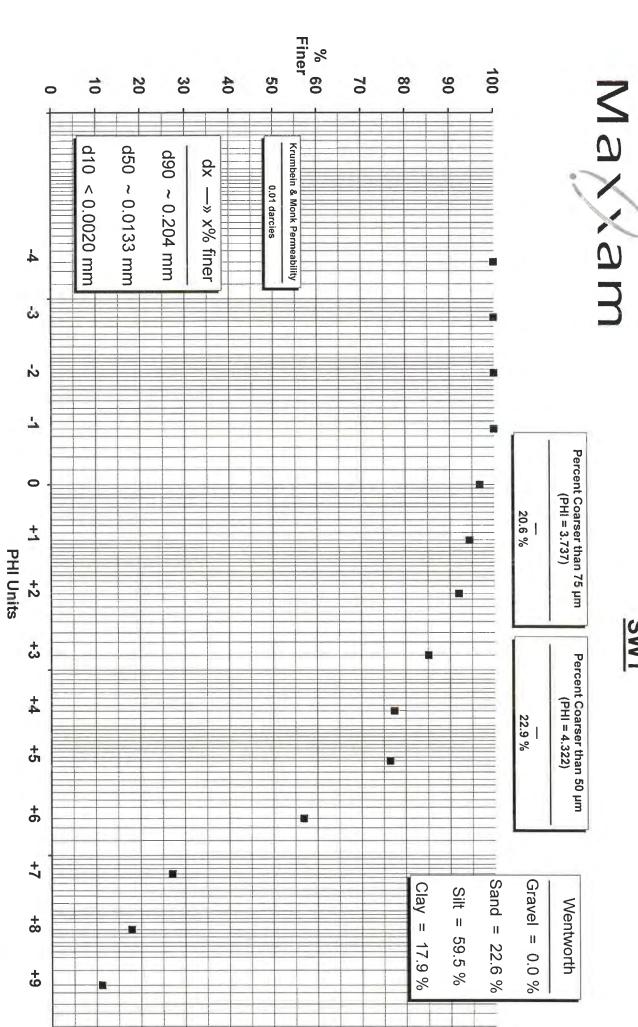
WWW. THEXXBITLCE

100014#

Tet 002-587-1255 Fax 902-539-6504 Tall Free 1-888-535-7770

PLEASE PROVIDE ADVANCE NOTICE FOR RUSH PROJECT RUSH please specify date (Surcharges will be app Regular TAT (5 business days) Most analyse 11595 Page X COC#: P-00905-0-00-305 HOGOIL B 63657 17 CHAIN OF CUSTODY RECORD P.O. B/ AFEB. the Location roject (D: Aren Cole SAME Postal Code Fax.

A Legal Local Code B3B 3A7

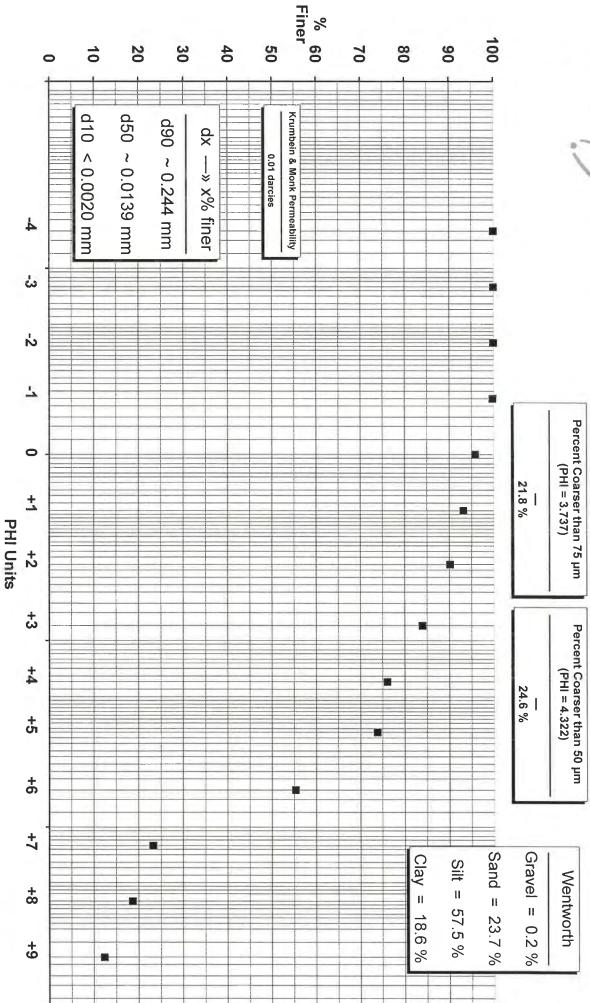

97 Tweep Act DA

												B:25							
Regulatory Regulrements		PHRI COME	Theriz	OTHER (Please Specify)		COMMENTS						2816,1111 18 15					MAXXAM JOB #		SOLUASI
	H			32.4	TANA TO	HOTO-DO N													7
		_	02	5	ماء	NOCS	K	K	Х	X	K	X					TIME: (HH:MM)		
P	Aaj	R'T1	evel wol	EK' ABHI	D-90, 831	HANGLOCULOR PAHE TOM FEASE P. TOM FEASE P.											(MM/bb)		
Analysis Requested	(Soll)		Mercury to Mercury to Hot Water 5 (required to											DATE: (YYYY/MM/DD)					
	Metals (Water)	Kanlywale & surface water I well water & surface water		ol bevlossica ynameN/ M & steteN/ bisA stereCl	K	ø	K	×	N	Ŋ					/Print)	300	1		
		CAMEL DESCRIPT DISSOLVED CHOICE DISSOLVED CHOICE DISSOLVED CHOICE DISSOLVED CHOICE DISSOLVED CHOICE DISSOLVED CHOICE CHOI															RECEIVED BY: (Signature/Print)	Minor	DMC.
						ATM00 10:4	_										-)	M
	MEERIN		Integrity Checklist By	2	ELIVERY TO MAXXAM	TIMESAMPLED MATRIX (FOLIMM)	3750 SED	Oh35	SH40	1400	1 NS0	\$ 051/E					TIME: (HH:MM)		
e Only	AVERAGE	7	F		OF SAMPLING UNTIL D	DATE SAMPLED T	16/3/5 Bh30	16/7/14 10h35	24401 S1/4/41	16/7/15/1400	16/7/15/11/20	16/7/14 17/30					DATE (YYYY/MM/DD)		
Laboratory Use Only	COOLER TEMPERATURES	11 17			SAMPLES MUST BE KEPT COOL (< 10 °C.) FROM TIME OF SAMPLING UNTL DELIVERY TO M	SAMPLE IDENTIFICATION					1	0							
	5-	Present Intact			MPLES MUST BE KEPT CO	SAMPLEIDE	1005	Swa	SW3	SW13	5001	BRKD					RELINQUISHED BY: (Signature/Print)		
	1	£			iñ		+	2	m	e	in	9	1	DC	an.	10		-	

White: Maxxam

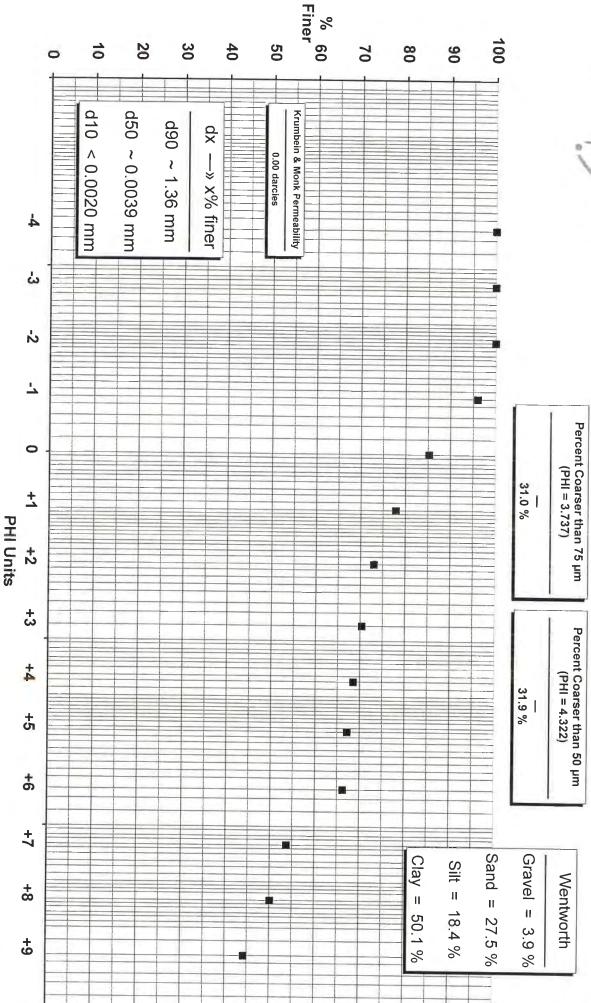
Pink: Client

SW1


Approved

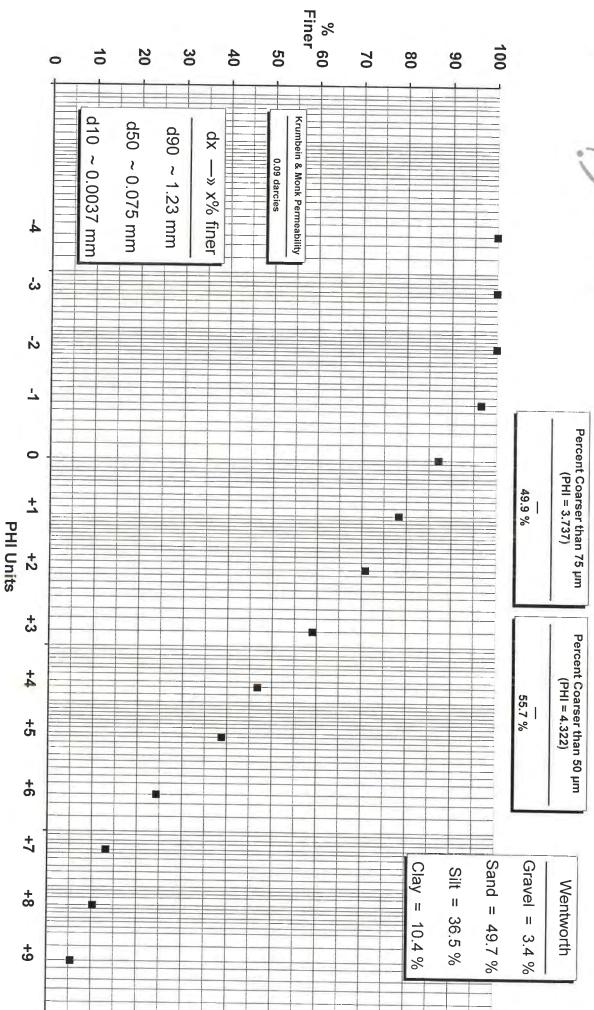
Maxxam

SW1:D1


Manager and the second

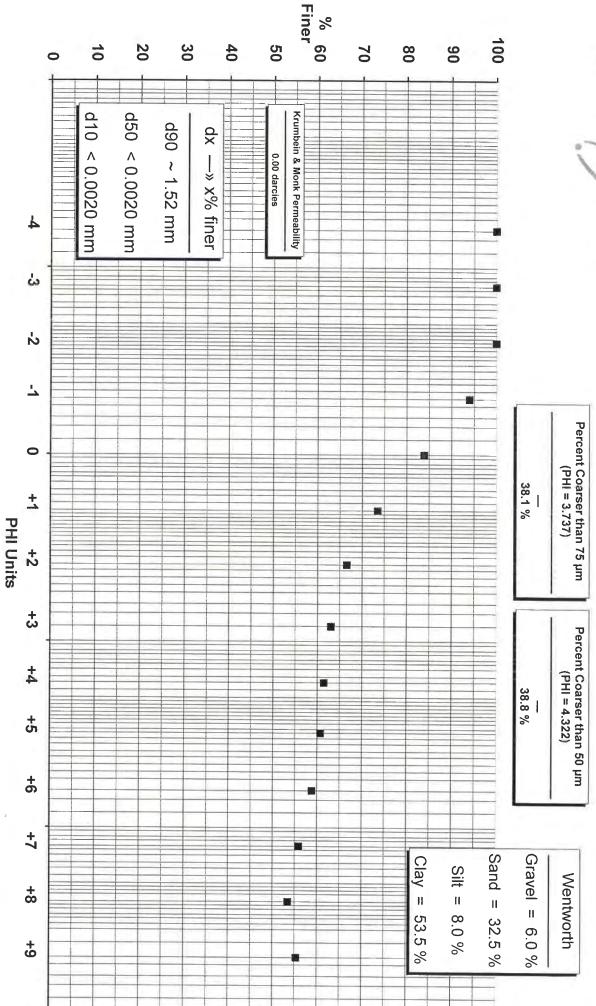
Maxxam ID: CSR357-02:D1

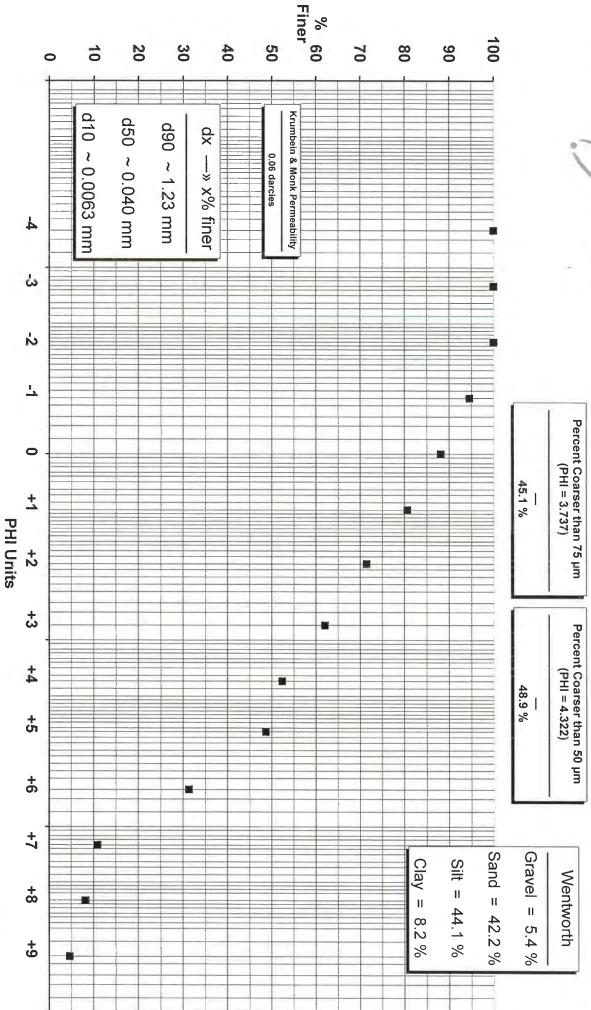
Approved


Maxxam ID: CSR358-02

Approved a land and the land an

SW3

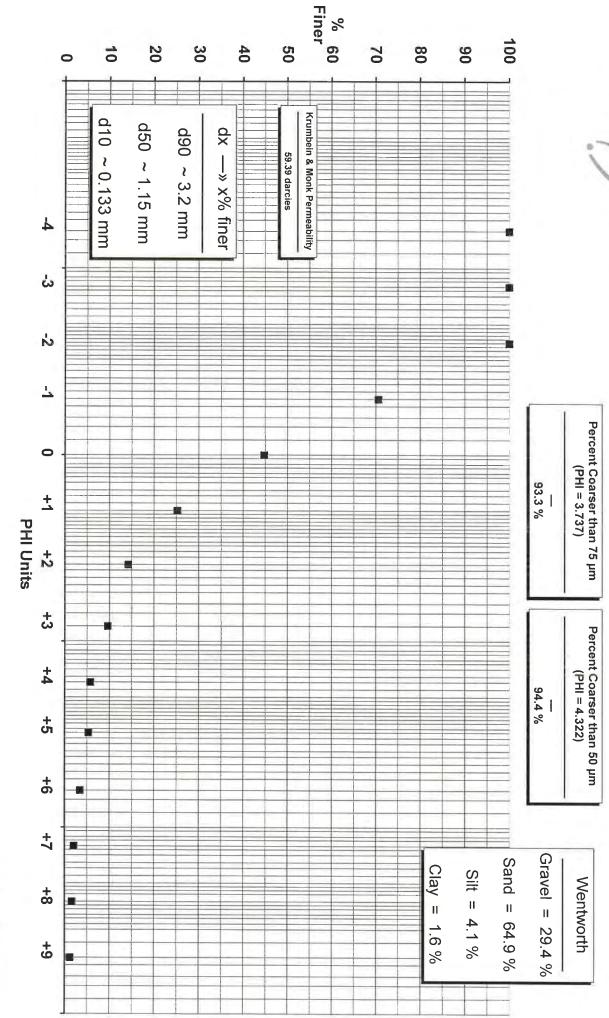

Maxxam ID: CSR359-02


peronder

Approved

Maxxam ID: CSR360-02

Approved



mns

Approved

AMMERICA

Maxxam ID: CSR362-02

Approved

Your P.O. #: A06016 Your Project #: P-0010903 Site Location: LAKE GEORGE

Your C.O.C. #: 568672-01-01, 568672-02-01

Attention:Aven Cole

Englobe Corp.
97 Troop Ave
Dartmouth, NS
CANADA B3B 2A7

Report Date: 2016/07/26 Report #: R4082566

Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B6F0322 Received: 2016/07/18, 15:31

Sample Matrix: Water # Samples Received: 17

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Carbonate, Bicarbonate and Hydroxide	17	N/A	2016/07/22	N/A	SM 22 4500-CO2 D
Alkalinity	6	N/A	2016/07/25	ATL SOP 00013	EPA 310.2 R1974 m
Alkalinity	11	N/A	2016/07/26	ATL SOP 00013	EPA 310.2 R1974 m
Chloride	17	N/A	2016/07/26	ATL SOP 00014	SM 22 4500-Cl- E m
Colour	17	N/A	2016/07/25	ATL SOP 00020	SM 22 2120C m
Conductance - water	17	N/A	2016/07/22	ATL SOP 00004	SM 22 2510B m
Hardness (calculated as CaCO3)	4	N/A	2016/07/22	ATL SOP 00048	SM 22 2340 B
Hardness (calculated as CaCO3)	13	N/A	2016/07/25	ATL SOP 00048	SM 22 2340 B
Mercury - Total (CVAA,LL)	17	2016/07/21	2016/07/22	ATL SOP 00026	EPA 245.1 R3 m
Metals Water Diss. MS (1)	9	N/A	2016/07/22	ATL SOP 00058	EPA 6020A R1 m
Metals Water Diss. MS (as rec'd)	8	N/A	2016/07/22	ATL SOP 00058	EPA 6020A R1 m
Metals Water Total MS	17	2016/07/21	2016/07/22	ATL SOP 00058	EPA 6020A R1 m
Ion Balance (% Difference)	17	N/A	2016/07/26		Auto Calc.
Anion and Cation Sum	17	N/A	2016/07/26		Auto Calc.
Nitrogen Ammonia - water	17	N/A	2016/07/25	ATL SOP 00015	EPA 350.1 R2 m
Nitrogen - Nitrate + Nitrite	17	N/A	2016/07/26	ATL SOP 00016	USGS SOPINCF0452.2 m
Nitrogen - Nitrite	17	N/A	2016/07/25	ATL SOP 00017	SM 22 4500-NO2- B m
Nitrogen - Nitrate (as N)	17	N/A	2016/07/26	ATL SOP 00018	ASTM D3867
pH (2)	6	N/A	2016/07/22	ATL SOP 00003	SM 22 4500-H+ B m
pH (2)	11	N/A	2016/07/25	ATL SOP 00003	SM 22 4500-H+ B m
Phosphorus - ortho	17	N/A	2016/07/25	ATL SOP 00021	EPA 365.2 m
Sat. pH and Langelier Index (@ 20C)	17	N/A	2016/07/26	ATL SOP 00049	Auto Calc.
Sat. pH and Langelier Index (@ 4C)	17	N/A	2016/07/26	ATL SOP 00049	Auto Calc.
Reactive Silica	17	N/A	2016/07/26	ATL SOP 00022	EPA 366.0 m
Sulphate	17	N/A	2016/07/25	ATL SOP 00023	ASTMD516-11 m
Total Dissolved Solids (TDS calc)	17	N/A	2016/07/26		Auto Calc.
Organic carbon - Total (TOC) (3)	17	N/A	2016/07/22	ATL SOP 00037	SM 22 5310C m
Turbidity	17	N/A	2016/07/22	ATL SOP 00011	EPA 180.1 R2 m

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Your P.O. #: A06016 Your Project #: P-0010903 Site Location: LAKE GEORGE

Your C.O.C. #: 568672-01-01, 568672-02-01

Attention:Aven Cole

Englobe Corp.
97 Troop Ave
Dartmouth, NS
CANADA B3B 2A7

Report Date: 2016/07/26 Report #: R4082566

Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B6F0322

Received: 2016/07/18, 15:31

- (1) Sample filtered in laboratory prior to analysis for dissolved metals.
- (2) The APHA Standard Method require pH to be analyzed within 15 minutes of sampling and therefore field analysis is required for compliance. All Laboratory pH analyses in this report are reported past the APHA Standard Method holding time.
- (3) TOC / DOC present in the sample should be considered as non-purgeable TOC / DOC.

Encryption Key

Maxxam 26 Jul 2016 17:52:39 -03:00

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Avery Withrow, Project Manager Email: AWithrow@maxxam.ca Phone# (902)420-0203 Ext:233

This report has been generated and distributed using a secure automated process.

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016 Sampler Initials: AS

ATL. RCAP-MS DISSOLVED (LABFILT) IN W

Maxxam ID		CSR707			CSR710		CSR712			
Sampling Date		2016/07/15			2016/07/15		2016/07/15			
COC Number		568672-01-01			568672-01-01		568672-01-01			
	UNITS	MW1S	RDL	QC Batch	MW3S	RDL	MW4S	RDL	QC Batch	MDL
Calculated Parameters										
Anion Sum	me/L	4.20	N/A	4583968	7.87	N/A	0.620	N/A	4585153	N/A
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	180	1.0	4585151	370	1.0	10	1.0	4585151	0.20
Calculated TDS	mg/L	250	1.0	4583973	390	1.0	52	1.0	4585156	0.20
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	4585151	<1.0	1.0	<1.0	1.0	4585151	0.20
Cation Sum	me/L	4.35	N/A	4583968	6.67	N/A	0.680	N/A	4585153	N/A
Hardness (CaCO3)	mg/L	160	1.0	4585015	300	1.0	23	1.0	4585015	1.0
Ion Balance (% Difference)	%	1.75	N/A	4583967	8.25	N/A	4.62	N/A	4585152	N/A
Langelier Index (@ 20C)	N/A	-1.17		4583971	0.208		-3.44		4585154	
Langelier Index (@ 4C)	N/A	-1.42		4583972	-0.0410		-3.69		4585155	
Nitrate (N)	mg/L	<0.050	0.050	4584921	<0.050	0.050	0.40	0.050	4584921	N/A
Saturation pH (@ 20C)	N/A	7.58		4583971	7.04		9.55		4585154	
Saturation pH (@ 4C)	N/A	7.83		4583972	7.29		9.80		4585155	
Inorganics										
Total Alkalinity (Total as CaCO3)	mg/L	180	25	4589703	370	25	10	5.0	4589703	N/A
Dissolved Chloride (CI)	mg/L	21	5.0	4589706	16	1.0	5.0	1.0	4589706	N/A
Colour	TCU	220	25	4589713	5.2	5.0	<5.0	5.0	4589713	N/A
Nitrate + Nitrite (N)	mg/L	<0.050	0.050	4589717	<0.050	0.050	0.40	0.050	4589717	N/A
Nitrite (N)	mg/L	<0.010	0.010	4589719	<0.010	0.010	<0.010	0.010	4589719	N/A
Nitrogen (Ammonia Nitrogen)	mg/L	2.1	0.25	4589837	0.19	0.050	0.23	0.050	4589841	N/A
Total Organic Carbon (C)	mg/L	63 (1)	25	4589466	<25 (1)	25	<50 (1)	50	4589466	N/A
Orthophosphate (P)	mg/L	0.016	0.010	4589715	0.019	0.010	0.011	0.010	4589715	N/A
рН	рН	6.41	N/A	4589412	7.25	N/A	6.12	N/A	4589412	N/A
Reactive Silica (SiO2)	mg/L	25	1.0	4589709	21	0.50	12	0.50	4589709	N/A
Dissolved Sulphate (SO4)	mg/L	<2.0	2.0	4589707	2.8	2.0	12	2.0	4589707	N/A
Turbidity	NTU	>1000	1.0	4589508	>1000	1.0	>1000	1.0	4589508	0.10
Conductivity	uS/cm	350	1.0	4589413	610	1.0	62	1.0	4589413	N/A
Metals	•	•			•		•			
Dissolved Aluminum (AI)	ug/L	36	5.0	4589406	6.7	5.0	31	5.0	4589406	N/A
Dissolved Antimony (Sb)	ug/L	<1.0	1.0	4589406	<1.0	1.0	<1.0	1.0	4589406	N/A
Dissolved Arsenic (As)	ug/L	2.1	1.0	4589406	<1.0	1.0	<1.0	1.0	4589406	N/A
Dissolved Barium (Ba)	ug/L	50	1.0	4589406	20	1.0	15	1.0	4589406	N/A
Dissolved Beryllium (Be)	ug/L	<1.0	1.0	4589406	<1.0	1.0	<1.0	1.0	4589406	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

(1) Reporting limit was increased due to turbidity.

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016 Sampler Initials: AS

ATL. RCAP-MS DISSOLVED (LABFILT) IN W

Maxxam ID		CSR707			CSR710		CSR712			
Sampling Date		2016/07/15			2016/07/15		2016/07/15			
COC Number		568672-01-01			568672-01-01		568672-01-01			
	UNITS	MW1S	RDL	QC Batch	MW3S	RDL	MW4S	RDL	QC Batch	MDL
Dissolved Bismuth (Bi)	ug/L	<2.0	2.0	4589406	<2.0	2.0	<2.0	2.0	4589406	N/A
Dissolved Boron (B)	ug/L	<50	50	4589406	<50	50	<50	50	4589406	N/A
Dissolved Cadmium (Cd)	ug/L	0.20	0.010	4589406	0.13	0.010	0.048	0.010	4589406	N/A
Dissolved Calcium (Ca)	ug/L	37000	100	4589406	68000	100	5500	100	4589406	N/A
Dissolved Chromium (Cr)	ug/L	2.1	1.0	4589406	<1.0	1.0	<1.0	1.0	4589406	N/A
Dissolved Cobalt (Co)	ug/L	35	0.40	4589406	7.9	0.40	7.1	0.40	4589406	N/A
Dissolved Copper (Cu)	ug/L	5.9	2.0	4589406	5.3	2.0	<2.0	2.0	4589406	N/A
Dissolved Iron (Fe)	ug/L	17000	50	4589406	<50	50	<50	50	4589406	N/A
Dissolved Lead (Pb)	ug/L	<0.50	0.50	4589406	<0.50	0.50	<0.50	0.50	4589406	N/A
Dissolved Magnesium (Mg)	ug/L	15000	100	4589406	32000	100	2300	100	4589406	N/A
Dissolved Manganese (Mn)	ug/L	11000	2.0	4589406	11000	2.0	1200	2.0	4589406	N/A
Dissolved Molybdenum (Mo)	ug/L	<2.0	2.0	4589406	<2.0	2.0	<2.0	2.0	4589406	N/A
Dissolved Nickel (Ni)	ug/L	14	2.0	4589406	10	2.0	3.4	2.0	4589406	N/A
Dissolved Phosphorus (P)	ug/L	<100	100	4589406	<100	100	<100	100	4589406	N/A
Dissolved Potassium (K)	ug/L	6200	100	4589406	5400	100	1200	100	4589406	N/A
Dissolved Selenium (Se)	ug/L	<1.0	1.0	4589406	<1.0	1.0	<1.0	1.0	4589406	N/A
Dissolved Silver (Ag)	ug/L	<0.10	0.10	4589406	<0.10	0.10	<0.10	0.10	4589406	N/A
Dissolved Sodium (Na)	ug/L	7300	100	4589406	11000	100	4000	100	4589406	N/A
Dissolved Strontium (Sr)	ug/L	300	2.0	4589406	410	2.0	37	2.0	4589406	N/A
Dissolved Thallium (TI)	ug/L	<0.10	0.10	4589406	<0.10	0.10	<0.10	0.10	4589406	N/A
Dissolved Tin (Sn)	ug/L	<2.0	2.0	4589406	<2.0	2.0	<2.0	2.0	4589406	N/A
Dissolved Titanium (Ti)	ug/L	<2.0	2.0	4589406	<2.0	2.0	<2.0	2.0	4589406	N/A
Dissolved Uranium (U)	ug/L	0.30	0.10	4589406	0.96	0.10	<0.10	0.10	4589406	N/A
Dissolved Vanadium (V)	ug/L	<2.0	2.0	4589406	<2.0	2.0	<2.0	2.0	4589406	N/A
Dissolved Zinc (Zn)	ug/L	5.1	5.0	4589406	<5.0	5.0	<5.0	5.0	4589406	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016 Sampler Initials: AS

ATL. RCAP-MS DISSOLVED (LABFILT) IN W

Maxxam ID		CSR714	CSR714			CSR715			
Sampling Date		2016/07/15	2016/07/15			2016/07/15			
COC Number		568672-01-01	568672-01-01			568672-01-01			
	UNITS	MW5S	MW5S Lab-Dup	RDL	QC Batch	MW6D	RDL	QC Batch	MDL
Calculated Parameters									
Anion Sum	me/L	2.15		N/A	4585153	1.84	N/A	4585153	N/A
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	87		1.0	4585151	55	1.0	4585151	0.20
Calculated TDS	mg/L	150		1.0	4585156	120	1.0	4585156	0.20
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0		1.0	4585151	<1.0	1.0	4585151	0.20
Cation Sum	me/L	2.60		N/A	4585153	1.79	N/A	4585153	N/A
Hardness (CaCO3)	mg/L	90		1.0	4585015	39	1.0	4585015	1.0
Ion Balance (% Difference)	%	9.47		N/A	4585152	1.38	N/A	4585152	N/A
Langelier Index (@ 20C)	N/A	-1.41			4585154	-1.02		4585154	
Langelier Index (@ 4C)	N/A	-1.66			4585155	-1.27		4585155	
Nitrate (N)	mg/L	0.064		0.050	4584921	<0.050	0.050	4584921	N/A
Saturation pH (@ 20C)	N/A	8.05			4585154	8.58		4585154	
Saturation pH (@ 4C)	N/A	8.30			4585155	8.83		4585155	
Inorganics									
Total Alkalinity (Total as CaCO3)	mg/L	87	85	5.0	4589703	55	5.0	4589703	N/A
Dissolved Chloride (CI)	mg/L	12	13	1.0	4589706	17	1.0	4589706	N/A
Colour	TCU	27	26	5.0	4589713	<5.0	5.0	4589713	N/A
Nitrate + Nitrite (N)	mg/L	0.064	0.071	0.050	4589717	<0.050	0.050	4589717	N/A
Nitrite (N)	mg/L	<0.010	<0.010	0.010	4589719	<0.010	0.010	4589719	N/A
Nitrogen (Ammonia Nitrogen)	mg/L	1.5		0.050	4589841	0.12	0.050	4589841	N/A
Total Organic Carbon (C)	mg/L	89 (1)		50	4589466	<50 (1)	50	4589466	N/A
Orthophosphate (P)	mg/L	0.018	0.016	0.010	4589715	0.015	0.010	4589715	N/A
рН	рН	6.64		N/A	4589414	7.56	N/A	4589414	N/A
Reactive Silica (SiO2)	mg/L	25	25	1.0	4589709	22	0.50	4589709	N/A
Dissolved Sulphate (SO4)	mg/L	3.4	3.3	2.0	4589707	13	2.0	4589707	N/A
Turbidity	NTU	>1000		1.0	4589522	>1000	1.0	4589502	0.10
Conductivity	uS/cm	190		1.0	4589415	170	1.0	4589415	N/A
Metals									
Dissolved Aluminum (AI)	ug/L	120		5.0	4589406	<5.0	5.0	4589406	N/A
Dissolved Antimony (Sb)	ug/L	<1.0		1.0	4589406	<1.0	1.0	4589406	N/A
Dissolved Arsenic (As)	ug/L	12		1.0	4589406	<1.0	1.0	4589406	N/A
Dissolved Barium (Ba)	ug/L	64		1.0	4589406	3.4	1.0	4589406	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

(1) Reporting limit was increased due to turbidity.

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016 Sampler Initials: AS

ATL. RCAP-MS DISSOLVED (LABFILT) IN W

Maxxam ID		CSR714	CSR714			CSR715			
Sampling Date		2016/07/15	2016/07/15			2016/07/15			
COC Number		568672-01-01	568672-01-01			568672-01-01			
	UNITS	MW5S	MW5S Lab-Dup	RDL	QC Batch	MW6D	RDL	QC Batch	MDL
Dissolved Beryllium (Be)	ug/L	<1.0		1.0	4589406	<1.0	1.0	4589406	N/A
Dissolved Bismuth (Bi)	ug/L	<2.0		2.0	4589406	<2.0	2.0	4589406	N/A
Dissolved Boron (B)	ug/L	<50		50	4589406	<50	50	4589406	N/A
Dissolved Cadmium (Cd)	ug/L	0.028		0.010	4589406	<0.010	0.010	4589406	N/A
Dissolved Calcium (Ca)	ug/L	24000		100	4589406	11000	100	4589406	N/A
Dissolved Chromium (Cr)	ug/L	<1.0		1.0	4589406	<1.0	1.0	4589406	N/A
Dissolved Cobalt (Co)	ug/L	5.1		0.40	4589406	<0.40	0.40	4589406	N/A
Dissolved Copper (Cu)	ug/L	3.8		2.0	4589406	<2.0	2.0	4589406	N/A
Dissolved Iron (Fe)	ug/L	340		50	4589406	<50	50	4589406	N/A
Dissolved Lead (Pb)	ug/L	<0.50		0.50	4589406	<0.50	0.50	4589406	N/A
Dissolved Magnesium (Mg)	ug/L	7600		100	4589406	2800	100	4589406	N/A
Dissolved Manganese (Mn)	ug/L	750		2.0	4589406	62	2.0	4589406	N/A
Dissolved Molybdenum (Mo)	ug/L	<2.0		2.0	4589406	3.5	2.0	4589406	N/A
Dissolved Nickel (Ni)	ug/L	4.3		2.0	4589406	<2.0	2.0	4589406	N/A
Dissolved Phosphorus (P)	ug/L	<100		100	4589406	<100	100	4589406	N/A
Dissolved Potassium (K)	ug/L	7000		100	4589406	320	100	4589406	N/A
Dissolved Selenium (Se)	ug/L	<1.0		1.0	4589406	<1.0	1.0	4589406	N/A
Dissolved Silver (Ag)	ug/L	<0.10		0.10	4589406	<0.10	0.10	4589406	N/A
Dissolved Sodium (Na)	ug/L	12000		100	4589406	23000	100	4589406	N/A
Dissolved Strontium (Sr)	ug/L	120		2.0	4589406	46	2.0	4589406	N/A
Dissolved Thallium (TI)	ug/L	<0.10		0.10	4589406	<0.10	0.10	4589406	N/A
Dissolved Tin (Sn)	ug/L	<2.0		2.0	4589406	<2.0	2.0	4589406	N/A
Dissolved Titanium (Ti)	ug/L	<2.0		2.0	4589406	<2.0	2.0	4589406	N/A
Dissolved Uranium (U)	ug/L	<0.10		0.10	4589406	0.16	0.10	4589406	N/A
Dissolved Vanadium (V)	ug/L	<2.0		2.0	4589406	<2.0	2.0	4589406	N/A
Dissolved Zinc (Zn)	ug/L	11		5.0	4589406	<5.0	5.0	4589406	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016 Sampler Initials: AS

ATL. RCAP-MS DISSOLVED (LABFILT) IN W

Maxxam ID		CSR719		CSR720		CSR721			
Sampling Date		2016/07/15		2016/07/15		2016/07/15			
COC Number		568672-02-01		568672-02-01		568672-02-01			
	UNITS	MW6S	RDL	MW7	RDL	MW8	RDL	QC Batch	MDL
Calculated Parameters									
Anion Sum	me/L	10.1	N/A	3.47	N/A	3.60	N/A	4585153	N/A
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	430	1.0	150	1.0	150	1.0	4585151	0.20
Calculated TDS	mg/L	530	1.0	250	1.0	210	1.0	4585156	0.20
Carb. Alkalinity (calc. as CaCO3)	mg/L	1.1	1.0	1.7	1.0	<1.0	1.0	4585151	0.20
Cation Sum	me/L	10.1	N/A	6.22	N/A	3.46	N/A	4585153	N/A
Hardness (CaCO3)	mg/L	440	1.0	270	1.0	130	1.0	4585015	1.0
Ion Balance (% Difference)	%	0.250	N/A	28.4	N/A	1.98	N/A	4585152	N/A
Langelier Index (@ 20C)	N/A	0.636		0.744		-0.166		4585154	
Langelier Index (@ 4C)	N/A	0.388		0.495		-0.416		4585155	
Nitrate (N)	mg/L	<0.050	0.050	<0.050	0.050	<0.050	0.050	4584921	N/A
Saturation pH (@ 20C)	N/A	6.81		7.34		7.64		4585154	
Saturation pH (@ 4C)	N/A	7.05		7.59		7.89		4585155	
Inorganics					•				•
Total Alkalinity (Total as CaCO3)	mg/L	430	25	150	25	150	25	4589703	N/A
Dissolved Chloride (CI)	mg/L	51	2.0	13	1.0	16	1.0	4589706	N/A
Colour	TCU	140	25	15	5.0	<5.0	5.0	4589713	N/A
Nitrate + Nitrite (N)	mg/L	<0.050	0.050	<0.050	0.050	<0.050	0.050	4589717	N/A
Nitrite (N)	mg/L	<0.010	0.010	<0.010	0.010	<0.010	0.010	4589719	N/A
Nitrogen (Ammonia Nitrogen)	mg/L	1.9	0.050	0.21	0.050	<0.050	0.050	4589841	N/A
Total Organic Carbon (C)	mg/L	25 (1)	5.0	29 (1)	25	<50 (1)	50	4589466	N/A
Orthophosphate (P)	mg/L	0.023	0.010	0.033	0.010	0.029	0.010	4589715	N/A
рН	рН	7.44	N/A	8.09	N/A	7.47	N/A	4592060	N/A
Reactive Silica (SiO2)	mg/L	31	1.0	18	0.50	24	0.50	4589709	N/A
Dissolved Sulphate (SO4)	mg/L	2.7	2.0	6.5	2.0	6.0	2.0	4589707	N/A
Turbidity	NTU	>1000	1.0	550	1.0	>1000	1.0	4589508	0.10
Conductivity	uS/cm	610	1.0	300	1.0	310	1.0	4589413	N/A
Metals	•		•		•		•		•
Dissolved Aluminum (AI)	ug/L	21	5.0	8.8	5.0	<5.0	5.0	4589406	N/A
Dissolved Antimony (Sb)	ug/L	<1.0	1.0	<1.0	1.0	<1.0	1.0	4589406	N/A
Dissolved Arsenic (As)	ug/L	1.8	1.0	2.4	1.0	<1.0	1.0	4589406	N/A
Dissolved Barium (Ba)	ug/L	77	1.0	35	1.0	25	1.0	4589406	N/A
Dissolved Beryllium (Be)	ug/L	<1.0	1.0	<1.0	1.0	<1.0	1.0	4589406	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

(1) Reporting limit was increased due to turbidity.

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016 Sampler Initials: AS

ATL. RCAP-MS DISSOLVED (LABFILT) IN W

Maxxam ID		CSR719		CSR720		CSR721			
Sampling Date		2016/07/15		2016/07/15		2016/07/15			
COC Number		568672-02-01		568672-02-01		568672-02-01			
	UNITS	MW6S	RDL	MW7	RDL	MW8	RDL	QC Batch	MDL
Dissolved Bismuth (Bi)	ug/L	<2.0	2.0	<2.0	2.0	<2.0	2.0	4589406	N/A
Dissolved Boron (B)	ug/L	<50	50	<50	50	<50	50	4589406	N/A
Dissolved Cadmium (Cd)	ug/L	0.15	0.010	0.034	0.010	0.036	0.010	4589406	N/A
Dissolved Calcium (Ca)	ug/L	110000	100	78000	100	38000	100	4589406	N/A
Dissolved Chromium (Cr)	ug/L	<1.0	1.0	<1.0	1.0	<1.0	1.0	4589406	N/A
Dissolved Cobalt (Co)	ug/L	9.9	0.40	3.5	0.40	4.7	0.40	4589406	N/A
Dissolved Copper (Cu)	ug/L	13	2.0	5.0	2.0	<2.0	2.0	4589406	N/A
Dissolved Iron (Fe)	ug/L	130	50	<50	50	<50	50	4589406	N/A
Dissolved Lead (Pb)	ug/L	<0.50	0.50	<0.50	0.50	<0.50	0.50	4589406	N/A
Dissolved Magnesium (Mg)	ug/L	41000	100	18000	100	8800	100	4589406	N/A
Dissolved Manganese (Mn)	ug/L	6500	2.0	1900	2.0	990	2.0	4589406	N/A
Dissolved Molybdenum (Mo)	ug/L	<2.0	2.0	2.9	2.0	<2.0	2.0	4589406	N/A
Dissolved Nickel (Ni)	ug/L	11	2.0	9.2	2.0	4.4	2.0	4589406	N/A
Dissolved Phosphorus (P)	ug/L	<100	100	<100	100	<100	100	4589406	N/A
Dissolved Potassium (K)	ug/L	8800	100	7900	100	2600	100	4589406	N/A
Dissolved Selenium (Se)	ug/L	<1.0	1.0	<1.0	1.0	<1.0	1.0	4589406	N/A
Dissolved Silver (Ag)	ug/L	<0.10	0.10	<0.10	0.10	<0.10	0.10	4589406	N/A
Dissolved Sodium (Na)	ug/L	22000	100	14000	100	18000	100	4589406	N/A
Dissolved Strontium (Sr)	ug/L	440	2.0	260	2.0	170	2.0	4589406	N/A
Dissolved Thallium (TI)	ug/L	<0.10	0.10	<0.10	0.10	<0.10	0.10	4589406	N/A
Dissolved Tin (Sn)	ug/L	<2.0	2.0	<2.0	2.0	<2.0	2.0	4589406	N/A
Dissolved Titanium (Ti)	ug/L	<2.0	2.0	<2.0	2.0	<2.0	2.0	4589406	N/A
Dissolved Uranium (U)	ug/L	2.3	0.10	0.48	0.10	0.12	0.10	4589406	N/A
Dissolved Vanadium (V)	ug/L	<2.0	2.0	<2.0	2.0	<2.0	2.0	4589406	N/A
Dissolved Zinc (Zn)	ug/L	<5.0	5.0	<5.0	5.0	<5.0	5.0	4589406	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016 Sampler Initials: AS

ATL. RCAP-MS DISSOLVED (LABFILT) IN W

Maxxam ID		CSR724			
Sampling Date		2016/07/15			
COC Number		568672-02-01			
	UNITS	MW11	RDL	QC Batch	MDL
Calculated Parameters					
Anion Sum	me/L	1.17	N/A	4585153	N/A
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	32	1.0	4585151	0.20
Calculated TDS	mg/L	83	1.0	4585156	0.20
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	4585151	0.20
Cation Sum	me/L	1.10	N/A	4585153	N/A
Hardness (CaCO3)	mg/L	28	1.0	4585015	1.0
Ion Balance (% Difference)	%	3.08	N/A	4585152	N/A
Langelier Index (@ 20C)	N/A	-2.35		4585154	
Langelier Index (@ 4C)	N/A	-2.61		4585155	
Nitrate (N)	mg/L	0.44	0.050	4584921	N/A
Saturation pH (@ 20C)	N/A	9.03		4585154	
Saturation pH (@ 4C)	N/A	9.28		4585155	
Inorganics		1	ı		
Total Alkalinity (Total as CaCO3)	mg/L	32	5.0	4589703	N/A
Dissolved Chloride (Cl)	mg/L	6.3	1.0	4589706	N/A
Colour	TCU	9.6	5.0	4589713	N/A
Nitrate + Nitrite (N)	mg/L	0.44	0.050	4589717	N/A
Nitrite (N)	mg/L	<0.010	0.010	4589719	N/A
Nitrogen (Ammonia Nitrogen)	mg/L	0.081	0.050	4589841	N/A
Total Organic Carbon (C)	mg/L	<50 (1)	50	4589617	N/A
Orthophosphate (P)	mg/L	0.024	0.010	4589715	N/A
рН	рН	6.67	N/A	4592060	N/A
Reactive Silica (SiO2)	mg/L	17	0.50	4589709	N/A
Dissolved Sulphate (SO4)	mg/L	16	2.0	4589707	N/A
Turbidity	NTU	>1000	1.0	4589508	0.10
Conductivity	uS/cm	110	1.0	4589413	N/A
Metals	•		•		
Dissolved Aluminum (AI)	ug/L	30	5.0	4589406	N/A
Dissolved Antimony (Sb)	ug/L	<1.0	1.0	4589406	N/A
Dissolved Arsenic (As)	ug/L	<1.0	1.0	4589406	N/A
Dissolved Barium (Ba)	ug/L	9.2	1.0	4589406	N/A
Dissolved Beryllium (Be)	ug/L	<1.0	1.0	4589406	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

(1) Reporting limit was increased due to turbidity.

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016 Sampler Initials: AS

ATL. RCAP-MS DISSOLVED (LABFILT) IN W

Maxxam ID		CSR724			
Sampling Date		2016/07/15			
COC Number		568672-02-01			
	UNITS	MW11	RDL	QC Batch	MDL
Dissolved Bismuth (Bi)	ug/L	<2.0	2.0	4589406	N/A
Dissolved Boron (B)	ug/L	<50	50	4589406	N/A
Dissolved Cadmium (Cd)	ug/L	0.045	0.010	4589406	N/A
Dissolved Calcium (Ca)	ug/L	6400	100	4589406	N/A
Dissolved Chromium (Cr)	ug/L	<1.0	1.0	4589406	N/A
Dissolved Cobalt (Co)	ug/L	1.1	0.40	4589406	N/A
Dissolved Copper (Cu)	ug/L	<2.0	2.0	4589406	N/A
Dissolved Iron (Fe)	ug/L	<50	50	4589406	N/A
Dissolved Lead (Pb)	ug/L	<0.50	0.50	4589406	N/A
Dissolved Magnesium (Mg)	ug/L	3000	100	4589406	N/A
Dissolved Manganese (Mn)	ug/L	1100	2.0	4589406	N/A
Dissolved Molybdenum (Mo)	ug/L	<2.0	2.0	4589406	N/A
Dissolved Nickel (Ni)	ug/L	<2.0	2.0	4589406	N/A
Dissolved Phosphorus (P)	ug/L	<100	100	4589406	N/A
Dissolved Potassium (K)	ug/L	810	100	4589406	N/A
Dissolved Selenium (Se)	ug/L	<1.0	1.0	4589406	N/A
Dissolved Silver (Ag)	ug/L	<0.10	0.10	4589406	N/A
Dissolved Sodium (Na)	ug/L	12000	100	4589406	N/A
Dissolved Strontium (Sr)	ug/L	46	2.0	4589406	N/A
Dissolved Thallium (TI)	ug/L	<0.10	0.10	4589406	N/A
Dissolved Tin (Sn)	ug/L	<2.0	2.0	4589406	N/A
Dissolved Titanium (Ti)	ug/L	<2.0	2.0	4589406	N/A
Dissolved Uranium (U)	ug/L	<0.10	0.10	4589406	N/A
Dissolved Vanadium (V)	ug/L	<2.0	2.0	4589406	N/A
Dissolved Zinc (Zn)	ug/L	<5.0	5.0	4589406	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016 Sampler Initials: AS

AT. RCAP-MS DISSOLVED (FIELDFILT) IN W

COC Number	Maxxam ID		CSR708		CSR709			CSR711			
Calculated Parameters	Sampling Date		2016/07/15		2016/07/15			2016/07/15			
Calculated Parameters Anion Sum me/L 10.6 N/A 2.69 N/A 4585153 4.39 N/A 4585153 N/A Bicarb. Alkalinity (calc. as CaCO3) mg/L 490 1.0 100 1.0 4585155 180 1.0 4585151 0.20 Calculated TDS mg/L 550 1.0 160 1.0 4585155 250 1.0 4585151 0.20 Carb. Alkalinity (calc. as CaCO3) mg/L 4.0 1.0 <1.0 1.0 4585155 250 1.0 4585151 0.20 Cation Sum me/L 10.7 N/A 2.67 N/A 4585153 4.29 N/A 4585153 0.20 Cation Sum me/L 10.7 N/A 2.67 N/A 4585153 4.29 N/A 4585153 1.0 Hardness (CaCO3) mg/L 460 1.0 100 1.0 4585015 160 1.0 4585155 1.0 Ion Balance (% Difference) % 0.520 N/A 0.370 N/A 4585152 1.15 N/A 4585152 N/E Langelier Index (@ 20C) N/A 1.22 -0.0240 4585154 -0.410 4585154 Langelier Index (@ 4C) N/A 0.972 -0.275 4585155 -0.660 4585155 Nitrate (N) mg/L <0.050 0.050 <0.050 0.050 4584921 0.050 0.050 4584921 Noramics Saturation pH (@ 4C) N/A 6.96 8.20 4585155 7.79 4585155 Total Alkalinity (Total as CaCO3) mg/L 500 100 110 25 4589703 190 25 4589703 N/E Dissolved Chloride (CI) mg/L 15 1.0 11 1.0 4589706 19 1.0 4589706 N/E Nitrate + Nitrite (N) mg/L <0.050 0.050 <0.050 0.050 4589717 <0.050 0.050 4589717 N/E Nitrite + Nitrite (N) mg/L <0.050 0.050 <0.050 0.050 4589717 <0.050 0.050 4589717 N/E Nitrogen (Cammonia Nitrogen) mg/L <0.050 0.050 <0.050 0.050 4589971 <0.050 0.050 4589717 N/E Total Organic Carbon (C) mg/L <0.050 0.050 <0.050 0.050 45899717 <0.050 0.050 4589717 N/E Nitrogen (Cammonia Nitrogen) mg/L <0.050 0.050 <0.050 0.050 45899717 <0.050 0.050 4589717 N/E Total Organic Carbon (C) mg/L <0.050 0.050 <0.050 0.050 45899717 <0.050 0.050 45899717 N/E Nitrogen (Cammonia Nitrogen) mg/L <0.050 0.050 <0.050	COC Number		568672-01-01		568672-01-01			568672-01-01			
Anion Sum me/L 10.6		UNITS	MW1D	RDL	MW2D	RDL	QC Batch	MW3D	RDL	QC Batch	MDL
Bicarb. Alkalinity (calc. as CaCO3) mg/L 490 1.0 100 1.0 4585151 180 1.0 4585151 0.2(Calculated TDS mg/L 550 1.0 160 1.0 4585151 180 1.0 4585151 0.2(Carb. Alkalinity (calc. as CaCO3) mg/L 4.0 1.0 1.0 1.0 4.1.0 1.0 4585151 4.0 1.0 4585151 0.2(Carb. Alkalinity (calc. as CaCO3) mg/L 4.0 1.0 1.0 1.0 4.0 1.0 4585151 4.0 1.0 4585151 0.2(Carb. Alkalinity (calc. as CaCO3) mg/L 4.0 1.0 1.0 4.0 1.0 4585151 4.20 N/A 4585153 0.2(Carb. Alkalinity (calc. as CaCO3) mg/L 4.0 1.0 1.0 4.0 1.0 4585151 4.20 N/A 4585153 0.2(Carb. Alkalinity (calc. as CaCO3) mg/L 4.0 1.0 1.0 1.0 4585151 4.20 N/A 4585153 0.2(Carb. Alkalinity (calc. as CaCO3) mg/L 4.0 1.0 1.0 1.0 4585151 4.20 N/A 4585153 0.2(Carb. Alkalinity (calc. as CaCO3) mg/L 4.0 1.0 1.0 1.0 4585151 4.20 N/A 4585152 N/A Langelier Index (@ 20C) N/A 1.22 -0.0240 4585154 -0.410 4585154 1.15 N/A 4585152 N/A Langelier Index (@ 20C) N/A 0.972 -0.275 4585155 -0.660 4585155 Nitrate (N) mg/L 4.0.050 0.050 4.0.050 0.050 4584921 4.0.050 0.050 4584921 N/A Saturation pH (@ 20C) N/A 6.71 7.95 4585154 7.54 4585154 Saturation pH (@ 4C) N/A 6.96 8.20 4585155 7.79 4585155 Nitrate (N) mg/L 4.0.050 N/A 6.96 8.20 45885155 7.79 4585155 Nitrate (N) mg/L 5.0 1.0 11 1.0 4589706 19 1.0 4589708 N/A Dissolved Chloride (Cl) mg/L 5.0 5.0 6.2 5.0 4589713 5.0 5.0 4589713 N/A Nitrite (N) mg/L 4.0.050 0.050 4.0.050 4.0.050 4.0.050 4.0.050 4.0.050 0.050 4.0.050 0.050 4.0.050 0.050 4.0.050 0.050 4.0.050 0.050 4.0.050 0.050 4.0.050 0.050 4.0.050 0.050 4.0.050 0.050 4.0.050 0.050 4.0.050 0.050 4.0.050 0.0.050 0.0.050 4.0.050 0.0.050 4.0.050 0.0.050 4.0.050 0.0.050 0.0.050 4.0.050 0.0.050 0.0.050 0.0.050 0.0.050 0.0.050 0.0.050 0.0.050 0.0.050 0.0.050 0.0.050 0.0.05	Calculated Parameters	•	•	•		•	•	•	· · · · · · · · · · · · · · · · · · ·		
Calculated TDS	Anion Sum	me/L	10.6	N/A	2.69	N/A	4585153	4.39	N/A	4585153	N/A
Carb. Alkalinity (calc. as CaCO3)	Bicarb. Alkalinity (calc. as CaCO3)	mg/L	490	1.0	100	1.0	4585151	180	1.0	4585151	0.20
Cation Sum	Calculated TDS	mg/L	550	1.0	160	1.0	4585156	250	1.0	4585156	0.20
Hardness (CaCO3)	Carb. Alkalinity (calc. as CaCO3)	mg/L	4.0	1.0	<1.0	1.0	4585151	<1.0	1.0	4585151	0.20
Display Color Co	Cation Sum	me/L	10.7	N/A	2.67	N/A	4585153	4.29	N/A	4585153	N/A
Langelier Index (@ 20C) N/A 1.22 -0.0240 4585154 -0.410 4585154 Langelier Index (@ 4C) N/A 0.972 -0.275 4585155 -0.660 4585155 Nitrate (N) mg/L <0.050 0.050 0.050 <0.050 0.050 4584921 <0.050 0.050 4584921 N/A Saturation pH (@ 20C) N/A 6.71 7.95 4585155 7.79 4585155 Nitrate (N) N/A 6.96 8.20 4585155 7.79 4585155 Nitrate (N) N/A 6.96 8.20 4585155 7.79 4585155 Nitration pH (@ 4C) N/A 6.96 8.20 4585155 7.79 4585155 Nitration pH (@ 4C) N/A 6.96 8.20 4589703 190 25 4589703 N/A Saturation pH (@ 4C) N/A 6.96 8.20 4589703 190 25 4589703 N/A 6.010 Nitrate Allalinity (Total as CaCO3) Mg/L 15 1.0 11 1.0 4589706 19 1.0 4589706 N/A Colour TCU <5.0 5.0 6.2 5.0 4589713 <5.0 5.0 4589713 N/A Nitrate + Nitrite (N) Mg/L <0.050 0.050 <0.050 0.050 4589717 <0.050 0.050 4589717 N/A Nitrite (N) Mg/L <0.010 0.010 <0.010 0.010 4589719 <0.050 0.050 4589719 N/A Nitrogen (Ammonia Nitrogen) Mg/L <0.050 0.050 0.050 0.050 0.050 4589837 <0.050 0.050 458981 N/A Total Organic Carbon (C) Mg/L <5.0 (1) 5.0 <5.0 (2) 5.0 4589715 0.016 0.010 4589715 N/A PH P P P P P P P P P P P P P P P P P P	Hardness (CaCO3)	mg/L	460	1.0	100	1.0	4585015	160	1.0	4585015	1.0
Langelier Index (@ 4C) N/A 0.972 -0.275 4585155 -0.660 4585155 NItrate (N) mg/L <0.050 0.050 <0.050 0.050 4584921 <0.050 0.050 4584921 N/A 6.71 N/A 6.71 7.95 4585154 7.54 4585154 Saturation pH (@ 20C) N/A 6.71 7.95 4585154 7.54 4585154 7.54 4585154 Saturation pH (@ 4C) N/A 6.96 8.20 4585155 7.79 4585155 NItroganics Total Alkalinity (Total as CaCO3) mg/L 500 100 110 25 4589703 190 25 4589703 N/A 25850940 Chloride (Cl) mg/L 15 1.0 11 1.0 4589706 19 1.0 4589706 N/A 6.96 N/A 6.95 8.20 4589713 <0.050 0.050 4589713 N/A 6.96	Ion Balance (% Difference)	%	0.520	N/A	0.370	N/A	4585152	1.15	N/A	4585152	N/A
Nitrate (N)	Langelier Index (@ 20C)	N/A	1.22		-0.0240		4585154	-0.410		4585154	
Saturation pH (@ 20C) N/A 6.71 7.95 4585154 7.54 4585154 Saturation pH (@ 4C) N/A 6.96 8.20 4585155 7.79 4585155 Saturation pH (@ 4C) N/A 6.96 8.20 4585155 7.79 4585155 Saturation pH (@ 4C) N/A 6.96 8.20 4585155 7.79 4585155 Saturation pH (@ 4C) N/A 6.96 8.20 4585155 7.79 4585155 Saturation pH (@ 4C) N/A 6.96 8.20 4585155 7.79 4585155 Saturation pH (@ 4C) N/A 6.96 8.20 4585155 7.79 4585155 Saturation pH (@ 4C) N/A 6.96 8.20 4585155 7.79 4585155 Saturation pH (@ 4C) N/A 6.96 8.20 4585155 7.79 4585155 Saturation pH (@ 4C) N/A 6.96 8.20 4585155 7.79 4585155 Saturation pH (@ 4C) N/A 6.96 8.20 4585155 7.79 4585155 Saturation pH (@ 4C) N/A 6.96 8.20 4585155 7.79 4585155 Saturation pH (@ 4C) N/A 6.96 8.20 4585155 7.79 4585155 Saturation pH (@ 4C) N/A 6.96 8.20 4585155 7.79 4585155 Saturation pH (@ 4C) N/A 6.96 8.20 4585155 7.79 4585155 Saturation pH (@ 4C) N/A 6.96 8.20 4585155 7.79 4585155 Saturation pH (@ 4C) N/A 6.96 8.20 4585155 7.79 4585155 Saturation pH (@ 4C) N/A 6.96 8.20 4585155 7.79 4585155 Saturation pH (@ 4C) N/A 6.96 8.20 4589703 1.90 4589706 1.00 4589706 N/A 6.96 97.00 1.00 4589713 N/A 6.96 97.00 1.00 4589713 N/A 6.96 97.00 1.00 4589713 N/A 6.96 97.00 1.00 4589719 N/A 6.96 97.00 1.00 4589715 N/A 6.96 97.00 1	Langelier Index (@ 4C)	N/A	0.972		-0.275		4585155	-0.660		4585155	
Saturation pH (@ 4C) N/A 6.96 8.20 4585155 7.79 4585155 Inorganics	Nitrate (N)	mg/L	<0.050	0.050	<0.050	0.050	4584921	<0.050	0.050	4584921	N/A
Total Alkalinity (Total as CaCO3) mg/L 500 100 110 25 4589703 190 25 4589703 N/A	Saturation pH (@ 20C)	N/A	6.71		7.95		4585154	7.54		4585154	
Total Alkalinity (Total as CaCO3)	Saturation pH (@ 4C)	N/A	6.96		8.20		4585155	7.79		4585155	
Dissolved Chloride (Cl) mg/L 15 1.0 11 1.0 4589706 19 1.0 4589706 N/A Colour TCU <5.0 5.0 6.2 5.0 4589713 <5.0 5.0 4589713 N/A Nitrate + Nitrite (N) mg/L <0.050 0.050 <0.050 0.050 4589717 <0.050 0.050 4589717 N/A Nitrite (N) mg/L <0.010 0.010 <0.010 4589719 <0.010 0.010 4589719 N/A Nitrogen (Ammonia Nitrogen) mg/L <0.050 0.050 <0.050 0.050 4589837 <0.050 0.050 4589841 N/A Total Organic Carbon (C) mg/L <5.0 (1) 5.0 <5.0 (2) 5.0 4589466 2.3 (2) 1.0 4589466 N/A Orthophosphate (P) mg/L 0.022 0.010 0.028 0.010 4589715 0.016 0.010 4589715 N/A Reactive Silica (SiO2) mg/L 27 1.0 19 0.50 4589709 26 1.0 4589709 N/A Dissolved Sulphate (SO4) mg/L 7.5 2.0 12 2.0 4589707 8.1 2.0 4589707 N/A Turbidity NTU 27 0.10 650 1.0 4589508 550 1.0 4589508 0.10 Conductivity us/cm 870 1.0 240 1.0 4589413 380 1.0 4589413 N/A Metals Dissolved Aluminum (Al) ug/L <5.0 5.0 5.0 <5.0 5.0 4589416 <5.0 5.0 4589416 N/A Dissolved Antimony (Sb) ug/L <1.0 1.0 4.0 4589416 <1.0 1.0 4589416 N/A Dissolved Arsenic (As) ug/L 7.9 1.0 8.8 1.0 4589416 6.4 1.0 4589416 N/A	Inorganics	•	•	!		!					
TCU	Total Alkalinity (Total as CaCO3)	mg/L	500	100	110	25	4589703	190	25	4589703	N/A
Nitrate + Nitrite (N)	Dissolved Chloride (CI)	mg/L	15	1.0	11	1.0	4589706	19	1.0	4589706	N/A
Nitrite (N) mg/L <0.010 0.010 <0.010 0.010 4589719 <0.010 0.010 4589719 N/A Nitrogen (Ammonia Nitrogen) mg/L <0.050 0.050 0.050 <0.050 0.050 4589837 <0.050 0.050 4589841 N/A Total Organic Carbon (C) mg/L <5.0 (1) 5.0 <5.0 (2) 5.0 4589466 2.3 (2) 1.0 4589466 N/A Orthophosphate (P) mg/L 0.022 0.010 0.028 0.010 4589715 0.016 0.010 4589715 N/A PH PH 7.93 N/A 7.93 N/A 4592060 7.13 N/A 4592060 N/A Reactive Silica (SiO2) mg/L 27 1.0 19 0.50 4589709 26 1.0 4589709 N/A Dissolved Sulphate (SO4) mg/L 7.5 2.0 12 2.0 4589707 8.1 2.0 4589707 N/A Turbidity NTU 27 0.10 650 1.0 4589508 550 1.0 4589508 0.10 Conductivity uS/cm 870 1.0 240 1.0 4589413 380 1.0 4589413 N/A Metals Dissolved Aluminum (Al) ug/L <5.0 5.0 <5.0 5.0 4589416 <5.0 5.0 4589416 N/A Dissolved Arsenic (As) ug/L 7.9 1.0 8.8 1.0 4589416 6.4 1.0 4589416 N/A Dissolved Arsenic (As) ug/L 7.9 1.0 8.8 1.0 4589416 6.4 1.0 4589416 N/A	Colour	TCU	<5.0	5.0	6.2	5.0	4589713	<5.0	5.0	4589713	N/A
Nitrogen (Ammonia Nitrogen) mg/L <0.050 0.050 <0.050 0.050 4589837 <0.050 0.050 4589841 N/A Total Organic Carbon (C) mg/L <5.0 (1) 5.0 <5.0 (2) 5.0 4589466 2.3 (2) 1.0 4589466 N/A Orthophosphate (P) mg/L 0.022 0.010 0.028 0.010 4589715 0.016 0.010 4589715 N/A PH PH PH PH PH PH PH PH PH PH PH PH PH P	Nitrate + Nitrite (N)	mg/L	<0.050	0.050	<0.050	0.050	4589717	<0.050	0.050	4589717	N/A
Total Organic Carbon (C) mg/L <5.0 (1) 5.0 <5.0 (2) 5.0 4589466 2.3 (2) 1.0 4589466 N/A Orthophosphate (P) mg/L 0.022 0.010 0.028 0.010 4589715 0.016 0.010 4589715 N/A pH pH 7.93 N/A 7.93 N/A 4592060 7.13 N/A 4592060 N/A Reactive Silica (SiO2) mg/L 27 1.0 19 0.50 4589709 26 1.0 4589709 N/A Dissolved Sulphate (SO4) mg/L 7.5 2.0 12 2.0 4589707 8.1 2.0 4589707 N/A Turbidity NTU 27 0.10 650 1.0 4589508 550 1.0 4589508 0.10 Conductivity us/cm 870 1.0 240 1.0 4589413 380 1.0 4589413 N/A Metals Dissolved Aluminum (Al) ug/L <5.0 5.0 <5.0 5.0 4589416 <5.0 5.0 4589416 N/A Dissolved Antimony (Sb) ug/L <1.0 1.0 4589416 <1.0 1.0 4589416 N/A Dissolved Arsenic (As) ug/L 7.9 1.0 8.8 1.0 4589416 6.4 1.0 4589416 N/A	Nitrite (N)	mg/L	<0.010	0.010	<0.010	0.010	4589719	<0.010	0.010	4589719	N/A
Orthophosphate (P) mg/L 0.022 0.010 0.028 0.010 4589715 0.016 0.010 4589715 N/A pH pH 7.93 N/A 7.93 N/A 4592060 7.13 N/A 4592060 N/A Reactive Silica (SiO2) mg/L 27 1.0 19 0.50 4589709 26 1.0 4589709 N/A Dissolved Sulphate (SO4) mg/L 7.5 2.0 12 2.0 4589707 8.1 2.0 4589707 N/A Turbidity NTU 27 0.10 650 1.0 4589508 550 1.0 4589508 0.10 Conductivity us/cm 870 1.0 240 1.0 4589413 380 1.0 4589413 N/A Metals Dissolved Aluminum (Al) ug/L <5.0 5.0 <5.0 5.0 4589416 <5.0 5.0 4589416 N/A Dissolved Antimony (Sb) ug/L <1.0 1.0 4589416 <1.0 1.0 4589416 N/A Dissolved Arsenic (As) ug/L 7.9 1.0 8.8 1.0 4589416 6.4 1.0 4589416 N/A	Nitrogen (Ammonia Nitrogen)	mg/L	<0.050	0.050	<0.050	0.050	4589837	<0.050	0.050	4589841	N/A
pH 7.93 N/A 7.93 N/A 4592060 7.13 N/A 4592060 N/A Reactive Silica (SiO2) mg/L 27 1.0 19 0.50 4589709 26 1.0 4589709 N/A Dissolved Sulphate (SO4) mg/L 7.5 2.0 12 2.0 4589707 8.1 2.0 4589707 N/A Turbidity NTU 27 0.10 650 1.0 4589508 550 1.0 4589508 0.10 Conductivity uS/cm 870 1.0 240 1.0 4589413 380 1.0 4589413 N/A Metals Dissolved Aluminum (Al) ug/L <5.0 5.0 <5.0 5.0 4589416 <5.0 5.0 4589416 N/A Dissolved Antimony (Sb) ug/L <1.0 1.0 4589416 <1.0 1.0 4589416 N/A Dissolved Arsenic (As) ug/L 7.9 1.0 8.8 1.0 4589416 6.4 1.0 4589416 N/A	Total Organic Carbon (C)	mg/L	<5.0 (1)	5.0	<5.0 (2)	5.0	4589466	2.3 (2)	1.0	4589466	N/A
Reactive Silica (SiO2) mg/L 27 1.0 19 0.50 4589709 26 1.0 4589709 N/A Dissolved Sulphate (SO4) mg/L 7.5 2.0 12 2.0 4589707 8.1 2.0 4589707 N/A Turbidity NTU 27 0.10 650 1.0 4589508 550 1.0 4589508 0.10 Conductivity uS/cm 870 1.0 240 1.0 4589413 380 1.0 4589413 N/A Metals Dissolved Aluminum (Al) ug/L <5.0 5.0 <5.0 5.0 4589416 <5.0 5.0 4589416 N/A Dissolved Antimony (Sb) ug/L <1.0 1.0 4589416 <1.0 1.0 4589416 N/A Dissolved Arsenic (As) ug/L 7.9 1.0 8.8 1.0 4589416 6.4 1.0 4589416 N/A	Orthophosphate (P)	mg/L	0.022	0.010	0.028	0.010	4589715	0.016	0.010	4589715	N/A
Dissolved Sulphate (SO4) mg/L 7.5 2.0 12 2.0 4589707 8.1 2.0 4589707 N/A Turbidity NTU 27 0.10 650 1.0 4589508 550 1.0 4589508 0.10 Conductivity uS/cm 870 1.0 240 1.0 4589413 380 1.0 4589413 N/A Metals Dissolved Aluminum (Al) ug/L <5.0 5.0 <5.0 5.0 4589416 <5.0 5.0 4589416 N/A Dissolved Antimony (Sb) ug/L <1.0 1.0 <1.0 1.0 4589416 <1.0 1.0 4589416 N/A Dissolved Arsenic (As) ug/L 7.9 1.0 8.8 1.0 4589416 6.4 1.0 4589416 N/A	рН	рН	7.93	N/A	7.93	N/A	4592060	7.13	N/A	4592060	N/A
Turbidity NTU 27 0.10 650 1.0 4589508 550 1.0 4589508 0.10 Conductivity uS/cm 870 1.0 240 1.0 4589413 380 1.0 4589413 N/A Metals Dissolved Aluminum (Al) ug/L <5.0 5.0 <5.0 5.0 4589416 <5.0 5.0 4589416 N/A Dissolved Antimony (Sb) ug/L <1.0 1.0 <1.0 1.0 4589416 <1.0 1.0 4589416 N/A Dissolved Arsenic (As) ug/L 7.9 1.0 8.8 1.0 4589416 6.4 1.0 4589416 N/A	Reactive Silica (SiO2)	mg/L	27	1.0	19	0.50	4589709	26	1.0	4589709	N/A
Conductivity uS/cm 870 1.0 240 1.0 4589413 380 1.0 4589413 N/A Metals Dissolved Aluminum (Al) ug/L <5.0 5.0 <5.0 5.0 4589416 <5.0 5.0 4589416 N/A Dissolved Antimony (Sb) ug/L <1.0 1.0 <1.0 1.0 4589416 <1.0 1.0 4589416 N/A Dissolved Arsenic (As) ug/L 7.9 1.0 8.8 1.0 4589416 6.4 1.0 4589416 N/A	Dissolved Sulphate (SO4)	mg/L	7.5	2.0	12	2.0	4589707	8.1	2.0	4589707	N/A
Metals Dissolved Aluminum (Al) ug/L <5.0 5.0 <5.0 5.0 4589416 <5.0 5.0 4589416 N/A Dissolved Antimony (Sb) ug/L <1.0	Turbidity	NTU	27	0.10	650	1.0	4589508	550	1.0	4589508	0.10
Dissolved Aluminum (Al) ug/L <5.0 5.0 <5.0 5.0 4589416 <5.0 5.0 4589416 N/A Dissolved Antimony (Sb) ug/L <1.0	Conductivity	uS/cm	870	1.0	240	1.0	4589413	380	1.0	4589413	N/A
Dissolved Antimony (Sb)	Metals										
Dissolved Arsenic (As) ug/L 7.9 1.0 8.8 1.0 4589416 6.4 1.0 4589416 N/A	Dissolved Aluminum (AI)	ug/L	<5.0	5.0	<5.0	5.0	4589416	<5.0	5.0	4589416	N/A
, , , , , , , , , , , , , , , , , , , ,	Dissolved Antimony (Sb)	ug/L	<1.0	1.0	<1.0	1.0	4589416	<1.0	1.0	4589416	N/A
Dissolved Barium (Ba) ug/L 320 1.0 31 1.0 4589416 23 1.0 4589416 N/A	Dissolved Arsenic (As)	ug/L	7.9	1.0	8.8	1.0	4589416	6.4	1.0	4589416	N/A
	Dissolved Barium (Ba)	ug/L	320	1.0	31	1.0	4589416	23	1.0	4589416	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

- (1) Elevated reporting limit due to sample matrix.
- (2) Reporting limit was increased due to turbidity.

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016 Sampler Initials: AS

AT. RCAP-MS DISSOLVED (FIELDFILT) IN W

Maxxam ID		CSR708		CSR709			CSR711			
Sampling Date		2016/07/15		2016/07/15			2016/07/15			
COC Number		568672-01-01		568672-01-01			568672-01-01			
	UNITS	MW1D	RDL	MW2D	RDL	QC Batch	MW3D	RDL	QC Batch	MDL
Dissolved Beryllium (Be)	ug/L	<1.0	1.0	<1.0	1.0	4589416	<1.0	1.0	4589416	N/A
Dissolved Bismuth (Bi)	ug/L	<2.0	2.0	<2.0	2.0	4589416	<2.0	2.0	4589416	N/A
Dissolved Boron (B)	ug/L	<50	50	1000	50	4589416	<50	50	4589416	N/A
Dissolved Cadmium (Cd)	ug/L	<0.010	0.010	<0.010	0.010	4589416	<0.010	0.010	4589416	N/A
Dissolved Calcium (Ca)	ug/L	120000	100	25000	100	4589416	40000	100	4589416	N/A
Dissolved Chromium (Cr)	ug/L	<1.0	1.0	<1.0	1.0	4589416	<1.0	1.0	4589416	N/A
Dissolved Cobalt (Co)	ug/L	1.5	0.40	<0.40	0.40	4589416	6.4	0.40	4589416	N/A
Dissolved Copper (Cu)	ug/L	<2.0	2.0	<2.0	2.0	4589416	<2.0	2.0	4589416	N/A
Dissolved Iron (Fe)	ug/L	140	50	<50	50	4589416	660	50	4589416	N/A
Dissolved Lead (Pb)	ug/L	<0.50	0.50	<0.50	0.50	4589416	<0.50	0.50	4589416	N/A
Dissolved Magnesium (Mg)	ug/L	39000	100	10000	100	4589416	15000	100	4589416	N/A
Dissolved Manganese (Mn)	ug/L	660	2.0	100	2.0	4589416	450	2.0	4589416	N/A
Dissolved Molybdenum (Mo)	ug/L	<2.0	2.0	<2.0	2.0	4589416	<2.0	2.0	4589416	N/A
Dissolved Nickel (Ni)	ug/L	9.4	2.0	2.9	2.0	4589416	12	2.0	4589416	N/A
Dissolved Phosphorus (P)	ug/L	<100	100	<100	100	4589416	<100	100	4589416	N/A
Dissolved Potassium (K)	ug/L	11000	100	3200	100	4589416	3700	100	4589416	N/A
Dissolved Selenium (Se)	ug/L	<1.0	1.0	<1.0	1.0	4589416	<1.0	1.0	4589416	N/A
Dissolved Silver (Ag)	ug/L	<0.10	0.10	<0.10	0.10	4589416	<0.10	0.10	4589416	N/A
Dissolved Sodium (Na)	ug/L	29000	100	12000	100	4589416	22000	100	4589416	N/A
Dissolved Strontium (Sr)	ug/L	450	2.0	150	2.0	4589416	210	2.0	4589416	N/A
Dissolved Thallium (TI)	ug/L	<0.10	0.10	<0.10	0.10	4589416	<0.10	0.10	4589416	N/A
Dissolved Tin (Sn)	ug/L	<2.0	2.0	<2.0	2.0	4589416	<2.0	2.0	4589416	N/A
Dissolved Titanium (Ti)	ug/L	<2.0	2.0	<2.0	2.0	4589416	<2.0	2.0	4589416	N/A
Dissolved Uranium (U)	ug/L	5.0	0.10	0.76	0.10	4589416	0.37	0.10	4589416	N/A
Dissolved Vanadium (V)	ug/L	<2.0	2.0	<2.0	2.0	4589416	<2.0	2.0	4589416	N/A
Dissolved Zinc (Zn)	ug/L	31	5.0	<5.0	5.0	4589416	12	5.0	4589416	N/A

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016 Sampler Initials: AS

AT. RCAP-MS DISSOLVED (FIELDFILT) IN W

Maxxam ID		CSR713	CSR713			CSR722			
Sampling Date		2016/07/15	2016/07/15			2016/07/15			
COC Number		568672-01-01	568672-01-01			568672-02-01			
	UNITS	MW4D	MW4D Lab-Dup	RDL	QC Batch	MW9	RDL	QC Batch	MDL
Calculated Parameters									
Anion Sum	me/L	0.840		N/A	4585153	1.66	N/A	4585153	N/A
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	14		1.0	4585151	27	1.0	4585151	0.20
Calculated TDS	mg/L	60		1.0	4585156	100	1.0	4585156	0.20
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0		1.0	4585151	<1.0	1.0	4585151	0.20
Cation Sum	me/L	0.760		N/A	4585153	1.43	N/A	4585153	N/A
Hardness (CaCO3)	mg/L	22		1.0	4585015	44	1.0	4585015	1.0
Ion Balance (% Difference)	%	5.00		N/A	4585152	7.44	N/A	4585152	N/A
Langelier Index (@ 20C)	N/A	-2.76			4585154	-2.41		4585154	
Langelier Index (@ 4C)	N/A	-3.01			4585155	-2.66		4585155	
Nitrate (N)	mg/L	0.14		0.050	4584921	0.057	0.050	4584921	N/A
Saturation pH (@ 20C)	N/A	9.44			4585154	8.92		4585154	
Saturation pH (@ 4C)	N/A	9.69			4585155	9.18		4585155	
Inorganics	•			•	•		•	•	•
Total Alkalinity (Total as CaCO3)	mg/L	14		5.0	4589703	27	5.0	4589703	N/A
Dissolved Chloride (CI)	mg/L	8.1		1.0	4589706	24	1.0	4589706	N/A
Colour	TCU	<5.0		5.0	4589713	<5.0	5.0	4589713	N/A
Nitrate + Nitrite (N)	mg/L	0.14		0.050	4589717	0.057	0.050	4589717	N/A
Nitrite (N)	mg/L	<0.010		0.010	4589719	<0.010	0.010	4589719	N/A
Nitrogen (Ammonia Nitrogen)	mg/L	<0.050		0.050	4589841	<0.050	0.050	4589841	N/A
Total Organic Carbon (C)	mg/L	0.78		0.50	4589466	<5.0 (1)	5.0	4589617	N/A
Orthophosphate (P)	mg/L	0.011		0.010	4589715	0.012	0.010	4589715	N/A
рН	рН	6.68		N/A	4592060	6.52	N/A	4592060	N/A
Reactive Silica (SiO2)	mg/L	12		0.50	4589709	13	0.50	4589709	N/A
Dissolved Sulphate (SO4)	mg/L	16		2.0	4589707	21	2.0	4589707	N/A
Turbidity	NTU	200		1.0	4589508	760	1.0	4589508	0.10
Conductivity	uS/cm	82		1.0	4589413	160	1.0	4589413	N/A
Metals									
Dissolved Aluminum (AI)	ug/L	24	24	5.0	4589416	20	5.0	4589416	N/A
Dissolved Antimony (Sb)	ug/L	<1.0	<1.0	1.0	4589416	<1.0	1.0	4589416	N/A
Dissolved Arsenic (As)	ug/L	<1.0	<1.0	1.0	4589416	<1.0	1.0	4589416	N/A
Dissolved Barium (Ba)	ug/L	12	11	1.0	4589416	22	1.0	4589416	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

(1) Reporting limit was increased due to turbidity.

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016 Sampler Initials: AS

AT. RCAP-MS DISSOLVED (FIELDFILT) IN W

Maxxam ID		CSR713	CSR713			CSR722			
Sampling Date		2016/07/15	2016/07/15			2016/07/15			
COC Number		568672-01-01	568672-01-01			568672-02-01			
	UNITS	MW4D	MW4D Lab-Dup	RDL	QC Batch	MW9	RDL	QC Batch	MDL
Dissolved Beryllium (Be)	ug/L	<1.0	<1.0	1.0	4589416	<1.0	1.0	4589416	N/A
Dissolved Bismuth (Bi)	ug/L	<2.0	<2.0	2.0	4589416	<2.0	2.0	4589416	N/A
Dissolved Boron (B)	ug/L	<50	<50	50	4589416	<50	50	4589416	N/A
Dissolved Cadmium (Cd)	ug/L	0.032	0.031	0.010	4589416	0.10	0.010	4589416	N/A
Dissolved Calcium (Ca)	ug/L	5500	5500	100	4589416	9700	100	4589416	N/A
Dissolved Chromium (Cr)	ug/L	<1.0	<1.0	1.0	4589416	<1.0	1.0	4589416	N/A
Dissolved Cobalt (Co)	ug/L	4.3	4.4	0.40	4589416	20	0.40	4589416	N/A
Dissolved Copper (Cu)	ug/L	<2.0	<2.0	2.0	4589416	<2.0	2.0	4589416	N/A
Dissolved Iron (Fe)	ug/L	220	230	50	4589416	<50	50	4589416	N/A
Dissolved Lead (Pb)	ug/L	<0.50	<0.50	0.50	4589416	<0.50	0.50	4589416	N/A
Dissolved Magnesium (Mg)	ug/L	2100	2100	100	4589416	4700	100	4589416	N/A
Dissolved Manganese (Mn)	ug/L	380	380	2.0	4589416	2600	2.0	4589416	N/A
Dissolved Molybdenum (Mo)	ug/L	<2.0	<2.0	2.0	4589416	<2.0	2.0	4589416	N/A
Dissolved Nickel (Ni)	ug/L	4.8	4.7	2.0	4589416	9.9	2.0	4589416	N/A
Dissolved Phosphorus (P)	ug/L	<100	<100	100	4589416	<100	100	4589416	N/A
Dissolved Potassium (K)	ug/L	810	810	100	4589416	1200	100	4589416	N/A
Dissolved Selenium (Se)	ug/L	<1.0	<1.0	1.0	4589416	<1.0	1.0	4589416	N/A
Dissolved Silver (Ag)	ug/L	<0.10	<0.10	0.10	4589416	<0.10	0.10	4589416	N/A
Dissolved Sodium (Na)	ug/L	6600	6800	100	4589416	12000	100	4589416	N/A
Dissolved Strontium (Sr)	ug/L	44	44	2.0	4589416	60	2.0	4589416	N/A
Dissolved Thallium (TI)	ug/L	<0.10	<0.10	0.10	4589416	<0.10	0.10	4589416	N/A
Dissolved Tin (Sn)	ug/L	<2.0	<2.0	2.0	4589416	<2.0	2.0	4589416	N/A
Dissolved Titanium (Ti)	ug/L	<2.0	<2.0	2.0	4589416	<2.0	2.0	4589416	N/A
Dissolved Uranium (U)	ug/L	<0.10	<0.10	0.10	4589416	<0.10	0.10	4589416	N/A
Dissolved Vanadium (V)	ug/L	<2.0	<2.0	2.0	4589416	<2.0	2.0	4589416	N/A
Dissolved Zinc (Zn)	ug/L	7.3	6.9	5.0	4589416	5.8	5.0	4589416	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016 Sampler Initials: AS

AT. RCAP-MS DISSOLVED (FIELDFILT) IN W

Maxxam ID		CSR723			CSR725			CSR726			
Sampling Date		2016/07/15			2016/07/15			2016/07/15			
COC Number		568672-02-01			568672-02-01			568672-02-01			
	UNITS	MW10	RDL	QC Batch	MW12	RDL	QC Batch	MW-DUP	RDL	QC Batch	MDL
Calculated Parameters	-	·	<u>- </u>	<u> </u>	<u> </u>	·	·	·		<u></u>	
Anion Sum	me/L	6.62	N/A	4585153	1.32	N/A	4585153	2.76	N/A	4585153	N/A
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	190	1.0	4585151	11	1.0	4585151	110	1.0	4585151	0.20
Calculated TDS	mg/L	370	1.0	4585156	170	1.0	4585156	160	1.0	4585156	0.20
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	4585151	<1.0	1.0	4585151	<1.0	1.0	4585151	0.20
Cation Sum	me/L	5.84	N/A	4585153	4.40	N/A	4585153	2.65	N/A	4585153	N/A
Hardness (CaCO3)	mg/L	220	1.0	4585015	29	1.0	4585015	100	1.0	4585015	1.0
Ion Balance (% Difference)	%	6.26	N/A	4585152	53.9	N/A	4585152	2.03	N/A	4585152	N/A
Langelier Index (@ 20C)	N/A	-0.443		4585154	-3.48		4585154	0.0130		4585154	
Langelier Index (@ 4C)	N/A	-0.692		4585155	-3.73		4585155	-0.237		4585155	
Nitrate (N)	mg/L	0.067	0.050	4584921	0.063	0.050	4584921	<0.050	0.050	4584921	N/A
Saturation pH (@ 20C)	N/A	7.38		4585154	9.46		4585154	7.94		4585154	
Saturation pH (@ 4C)	N/A	7.63		4585155	9.71		4585155	8.19		4585155	
Inorganics			!			!			•		•
Total Alkalinity (Total as CaCO3)	mg/L	190	25	4589703	11	5.0	4589703	110	25	4589703	N/A
Dissolved Chloride (CI)	mg/L	85	5.0	4589706	39	1.0	4589706	11	1.0	4589706	N/A
Colour	TCU	140	25	4589713	91	25	4589713	<5.0	5.0	4589713	N/A
Nitrate + Nitrite (N)	mg/L	0.067	0.050	4589717	0.063	0.050	4589717	<0.050	0.050	4589717	N/A
Nitrite (N)	mg/L	<0.010	0.010	4589719	<0.010	0.010	4589719	<0.010	0.010	4589719	N/A
Nitrogen (Ammonia Nitrogen)	mg/L	2.3	0.25	4589841	2.6	0.25	4589841	<0.050	0.050	4589841	N/A
Total Organic Carbon (C)	mg/L	29 (1)	5.0	4589617	23 (2)	5.0	4589617	<5.0 (2)	5.0	4589617	N/A
Orthophosphate (P)	mg/L	0.058	0.010	4589715	0.010	0.010	4589715	0.031	0.010	4589715	N/A
рН	рН	6.94	N/A	4592060	5.99	N/A	4592060	7.95	N/A	4589410	N/A
Reactive Silica (SiO2)	mg/L	17	0.50	4589709	10	0.50	4589709	18	0.50	4589709	N/A
Dissolved Sulphate (SO4)	mg/L	15	2.0	4589707	<2.0	2.0	4589707	12	2.0	4589707	N/A
Turbidity	NTU	24	0.10	4589502	>1000	1.0	4589508	900	1.0	4589515	0.10
Conductivity	uS/cm	580	1.0	4589413	150	1.0	4589413	240	1.0	4589411	N/A
Metals											
Dissolved Aluminum (AI)	ug/L	75	5.0	4589416	89	5.0	4589416	<5.0	5.0	4589416	N/A
Dissolved Antimony (Sb)	ug/L	<1.0	1.0	4589416	<1.0	1.0	4589416	<1.0	1.0	4589416	N/A
Dissolved Arsenic (As)	ug/L	8.9	1.0	4589416	30	1.0	4589416	9.1	1.0	4589416	N/A
Dissolved Barium (Ba)	ug/L	40	1.0	4589416	48	1.0	4589416	30	1.0	4589416	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

- (1) Elevated reporting limit due to sample matrix.
- (2) Reporting limit was increased due to turbidity.

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016 Sampler Initials: AS

AT. RCAP-MS DISSOLVED (FIELDFILT) IN W

Maxxam ID		CSR723			CSR725			CSR726			
Sampling Date		2016/07/15			2016/07/15			2016/07/15			
COC Number		568672-02-01			568672-02-01			568672-02-01			
	UNITS	MW10	RDL	QC Batch	MW12	RDL	QC Batch	MW-DUP	RDL	QC Batch	MDL
Dissolved Beryllium (Be)	ug/L	<1.0	1.0	4589416	<1.0	1.0	4589416	<1.0	1.0	4589416	N/A
Dissolved Bismuth (Bi)	ug/L	<2.0	2.0	4589416	<2.0	2.0	4589416	<2.0	2.0	4589416	N/A
Dissolved Boron (B)	ug/L	<50	50	4589416	<50	50	4589416	1000	50	4589416	N/A
Dissolved Cadmium (Cd)	ug/L	0.038	0.010	4589416	<0.010	0.010	4589416	<0.010	0.010	4589416	N/A
Dissolved Calcium (Ca)	ug/L	59000	100	4589416	7700	100	4589416	25000	100	4589416	N/A
Dissolved Chromium (Cr)	ug/L	1.7	1.0	4589416	2.9	1.0	4589416	<1.0	1.0	4589416	N/A
Dissolved Cobalt (Co)	ug/L	52	0.40	4589416	28	0.40	4589416	<0.40	0.40	4589416	N/A
Dissolved Copper (Cu)	ug/L	2.0	2.0	4589416	<2.0	2.0	4589416	<2.0	2.0	4589416	N/A
Dissolved Iron (Fe)	ug/L	7400	50	4589416	84000	50	4589416	<50	50	4589416	N/A
Dissolved Lead (Pb)	ug/L	<0.50	0.50	4589416	<0.50	0.50	4589416	<0.50	0.50	4589416	N/A
Dissolved Magnesium (Mg)	ug/L	18000	100	4589416	2400	100	4589416	10000	100	4589416	N/A
Dissolved Manganese (Mn)	ug/L	19000	2.0	4589416	1400	2.0	4589416	110	2.0	4589416	N/A
Dissolved Molybdenum (Mo)	ug/L	<2.0	2.0	4589416	<2.0	2.0	4589416	<2.0	2.0	4589416	N/A
Dissolved Nickel (Ni)	ug/L	12	2.0	4589416	8.6	2.0	4589416	3.3	2.0	4589416	N/A
Dissolved Phosphorus (P)	ug/L	100	100	4589416	<100	100	4589416	<100	100	4589416	N/A
Dissolved Potassium (K)	ug/L	9300	100	4589416	3900	100	4589416	3300	100	4589416	N/A
Dissolved Selenium (Se)	ug/L	<1.0	1.0	4589416	<1.0	1.0	4589416	<1.0	1.0	4589416	N/A
Dissolved Silver (Ag)	ug/L	<0.10	0.10	4589416	<0.10	0.10	4589416	<0.10	0.10	4589416	N/A
Dissolved Sodium (Na)	ug/L	16000	100	4589416	12000	100	4589416	11000	100	4589416	N/A
Dissolved Strontium (Sr)	ug/L	330	2.0	4589416	64	2.0	4589416	150	2.0	4589416	N/A
Dissolved Thallium (TI)	ug/L	<0.10	0.10	4589416	<0.10	0.10	4589416	<0.10	0.10	4589416	N/A
Dissolved Tin (Sn)	ug/L	<2.0	2.0	4589416	<2.0	2.0	4589416	<2.0	2.0	4589416	N/A
Dissolved Titanium (Ti)	ug/L	<2.0	2.0	4589416	<2.0	2.0	4589416	<2.0	2.0	4589416	N/A
Dissolved Uranium (U)	ug/L	0.22	0.10	4589416	0.37	0.10	4589416	0.78	0.10	4589416	N/A
Dissolved Vanadium (V)	ug/L	<2.0	2.0	4589416	3.9	2.0	4589416	<2.0	2.0	4589416	N/A
Dissolved Zinc (Zn)	ug/L	15	5.0	4589416	13	5.0	4589416	<5.0	5.0	4589416	N/A

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016 Sampler Initials: AS

MERCURY BY COLD VAPOUR AA (WATER)

Maxxam ID		CSR707	CSR708	CSR709	CSR710	CSR711	CSR712			
Sampling Date		2016/07/15	2016/07/15	2016/07/15	2016/07/15	2016/07/15	2016/07/15			
COC Number		568672-01-01	568672-01-01	568672-01-01	568672-01-01	568672-01-01	568672-01-01			
	UNITS	MW1S	MW1D	MW2D	MW3S	MW3D	MW4S	RDL	QC Batch	MDL
Metals										
Total Mercury (Hg)	ug/L	0.027	< 0.013	< 0.013	< 0.013	< 0.013	0.062	0.013	4588199	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Maxxam ID		CSR713	CSR714	CSR715		CSR719	CSR720			
Sampling Date		2016/07/15	2016/07/15	2016/07/15		2016/07/15	2016/07/15			
COC Number		568672-01-01	568672-01-01	568672-01-01		568672-02-01	568672-02-01			
	UNITS	MW4D	MW5S	MW6D	QC Batch	MW6S	MW7	RDL	QC Batch	MDL
Metals										
Total Mercury (Hg)	ug/L	< 0.013	0.015	0.023	4588199	0.38	0.27	0.013	4588201	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Maxxam ID		CSR721	CSR722	CSR723	CSR724	CSR725	CSR726			
Sampling Date		2016/07/15	2016/07/15	2016/07/15	2016/07/15	2016/07/15	2016/07/15			
COC Number		568672-02-01	568672-02-01	568672-02-01	568672-02-01	568672-02-01	568672-02-01			
	UNITS	MW8	MW9	MW10	MW11	MW12	MW-DUP	RDL	QC Batch	MDL
Metals										
Total Mercury (Hg)	ug/L	0.043	0.018	< 0.013	0.83	0.028	< 0.013	0.013	4588201	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016 Sampler Initials: AS

ELEMENTS BY ICP/MS (WATER)

Maxxam ID		CSR707		CSR708	CSR709		CSR710			
Sampling Date		2016/07/15		2016/07/15	2016/07/15		2016/07/15			
COC Number		568672-01-01		568672-01-01	568672-01-01		568672-01-01			
	UNITS	MW1S	QC Batch	MW1D	MW2D	QC Batch	MW3S	RDL	QC Batch	MDL
Metals	-	•				-		•		•
Metals Total Lead (Pb)	ug/L	26	4587765	1.1	2.0	4587985	1.3	0.50	4587765	

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Maxxam ID		CSR711		CSR712			CSR713		CSR714			
Sampling Date		2016/07/15		2016/07/15			2016/07/15		2016/07/15			
COC Number		568672-01-01		568672-01-01			568672-01-01		568672-01-01			
	UNITS	MW3D	RDL	MW4S	RDL	QC Batch	MW4D	QC Batch	MW5S	RDL	QC Batch	MDL
Metals	UNITS	MW3D	RDL	MW4S	RDL	QC Batch	MW4D	QC Batch	MW5S	RDL	QC Batch	MDL

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Maxxam ID		CSR715	CSR719	CSR720	CSR721	CSR722			
Sampling Date		2016/07/15	2016/07/15	2016/07/15	2016/07/15	2016/07/15			
COC Number		568672-01-01	568672-02-01	568672-02-01	568672-02-01	568672-02-01			
	UNITS	MW6D	MW6S	MW7	MW8	MW9	RDL	QC Batch	MDL
Metals									
Total Lead (Pb)	ug/L	25	8.5	110	56	<0.50	0.50	4587765	NI/A

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

N/A = Not Applicable

Maxxam ID		CSR723	CSR724	CSR725	CSR726			
Sampling Date		2016/07/15	2016/07/15	2016/07/15	2016/07/15			
COC Number		568672-02-01	568672-02-01	568672-02-01	568672-02-01			
	LINUTC	B 43 4 / 4 O	B 43 A / 4 4	MW12	NAVA DI ID	RDL	QC Batch	MDI
	UNITS	MW10	MW11	IVIVVIZ	MW-DUP	KDL	QC Batth	IVIDL
Metals	UNITS	MW10	IVIVVII	IVIVVIZ	IVIW-DUP	KDL	QC Batch	IVIDE

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016 Sampler Initials: AS

TEST SUMMARY

Maxxam ID: CSR707 MW1S Sample ID: Matrix: Water

Collected:

2016/07/15

Shipped:

Received: 2016/07/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4585151	N/A	2016/07/22	Automated Statchk
Alkalinity	KONE	4589703	N/A	2016/07/25	Nancy Rogers
Chloride	KONE	4589706	N/A	2016/07/26	Mary Clancey
Colour	KONE	4589713	N/A	2016/07/25	Nancy Rogers
Conductance - water	AT	4589413	N/A	2016/07/22	Julia McGovern
Hardness (calculated as CaCO3)		4585015	N/A	2016/07/25	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4588199	2016/07/21	2016/07/22	Arlene Rossiter
Metals Water Diss. MS	CICP/MS	4589406	N/A	2016/07/22	Bryon Angevine
Metals Water Total MS	CICP/MS	4587765	2016/07/21	2016/07/22	Bryon Angevine
Ion Balance (% Difference)	CALC	4583967	N/A	2016/07/26	Automated Statchk
Anion and Cation Sum	CALC	4583968	N/A	2016/07/26	Automated Statchk
Nitrogen Ammonia - water	KONE	4589837	N/A	2016/07/25	Nancy Rogers
Nitrogen - Nitrate + Nitrite	KONE	4589717	N/A	2016/07/26	Nancy Rogers
Nitrogen - Nitrite	KONE	4589719	N/A	2016/07/25	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4584921	N/A	2016/07/26	Automated Statchk
рН	AT	4589412	N/A	2016/07/22	Julia McGovern
Phosphorus - ortho	KONE	4589715	N/A	2016/07/25	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4583971	N/A	2016/07/26	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4583972	N/A	2016/07/26	Automated Statchk
Reactive Silica	KONE	4589709	N/A	2016/07/26	Nancy Rogers
Sulphate	KONE	4589707	N/A	2016/07/25	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4583973	N/A	2016/07/26	Automated Statchk
Organic carbon - Total (TOC)	TECH	4589466	N/A	2016/07/22	Soraya Merchant
Turbidity	TURB	4589508	N/A	2016/07/22	Julia McGovern

Maxxam ID: CSR708 Sample ID: MW1D Matrix: Water

Collected: Shipped: 2016/07/15

Received:

2016/07/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4585151	N/A	2016/07/22	Automated Statchk
Alkalinity	KONE	4589703	N/A	2016/07/26	Nancy Rogers
Chloride	KONE	4589706	N/A	2016/07/26	Mary Clancey
Colour	KONE	4589713	N/A	2016/07/25	Nancy Rogers
Conductance - water	AT	4589413	N/A	2016/07/22	Julia McGovern
Hardness (calculated as CaCO3)		4585015	N/A	2016/07/22	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4588199	2016/07/21	2016/07/22	Arlene Rossiter
Metals Water Diss. MS (as rec'd)	CICP/MS	4589416	N/A	2016/07/22	Bryon Angevine
Metals Water Total MS	CICP/MS	4587985	2016/07/21	2016/07/22	Bryon Angevine
Ion Balance (% Difference)	CALC	4585152	N/A	2016/07/26	Automated Statchk
Anion and Cation Sum	CALC	4585153	N/A	2016/07/26	Automated Statchk
Nitrogen Ammonia - water	KONE	4589837	N/A	2016/07/25	Nancy Rogers
Nitrogen - Nitrate + Nitrite	KONE	4589717	N/A	2016/07/26	Nancy Rogers

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016 Sampler Initials: AS

TEST SUMMARY

Maxxam ID: CSR708 Sample ID: MW1D Collected: 2
Shipped:

2016/07/15

mple ID: MW1D Matrix: Water

Received: 2016/07/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Nitrogen - Nitrite	KONE	4589719	N/A	2016/07/25	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4584921	N/A	2016/07/26	Automated Statchk
рН	AT	4592060	N/A	2016/07/25	Julia McGovern
Phosphorus - ortho	KONE	4589715	N/A	2016/07/25	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4585154	N/A	2016/07/26	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4585155	N/A	2016/07/26	Automated Statchk
Reactive Silica	KONE	4589709	N/A	2016/07/26	Nancy Rogers
Sulphate	KONE	4589707	N/A	2016/07/25	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4585156	N/A	2016/07/26	Automated Statchk
Organic carbon - Total (TOC)	TECH	4589466	N/A	2016/07/22	Soraya Merchant
Turbidity	TURB	4589508	N/A	2016/07/22	Julia McGovern

Maxxam ID: CSR709 Sample ID: MW2D Matrix: Water

IW2D

Collected: 2016/07/15

Shipped:

Received: 2016/07/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4585151	N/A	2016/07/22	Automated Statchk
Alkalinity	KONE	4589703	N/A	2016/07/26	Nancy Rogers
Chloride	KONE	4589706	N/A	2016/07/26	Mary Clancey
Colour	KONE	4589713	N/A	2016/07/25	Nancy Rogers
Conductance - water	AT	4589413	N/A	2016/07/22	Julia McGovern
Hardness (calculated as CaCO3)		4585015	N/A	2016/07/22	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4588199	2016/07/21	2016/07/22	Arlene Rossiter
Metals Water Diss. MS (as rec'd)	CICP/MS	4589416	N/A	2016/07/22	Bryon Angevine
Metals Water Total MS	CICP/MS	4587985	2016/07/21	2016/07/22	Bryon Angevine
Ion Balance (% Difference)	CALC	4585152	N/A	2016/07/26	Automated Statchk
Anion and Cation Sum	CALC	4585153	N/A	2016/07/26	Automated Statchk
Nitrogen Ammonia - water	KONE	4589837	N/A	2016/07/25	Nancy Rogers
Nitrogen - Nitrate + Nitrite	KONE	4589717	N/A	2016/07/26	Nancy Rogers
Nitrogen - Nitrite	KONE	4589719	N/A	2016/07/25	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4584921	N/A	2016/07/26	Automated Statchk
Н	AT	4592060	N/A	2016/07/25	Julia McGovern
Phosphorus - ortho	KONE	4589715	N/A	2016/07/25	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4585154	N/A	2016/07/26	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4585155	N/A	2016/07/26	Automated Statchk
Reactive Silica	KONE	4589709	N/A	2016/07/26	Nancy Rogers
Sulphate	KONE	4589707	N/A	2016/07/25	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4585156	N/A	2016/07/26	Automated Statchk
Organic carbon - Total (TOC)	TECH	4589466	N/A	2016/07/22	Soraya Merchant
Turbidity	TURB	4589508	N/A	2016/07/22	Julia McGovern

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016 Sampler Initials: AS

TEST SUMMARY

Maxxam ID: CSR710 Sample ID: MW3S Matrix: Water Collected:

2016/07/15

Shipped:

Received: 2016/07/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4585151	N/A	2016/07/22	Automated Statchk
Alkalinity	KONE	4589703	N/A	2016/07/26	Nancy Rogers
Chloride	KONE	4589706	N/A	2016/07/26	Mary Clancey
Colour	KONE	4589713	N/A	2016/07/25	Nancy Rogers
Conductance - water	AT	4589413	N/A	2016/07/22	Julia McGovern
Hardness (calculated as CaCO3)		4585015	N/A	2016/07/25	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4588199	2016/07/21	2016/07/22	Arlene Rossiter
Metals Water Diss. MS	CICP/MS	4589406	N/A	2016/07/22	Bryon Angevine
Metals Water Total MS	CICP/MS	4587765	2016/07/21	2016/07/22	Bryon Angevine
Ion Balance (% Difference)	CALC	4585152	N/A	2016/07/26	Automated Statchk
Anion and Cation Sum	CALC	4585153	N/A	2016/07/26	Automated Statchk
Nitrogen Ammonia - water	KONE	4589841	N/A	2016/07/25	Nancy Rogers
Nitrogen - Nitrate + Nitrite	KONE	4589717	N/A	2016/07/26	Nancy Rogers
Nitrogen - Nitrite	KONE	4589719	N/A	2016/07/25	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4584921	N/A	2016/07/26	Automated Statchk
рН	AT	4589412	N/A	2016/07/22	Julia McGovern
Phosphorus - ortho	KONE	4589715	N/A	2016/07/25	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4585154	N/A	2016/07/26	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4585155	N/A	2016/07/26	Automated Statchk
Reactive Silica	KONE	4589709	N/A	2016/07/26	Nancy Rogers
Sulphate	KONE	4589707	N/A	2016/07/25	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4585156	N/A	2016/07/26	Automated Statchk
Organic carbon - Total (TOC)	TECH	4589466	N/A	2016/07/22	Soraya Merchant
Turbidity	TURB	4589508	N/A	2016/07/22	Julia McGovern

Maxxam ID: CSR711 Sample ID: MW3D Matrix: Water llected: 2016/07/15

Collected: Shipped:

Received: 2016/07/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4585151	N/A	2016/07/22	Automated Statchk
Alkalinity	KONE	4589703	N/A	2016/07/26	Nancy Rogers
Chloride	KONE	4589706	N/A	2016/07/26	Mary Clancey
Colour	KONE	4589713	N/A	2016/07/25	Nancy Rogers
Conductance - water	AT	4589413	N/A	2016/07/22	Julia McGovern
Hardness (calculated as CaCO3)		4585015	N/A	2016/07/25	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4588199	2016/07/21	2016/07/22	Arlene Rossiter
Metals Water Diss. MS (as rec'd)	CICP/MS	4589416	N/A	2016/07/22	Bryon Angevine
Metals Water Total MS	CICP/MS	4587765	2016/07/21	2016/07/22	Bryon Angevine
Ion Balance (% Difference)	CALC	4585152	N/A	2016/07/26	Automated Statchk
Anion and Cation Sum	CALC	4585153	N/A	2016/07/26	Automated Statchk
Nitrogen Ammonia - water	KONE	4589841	N/A	2016/07/25	Nancy Rogers
Nitrogen - Nitrate + Nitrite	KONE	4589717	N/A	2016/07/26	Nancy Rogers

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016 Sampler Initials: AS

TEST SUMMARY

Maxxam ID: CSR711 Sample ID: MW3D Matrix: Water

Collected:

2016/07/15

Shipped:

Received: 2016/07/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Nitrogen - Nitrite	KONE	4589719	N/A	2016/07/25	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4584921	N/A	2016/07/26	Automated Statchk
pH	AT	4592060	N/A	2016/07/25	Julia McGovern
Phosphorus - ortho	KONE	4589715	N/A	2016/07/25	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4585154	N/A	2016/07/26	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4585155	N/A	2016/07/26	Automated Statchk
Reactive Silica	KONE	4589709	N/A	2016/07/26	Nancy Rogers
Sulphate	KONE	4589707	N/A	2016/07/25	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4585156	N/A	2016/07/26	Automated Statchk
Organic carbon - Total (TOC)	TECH	4589466	N/A	2016/07/22	Soraya Merchant
Turbidity	TURB	4589508	N/A	2016/07/22	Julia McGovern

Maxxam ID: CSR712 Sample ID: MW4S

Matrix: Water

Shipped:

Collected: 2016/07/15

Received: 2016/07/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4585151	N/A	2016/07/22	Automated Statchk
Alkalinity	KONE	4589703	N/A	2016/07/25	Nancy Rogers
Chloride	KONE	4589706	N/A	2016/07/26	Mary Clancey
Colour	KONE	4589713	N/A	2016/07/25	Nancy Rogers
Conductance - water	AT	4589413	N/A	2016/07/22	Julia McGovern
Hardness (calculated as CaCO3)		4585015	N/A	2016/07/25	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4588199	2016/07/21	2016/07/22	Arlene Rossiter
Metals Water Diss. MS	CICP/MS	4589406	N/A	2016/07/22	Bryon Angevine
Metals Water Total MS	CICP/MS	4587765	2016/07/21	2016/07/22	Bryon Angevine
Ion Balance (% Difference)	CALC	4585152	N/A	2016/07/26	Automated Statchk
Anion and Cation Sum	CALC	4585153	N/A	2016/07/26	Automated Statchk
Nitrogen Ammonia - water	KONE	4589841	N/A	2016/07/25	Nancy Rogers
Nitrogen - Nitrate + Nitrite	KONE	4589717	N/A	2016/07/26	Nancy Rogers
Nitrogen - Nitrite	KONE	4589719	N/A	2016/07/25	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4584921	N/A	2016/07/26	Automated Statchk
Н	AT	4589412	N/A	2016/07/22	Julia McGovern
Phosphorus - ortho	KONE	4589715	N/A	2016/07/25	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4585154	N/A	2016/07/26	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4585155	N/A	2016/07/26	Automated Statchk
Reactive Silica	KONE	4589709	N/A	2016/07/26	Nancy Rogers
Sulphate	KONE	4589707	N/A	2016/07/25	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4585156	N/A	2016/07/26	Automated Statchk
Organic carbon - Total (TOC)	TECH	4589466	N/A	2016/07/22	Soraya Merchant
Turbidity	TURB	4589508	N/A	2016/07/22	Julia McGovern

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016 Sampler Initials: AS

TEST SUMMARY

Maxxam ID: CSR713 Sample ID: MW4D Matrix: Water Collected:

2016/07/15

Shipped:

Received: 2016/07/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4585151	N/A	2016/07/22	Automated Statchk
Alkalinity	KONE	4589703	N/A	2016/07/25	Nancy Rogers
Chloride	KONE	4589706	N/A	2016/07/26	Mary Clancey
Colour	KONE	4589713	N/A	2016/07/25	Nancy Rogers
Conductance - water	AT	4589413	N/A	2016/07/22	Julia McGovern
Hardness (calculated as CaCO3)		4585015	N/A	2016/07/22	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4588199	2016/07/21	2016/07/22	Arlene Rossiter
Metals Water Diss. MS (as rec'd)	CICP/MS	4589416	N/A	2016/07/22	Bryon Angevine
Metals Water Total MS	CICP/MS	4587985	2016/07/21	2016/07/22	Bryon Angevine
Ion Balance (% Difference)	CALC	4585152	N/A	2016/07/26	Automated Statchk
Anion and Cation Sum	CALC	4585153	N/A	2016/07/26	Automated Statchk
Nitrogen Ammonia - water	KONE	4589841	N/A	2016/07/25	Nancy Rogers
Nitrogen - Nitrate + Nitrite	KONE	4589717	N/A	2016/07/26	Nancy Rogers
Nitrogen - Nitrite	KONE	4589719	N/A	2016/07/25	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4584921	N/A	2016/07/26	Automated Statchk
рН	AT	4592060	N/A	2016/07/25	Julia McGovern
Phosphorus - ortho	KONE	4589715	N/A	2016/07/25	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4585154	N/A	2016/07/26	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4585155	N/A	2016/07/26	Automated Statchk
Reactive Silica	KONE	4589709	N/A	2016/07/26	Nancy Rogers
Sulphate	KONE	4589707	N/A	2016/07/25	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4585156	N/A	2016/07/26	Automated Statchk
Organic carbon - Total (TOC)	TECH	4589466	N/A	2016/07/22	Soraya Merchant
Turbidity	TURB	4589508	N/A	2016/07/22	Julia McGovern

Maxxam ID: CSR713 Dup Sample ID: MW4D Collected: Shipped:

cted: 2016/07/15

Matrix: Water

Received: 2016/07/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Metals Water Diss. MS (as rec'd)	CICP/MS	4589416	N/A	2016/07/22	Bryon Angevine

Maxxam ID: CSR714 Sample ID: MW5S Matrix: Water **Collected:** 2016/07/15

Shipped:

Received: 2016/07/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4585151	N/A	2016/07/22	Automated Statchk
Alkalinity	KONE	4589703	N/A	2016/07/25	Nancy Rogers
Chloride	KONE	4589706	N/A	2016/07/26	Mary Clancey
Colour	KONE	4589713	N/A	2016/07/25	Nancy Rogers
Conductance - water	AT	4589415	N/A	2016/07/22	Julia McGovern
Hardness (calculated as CaCO3)	_	4585015	N/A	2016/07/25	Automated Statchk

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016 Sampler Initials: AS

TEST SUMMARY

Maxxam ID: CSR714 Sample ID: MW5S Matrix: Water

Collected:

2016/07/15

Shipped: Received:

2016/07/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Mercury - Total (CVAA,LL)	CV/AA	4588199	2016/07/21	2016/07/22	Arlene Rossiter
Metals Water Diss. MS	CICP/MS	4589406	N/A	2016/07/22	Bryon Angevine
Metals Water Total MS	CICP/MS	4587765	2016/07/21	2016/07/22	Bryon Angevine
Ion Balance (% Difference)	CALC	4585152	N/A	2016/07/26	Automated Statchk
Anion and Cation Sum	CALC	4585153	N/A	2016/07/26	Automated Statchk
Nitrogen Ammonia - water	KONE	4589841	N/A	2016/07/25	Nancy Rogers
Nitrogen - Nitrate + Nitrite	KONE	4589717	N/A	2016/07/26	Nancy Rogers
Nitrogen - Nitrite	KONE	4589719	N/A	2016/07/25	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4584921	N/A	2016/07/26	Automated Statchk
pH	AT	4589414	N/A	2016/07/22	Julia McGovern
Phosphorus - ortho	KONE	4589715	N/A	2016/07/25	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4585154	N/A	2016/07/26	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4585155	N/A	2016/07/26	Automated Statchk
Reactive Silica	KONE	4589709	N/A	2016/07/26	Nancy Rogers
Sulphate	KONE	4589707	N/A	2016/07/25	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4585156	N/A	2016/07/26	Automated Statchk
Organic carbon - Total (TOC)	TECH	4589466	N/A	2016/07/22	Soraya Merchant
Turbidity	TURB	4589522	N/A	2016/07/22	Julia McGovern

Maxxam ID: CSR714 Dup Sample ID: MW5S

. Matrix: Water Collected: 2016/07/15

Shipped:

2016/07/18 Received:

	Batch	Extracted	Date Analyzed	Analyst
KONE	4589703	N/A	2016/07/26	Nancy Rogers
KONE	4589706	N/A	2016/07/26	Mary Clancey
KONE	4589713	N/A	2016/07/25	Nancy Rogers
KONE	4589717	N/A	2016/07/26	Nancy Rogers
KONE	4589719	N/A	2016/07/25	Nancy Rogers
KONE	4589715	N/A	2016/07/25	Nancy Rogers
KONE	4589709	N/A	2016/07/26	Nancy Rogers
KONE	4589707	N/A	2016/07/25	Nancy Rogers
	KONE KONE KONE KONE KONE KONE	KONE 4589703 KONE 4589706 KONE 4589713 KONE 4589717 KONE 4589719 KONE 4589715 KONE 4589709	KONE 4589703 N/A KONE 4589706 N/A KONE 4589713 N/A KONE 4589717 N/A KONE 4589719 N/A KONE 4589715 N/A KONE 4589709 N/A	KONE 4589703 N/A 2016/07/26 KONE 4589706 N/A 2016/07/26 KONE 4589713 N/A 2016/07/25 KONE 4589717 N/A 2016/07/26 KONE 4589719 N/A 2016/07/25 KONE 4589715 N/A 2016/07/25 KONE 4589709 N/A 2016/07/26

Maxxam ID: CSR715 Sample ID: MW6D Matrix:

Water

Collected: 2016/07/15 Shipped:

Received: 2016/07/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4585151	N/A	2016/07/22	Automated Statchk
Alkalinity	KONE	4589703	N/A	2016/07/25	Nancy Rogers
Chloride	KONE	4589706	N/A	2016/07/26	Mary Clancey
Colour	KONE	4589713	N/A	2016/07/25	Nancy Rogers
Conductance - water	AT	4589415	N/A	2016/07/22	Julia McGovern

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016 Sampler Initials: AS

TEST SUMMARY

Maxxam ID: CSR715 MW6D Sample ID: Matrix: Water

Collected:

2016/07/15

Shipped: Received:

2016/07/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hardness (calculated as CaCO3)		4585015	N/A	2016/07/25	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4588199	2016/07/21	2016/07/22	Arlene Rossiter
Metals Water Diss. MS	CICP/MS	4589406	N/A	2016/07/22	Bryon Angevine
Metals Water Total MS	CICP/MS	4587765	2016/07/21	2016/07/22	Bryon Angevine
Ion Balance (% Difference)	CALC	4585152	N/A	2016/07/26	Automated Statchk
Anion and Cation Sum	CALC	4585153	N/A	2016/07/26	Automated Statchk
Nitrogen Ammonia - water	KONE	4589841	N/A	2016/07/25	Nancy Rogers
Nitrogen - Nitrate + Nitrite	KONE	4589717	N/A	2016/07/26	Nancy Rogers
Nitrogen - Nitrite	KONE	4589719	N/A	2016/07/25	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4584921	N/A	2016/07/26	Automated Statchk
рН	AT	4589414	N/A	2016/07/22	Julia McGovern
Phosphorus - ortho	KONE	4589715	N/A	2016/07/25	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4585154	N/A	2016/07/26	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4585155	N/A	2016/07/26	Automated Statchk
Reactive Silica	KONE	4589709	N/A	2016/07/26	Nancy Rogers
Sulphate	KONE	4589707	N/A	2016/07/25	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4585156	N/A	2016/07/26	Automated Statchk
Organic carbon - Total (TOC)	TECH	4589466	N/A	2016/07/22	Soraya Merchant
Turbidity	TURB	4589502	N/A	2016/07/22	Julia McGovern

Maxxam ID: CSR719 Sample ID: MW6S Matrix: Water

Collected: 2016/07/15

Shipped:

Received: 2016/07/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4585151	N/A	2016/07/22	Automated Statchk
Alkalinity	KONE	4589703	N/A	2016/07/26	Nancy Rogers
Chloride	KONE	4589706	N/A	2016/07/26	Mary Clancey
Colour	KONE	4589713	N/A	2016/07/25	Nancy Rogers
Conductance - water	AT	4589413	N/A	2016/07/22	Julia McGovern
Hardness (calculated as CaCO3)		4585015	N/A	2016/07/25	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4588201	2016/07/21	2016/07/22	Arlene Rossiter
Metals Water Diss. MS	CICP/MS	4589406	N/A	2016/07/22	Bryon Angevine
Metals Water Total MS	CICP/MS	4587765	2016/07/21	2016/07/22	Bryon Angevine
Ion Balance (% Difference)	CALC	4585152	N/A	2016/07/26	Automated Statchk
Anion and Cation Sum	CALC	4585153	N/A	2016/07/26	Automated Statchk
Nitrogen Ammonia - water	KONE	4589841	N/A	2016/07/25	Nancy Rogers
Nitrogen - Nitrate + Nitrite	KONE	4589717	N/A	2016/07/26	Nancy Rogers
Nitrogen - Nitrite	KONE	4589719	N/A	2016/07/25	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4584921	N/A	2016/07/26	Automated Statchk
pH	AT	4592060	N/A	2016/07/25	Julia McGovern
Phosphorus - ortho	KONE	4589715	N/A	2016/07/25	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4585154	N/A	2016/07/26	Automated Statchk

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016 Sampler Initials: AS

TEST SUMMARY

Maxxam ID: CSR719 Sample ID: MW6S

Collected:

2016/07/15

Matrix: Water

Shipped: Received:

2016/07/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Sat. pH and Langelier Index (@ 4C)	CALC	4585155	N/A	2016/07/26	Automated Statchk
Reactive Silica	KONE	4589709	N/A	2016/07/26	Nancy Rogers
Sulphate	KONE	4589707	N/A	2016/07/25	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4585156	N/A	2016/07/26	Automated Statchk
Organic carbon - Total (TOC)	TECH	4589466	N/A	2016/07/22	Soraya Merchant
Turbidity	TURB	4589508	N/A	2016/07/22	Julia McGovern

Maxxam ID: CSR720 Sample ID: MW7

Collected:

2016/07/15

Matrix: Water Shipped:

2016/07/18 Received:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4585151	N/A	2016/07/22	Automated Statchk
Alkalinity	KONE	4589703	N/A	2016/07/26	Nancy Rogers
Chloride	KONE	4589706	N/A	2016/07/26	Mary Clancey
Colour	KONE	4589713	N/A	2016/07/25	Nancy Rogers
Conductance - water	AT	4589413	N/A	2016/07/22	Julia McGovern
Hardness (calculated as CaCO3)		4585015	N/A	2016/07/25	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4588201	2016/07/21	2016/07/22	Arlene Rossiter
Metals Water Diss. MS	CICP/MS	4589406	N/A	2016/07/22	Bryon Angevine
Metals Water Total MS	CICP/MS	4587765	2016/07/21	2016/07/22	Bryon Angevine
Ion Balance (% Difference)	CALC	4585152	N/A	2016/07/26	Automated Statchk
Anion and Cation Sum	CALC	4585153	N/A	2016/07/26	Automated Statchk
Nitrogen Ammonia - water	KONE	4589841	N/A	2016/07/25	Nancy Rogers
Nitrogen - Nitrate + Nitrite	KONE	4589717	N/A	2016/07/26	Nancy Rogers
Nitrogen - Nitrite	KONE	4589719	N/A	2016/07/25	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4584921	N/A	2016/07/26	Automated Statchk
рН	AT	4592060	N/A	2016/07/25	Julia McGovern
Phosphorus - ortho	KONE	4589715	N/A	2016/07/25	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4585154	N/A	2016/07/26	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4585155	N/A	2016/07/26	Automated Statchk
Reactive Silica	KONE	4589709	N/A	2016/07/26	Nancy Rogers
Sulphate	KONE	4589707	N/A	2016/07/25	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4585156	N/A	2016/07/26	Automated Statchk
Organic carbon - Total (TOC)	TECH	4589466	N/A	2016/07/22	Soraya Merchant
Turbidity	TURB	4589508	N/A	2016/07/22	Julia McGovern

Maxxam ID: CSR721 Sample ID: MW8 Matrix: Water

Collected: 2016/07/15 Shipped:

2016/07/18 Received:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4585151	N/A	2016/07/22	Automated Statchk

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016 Sampler Initials: AS

TEST SUMMARY

Maxxam ID: CSR721 Sample ID: MW8 Matrix: Water Collected:

2016/07/15

Shipped: Received:

: 2016/07/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	KONE	4589703	N/A	2016/07/26	Nancy Rogers
Chloride	KONE	4589706	N/A	2016/07/26	Mary Clancey
Colour	KONE	4589713	N/A	2016/07/25	Nancy Rogers
Conductance - water	AT	4589413	N/A	2016/07/22	Julia McGovern
Hardness (calculated as CaCO3)		4585015	N/A	2016/07/25	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4588201	2016/07/21	2016/07/22	Arlene Rossiter
Metals Water Diss. MS	CICP/MS	4589406	N/A	2016/07/22	Bryon Angevine
Metals Water Total MS	CICP/MS	4587765	2016/07/21	2016/07/22	Bryon Angevine
Ion Balance (% Difference)	CALC	4585152	N/A	2016/07/26	Automated Statchk
Anion and Cation Sum	CALC	4585153	N/A	2016/07/26	Automated Statchk
Nitrogen Ammonia - water	KONE	4589841	N/A	2016/07/25	Nancy Rogers
Nitrogen - Nitrate + Nitrite	KONE	4589717	N/A	2016/07/26	Nancy Rogers
Nitrogen - Nitrite	KONE	4589719	N/A	2016/07/25	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4584921	N/A	2016/07/26	Automated Statchk
рН	AT	4592060	N/A	2016/07/25	Julia McGovern
Phosphorus - ortho	KONE	4589715	N/A	2016/07/25	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4585154	N/A	2016/07/26	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4585155	N/A	2016/07/26	Automated Statchk
Reactive Silica	KONE	4589709	N/A	2016/07/26	Nancy Rogers
Sulphate	KONE	4589707	N/A	2016/07/25	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4585156	N/A	2016/07/26	Automated Statchk
Organic carbon - Total (TOC)	TECH	4589466	N/A	2016/07/22	Soraya Merchant
Turbidity	TURB	4589508	N/A	2016/07/22	Julia McGovern

Maxxam ID: CSR722 Sample ID: MW9

Matrix: Water

Collected: 2016/07/15 Shipped:

Received:

2016/07/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4585151	N/A	2016/07/22	Automated Statchk
Alkalinity	KONE	4589703	N/A	2016/07/25	Nancy Rogers
Chloride	KONE	4589706	N/A	2016/07/26	Mary Clancey
Colour	KONE	4589713	N/A	2016/07/25	Nancy Rogers
Conductance - water	AT	4589413	N/A	2016/07/22	Julia McGovern
Hardness (calculated as CaCO3)		4585015	N/A	2016/07/25	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4588201	2016/07/21	2016/07/22	Arlene Rossiter
Metals Water Diss. MS (as rec'd)	CICP/MS	4589416	N/A	2016/07/22	Bryon Angevine
Metals Water Total MS	CICP/MS	4587765	2016/07/21	2016/07/22	Bryon Angevine
Ion Balance (% Difference)	CALC	4585152	N/A	2016/07/26	Automated Statchk
Anion and Cation Sum	CALC	4585153	N/A	2016/07/26	Automated Statchk
Nitrogen Ammonia - water	KONE	4589841	N/A	2016/07/25	Nancy Rogers
Nitrogen - Nitrate + Nitrite	KONE	4589717	N/A	2016/07/26	Nancy Rogers
Nitrogen - Nitrite	KONE	4589719	N/A	2016/07/25	Nancy Rogers

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016 Sampler Initials: AS

TEST SUMMARY

Maxxam ID: CSR722 Sample ID: MW9 Matrix: Water

Collected:

2016/07/15

Shipped: Received:

2016/07/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Nitrogen - Nitrate (as N)	CALC	4584921	N/A	2016/07/26	Automated Statchk
рН	AT	4592060	N/A	2016/07/25	Julia McGovern
Phosphorus - ortho	KONE	4589715	N/A	2016/07/25	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4585154	N/A	2016/07/26	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4585155	N/A	2016/07/26	Automated Statchk
Reactive Silica	KONE	4589709	N/A	2016/07/26	Nancy Rogers
Sulphate	KONE	4589707	N/A	2016/07/25	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4585156	N/A	2016/07/26	Automated Statchk
Organic carbon - Total (TOC)	TECH	4589617	N/A	2016/07/22	Soraya Merchant
Turbidity	TURB	4589508	N/A	2016/07/22	Julia McGovern

Maxxam ID: CSR723 Sample ID: MW10 Matrix: Water

Collected: Shipped: 2016/07/15

Received: 2016/07/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4585151	N/A	2016/07/22	Automated Statchk
Alkalinity	KONE	4589703	N/A	2016/07/26	Nancy Rogers
Chloride	KONE	4589706	N/A	2016/07/26	Mary Clancey
Colour	KONE	4589713	N/A	2016/07/25	Nancy Rogers
Conductance - water	AT	4589413	N/A	2016/07/22	Julia McGovern
Hardness (calculated as CaCO3)		4585015	N/A	2016/07/22	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4588201	2016/07/21	2016/07/22	Arlene Rossiter
Metals Water Diss. MS (as rec'd)	CICP/MS	4589416	N/A	2016/07/22	Bryon Angevine
Metals Water Total MS	CICP/MS	4587985	2016/07/21	2016/07/22	Bryon Angevine
Ion Balance (% Difference)	CALC	4585152	N/A	2016/07/26	Automated Statchk
Anion and Cation Sum	CALC	4585153	N/A	2016/07/26	Automated Statchk
Nitrogen Ammonia - water	KONE	4589841	N/A	2016/07/25	Nancy Rogers
Nitrogen - Nitrate + Nitrite	KONE	4589717	N/A	2016/07/26	Nancy Rogers
Nitrogen - Nitrite	KONE	4589719	N/A	2016/07/25	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4584921	N/A	2016/07/26	Automated Statchk
рН	AT	4592060	N/A	2016/07/25	Julia McGovern
Phosphorus - ortho	KONE	4589715	N/A	2016/07/25	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4585154	N/A	2016/07/26	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4585155	N/A	2016/07/26	Automated Statchk
Reactive Silica	KONE	4589709	N/A	2016/07/26	Nancy Rogers
Sulphate	KONE	4589707	N/A	2016/07/25	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4585156	N/A	2016/07/26	Automated Statchk
Organic carbon - Total (TOC)	TECH	4589617	N/A	2016/07/22	Soraya Merchant
Turbidity	TURB	4589502	N/A	2016/07/22	Julia McGovern

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016 Sampler Initials: AS

TEST SUMMARY

Maxxam ID: CSR724 MW11 Sample ID: Matrix: Water

Collected:

2016/07/15

Shipped:

Received: 2016/07/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4585151	N/A	2016/07/22	Automated Statchk
Alkalinity	KONE	4589703	N/A	2016/07/26	Nancy Rogers
Chloride	KONE	4589706	N/A	2016/07/26	Mary Clancey
Colour	KONE	4589713	N/A	2016/07/25	Nancy Rogers
Conductance - water	AT	4589413	N/A	2016/07/22	Julia McGovern
Hardness (calculated as CaCO3)		4585015	N/A	2016/07/25	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4588201	2016/07/21	2016/07/22	Arlene Rossiter
Metals Water Diss. MS	CICP/MS	4589406	N/A	2016/07/22	Bryon Angevine
Metals Water Total MS	CICP/MS	4587985	2016/07/21	2016/07/22	Bryon Angevine
Ion Balance (% Difference)	CALC	4585152	N/A	2016/07/26	Automated Statchk
Anion and Cation Sum	CALC	4585153	N/A	2016/07/26	Automated Statchk
Nitrogen Ammonia - water	KONE	4589841	N/A	2016/07/25	Nancy Rogers
Nitrogen - Nitrate + Nitrite	KONE	4589717	N/A	2016/07/26	Nancy Rogers
Nitrogen - Nitrite	KONE	4589719	N/A	2016/07/25	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4584921	N/A	2016/07/26	Automated Statchk
рН	AT	4592060	N/A	2016/07/25	Julia McGovern
Phosphorus - ortho	KONE	4589715	N/A	2016/07/25	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4585154	N/A	2016/07/26	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4585155	N/A	2016/07/26	Automated Statchk
Reactive Silica	KONE	4589709	N/A	2016/07/26	Nancy Rogers
Sulphate	KONE	4589707	N/A	2016/07/25	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4585156	N/A	2016/07/26	Automated Statchk
Organic carbon - Total (TOC)	TECH	4589617	N/A	2016/07/22	Soraya Merchant
Turbidity	TURB	4589508	N/A	2016/07/22	Julia McGovern

Maxxam ID: CSR725 Sample ID: MW12 Matrix: Water

Collected: Shipped: 2016/07/15

Received: 2016/07/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4585151	N/A	2016/07/22	Automated Statchk
Alkalinity	KONE	4589703	N/A	2016/07/26	Nancy Rogers
Chloride	KONE	4589706	N/A	2016/07/26	Mary Clancey
Colour	KONE	4589713	N/A	2016/07/25	Nancy Rogers
Conductance - water	AT	4589413	N/A	2016/07/22	Julia McGovern
Hardness (calculated as CaCO3)		4585015	N/A	2016/07/25	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4588201	2016/07/21	2016/07/22	Arlene Rossiter
Metals Water Diss. MS (as rec'd)	CICP/MS	4589416	N/A	2016/07/22	Bryon Angevine
Metals Water Total MS	CICP/MS	4587985	2016/07/21	2016/07/22	Bryon Angevine
Ion Balance (% Difference)	CALC	4585152	N/A	2016/07/26	Automated Statchk
Anion and Cation Sum	CALC	4585153	N/A	2016/07/26	Automated Statchk
Nitrogen Ammonia - water	KONE	4589841	N/A	2016/07/25	Nancy Rogers
Nitrogen - Nitrate + Nitrite	KONE	4589717	N/A	2016/07/26	Nancy Rogers

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016 Sampler Initials: AS

TEST SUMMARY

Maxxam ID: CSR725 Sample ID: MW12 Collected:

2016/07/15

mple ID: MW12 Matrix: Water Shipped: Received: 2016/07/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Nitrogen - Nitrite	KONE	4589719	N/A	2016/07/25	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4584921	N/A	2016/07/26	Automated Statchk
рН	AT	4592060	N/A	2016/07/25	Julia McGovern
Phosphorus - ortho	KONE	4589715	N/A	2016/07/25	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4585154	N/A	2016/07/26	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4585155	N/A	2016/07/26	Automated Statchk
Reactive Silica	KONE	4589709	N/A	2016/07/26	Nancy Rogers
Sulphate	KONE	4589707	N/A	2016/07/25	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4585156	N/A	2016/07/26	Automated Statchk
Organic carbon - Total (TOC)	TECH	4589617	N/A	2016/07/22	Soraya Merchant
Turbidity	TURB	4589508	N/A	2016/07/22	Julia McGovern

Maxxam ID: CSR726 Sample ID: MW-DUP Matrix: Water Collected: 2016

2016/07/15

Shipped:

Received: 2016/07/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4585151	N/A	2016/07/22	Automated Statchk
Alkalinity	KONE	4589703	N/A	2016/07/26	Nancy Rogers
Chloride	KONE	4589706	N/A	2016/07/26	Mary Clancey
lour KONE 4589713 N/A 2016/07/25		Nancy Rogers			
Conductance - water	AT	4589411	N/A	2016/07/22	Julia McGovern
Hardness (calculated as CaCO3)		4585015	N/A	2016/07/25	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4588201	2016/07/21	2016/07/22	Arlene Rossiter
Metals Water Diss. MS (as rec'd)	CICP/MS	4589416	N/A	2016/07/22	Bryon Angevine
Metals Water Total MS	CICP/MS	4587985	2016/07/21	2016/07/22	Bryon Angevine
Ion Balance (% Difference)	CALC	4585152	N/A	2016/07/26	Automated Statchk
Anion and Cation Sum	CALC	4585153	N/A	2016/07/26	Automated Statchk
Nitrogen Ammonia - water	KONE	4589841	N/A	2016/07/25	Nancy Rogers
Nitrogen - Nitrate + Nitrite	KONE	4589717	N/A	2016/07/26	Nancy Rogers
Nitrogen - Nitrite	KONE	4589719	N/A	2016/07/25	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4584921	N/A	2016/07/26	Automated Statchk
рН	AT	4589410	N/A	2016/07/22	Julia McGovern
Phosphorus - ortho	KONE	4589715	N/A	2016/07/25	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4585154	N/A	2016/07/26	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4585155	N/A	2016/07/26	Automated Statchk
Reactive Silica	KONE	4589709	N/A	2016/07/26	Nancy Rogers
Sulphate	KONE	4589707	N/A	2016/07/25	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4585156	N/A	2016/07/26	Automated Statchk
Organic carbon - Total (TOC)	TECH	4589617	N/A	2016/07/22	Soraya Merchant
Turbidity	TURB	4589515	N/A	2016/07/22	Julia McGovern

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016 Sampler Initials: AS

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1	5.3°C
-----------	-------

Sample CSR710-01: Poor RCAp Ion Balance due to sample matrix. Cation sum does not include contribution from Mn.

Sample CSR712-01: Elevated reporting limits for trace metals due to sample matrix.

Sample CSR714-01: Poor RCAp Ion Balance due to sample matrix. Possibly due to fine particulate matter.

Sample CSR720-01: Poor RCAp Ion Balance due to sample matrix. Possibly due to fine particulate matter.

Sample CSR722-01: Poor RCAp Ion Balance due to sample matrix. Cation sum does not include contribution from Mn.

Sample CSR723-01: Poor RCAp Ion Balance due to sample matrix. Cation sum does not include contribution from Mn.

Sample CSR725-01: Poor RCAp Ion Balance due to sample matrix. Possibly due to fine particulate matter.

Results relate only to the items tested.

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016 Sampler Initials: AS

QUALITY ASSURANCE REPORT

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
4587765	BAN	Matrix Spike	Total Lead (Pb)	2016/07/22		101	%	80 - 120
4587765	BAN	Spiked Blank	Total Lead (Pb)	2016/07/22		100	%	80 - 120
4587765	BAN	Method Blank	Total Lead (Pb)	2016/07/22	<0.50	200	ug/L	00 120
4587765	BAN	RPD - Sample/Sample Dup	` ,	2016/07/22	NC		%	20
4587985	BAN	Matrix Spike	Total Lead (Pb)	2016/07/22		100	%	80 - 120
4587985	BAN	Spiked Blank	Total Lead (Pb)	2016/07/22		101	%	80 - 120
4587985	BAN	Method Blank	Total Lead (Pb)	2016/07/22	<0.50		ug/L	
4587985	BAN	RPD - Sample/Sample Dup		2016/07/22	NC		%	20
4588199	ARS	Matrix Spike	Total Mercury (Hg)	2016/07/22		102	%	80 - 120
4588199	ARS	Spiked Blank	Total Mercury (Hg)	2016/07/22		104	%	80 - 120
4588199	ARS	Method Blank	Total Mercury (Hg)	2016/07/22	< 0.013		ug/L	
4588199	ARS	RPD - Sample/Sample Dup		2016/07/22	NC		%	20
4588201	ARS	Matrix Spike	Total Mercury (Hg)	2016/07/22		100	%	80 - 120
4588201	ARS	Spiked Blank	Total Mercury (Hg)	2016/07/22		102	%	80 - 120
4588201	ARS	Method Blank	Total Mercury (Hg)	2016/07/22	< 0.013		ug/L	
4588201	ARS	RPD - Sample/Sample Dup	Total Mercury (Hg)	2016/07/22	NC		%	20
4589406	BAN	Matrix Spike	Dissolved Aluminum (AI)	2016/07/22		104	%	80 - 120
		•	Dissolved Antimony (Sb)	2016/07/22		96	%	80 - 120
			Dissolved Arsenic (As)	2016/07/22		101	%	80 - 120
			Dissolved Barium (Ba)	2016/07/22		104	%	80 - 120
			Dissolved Beryllium (Be)	2016/07/22		110	%	80 - 120
			Dissolved Bismuth (Bi)	2016/07/22		102	%	80 - 120
			Dissolved Boron (B)	2016/07/22		106	%	80 - 120
			Dissolved Cadmium (Cd)	2016/07/22		103	%	80 - 120
			Dissolved Calcium (Ca)	2016/07/22		101	%	80 - 120
			Dissolved Chromium (Cr)	2016/07/22		103	%	80 - 120
			Dissolved Cobalt (Co)	2016/07/22		105	%	80 - 120
			Dissolved Copper (Cu)	2016/07/22		105	%	80 - 120
			Dissolved Iron (Fe)	2016/07/22		103	%	80 - 120
			Dissolved Lead (Pb)	2016/07/22		103	%	80 - 120
			Dissolved Magnesium (Mg)	2016/07/22		103	%	80 - 120
			Dissolved Manganese (Mn)	2016/07/22		103	%	80 - 120
			Dissolved Molybdenum (Mo)	2016/07/22		104	%	80 - 120
			Dissolved Nickel (Ni)	2016/07/22		103	%	80 - 120
			Dissolved Phosphorus (P)	2016/07/22		105	%	80 - 120
			Dissolved Potassium (K)	2016/07/22		104	%	80 - 120
			Dissolved Selenium (Se)	2016/07/22		104	%	80 - 120
			Dissolved Silver (Ag)	2016/07/22		94	%	80 - 120
			Dissolved Sodium (Na)	2016/07/22		102	%	80 - 120
			Dissolved Strontium (Sr)	2016/07/22		101	%	80 - 120
			Dissolved Thallium (TI)	2016/07/22		103	%	80 - 120
			Dissolved Tin (Sn)	2016/07/22		100	%	80 - 120
			Dissolved Titanium (Ti)	2016/07/22		106	%	80 - 120
			Dissolved Uranium (U)	2016/07/22		105	%	80 - 120
			Dissolved Vanadium (V)	2016/07/22		106	%	80 - 120
			Dissolved Zinc (Zn)	2016/07/22		102	%	80 - 120
4589406	BAN	Spiked Blank	Dissolved Aluminum (Al)	2016/07/22		106	%	80 - 120
			Dissolved Antimony (Sb)	2016/07/22		97	%	80 - 120
			Dissolved Arsenic (As)	2016/07/22		101	%	80 - 120
			Dissolved Barium (Ba)	2016/07/22		103	%	80 - 120
			Dissolved Beryllium (Be)	2016/07/22		107	<u>%</u>	80 - 120

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016 Sampler Initials: AS

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limit
			Dissolved Bismuth (Bi)	2016/07/22		103	%	80 - 120
			Dissolved Boron (B)	2016/07/22		103	%	80 - 120
			Dissolved Cadmium (Cd)	2016/07/22		103	%	80 - 120
			Dissolved Calcium (Ca)	2016/07/22		102	%	80 - 120
			Dissolved Chromium (Cr)	2016/07/22		103	%	80 - 120
			Dissolved Cobalt (Co)	2016/07/22		105	%	80 - 120
			Dissolved Copper (Cu)	2016/07/22		104	%	80 - 120
			Dissolved Iron (Fe)	2016/07/22		104	%	80 - 120
			Dissolved Lead (Pb)	2016/07/22		103	%	80 - 120
			Dissolved Magnesium (Mg)	2016/07/22		103	%	80 - 120
			Dissolved Manganese (Mn)	2016/07/22		104	%	80 - 120
			Dissolved Molybdenum (Mo)	2016/07/22		102	%	80 - 120
			Dissolved Nickel (Ni)	2016/07/22		103	%	80 - 120
			Dissolved Phosphorus (P)	2016/07/22		107	%	80 - 120
			Dissolved Potassium (K)	2016/07/22		104	%	80 - 120
			Dissolved Foldasidin (K) Dissolved Selenium (Se)	2016/07/22		102	%	80 - 120
			Dissolved Silver (Ag)	2016/07/22		99	%	80 - 120
			Dissolved Silver (Ag) Dissolved Sodium (Na)	2016/07/22		103	% %	80 - 120
			Dissolved Souldin (Na) Dissolved Strontium (Sr)	2016/07/22		103	% %	80 - 120
			Dissolved Strontium (SI)	2016/07/22		102	% %	80 - 120
			. ,				%	
			Dissolved Tin (Sn)	2016/07/22		102	% %	80 - 120
			Dissolved Titanium (Ti)	2016/07/22		104		80 - 120
			Dissolved Uranium (U)	2016/07/22		106	%	80 - 120
			Dissolved Vanadium (V)	2016/07/22		106	%	80 - 120
E00406	DANI	Martin and Diamin	Dissolved Zinc (Zn)	2016/07/22	.E.O	103	%	80 - 120
589406	BAN	Method Blank	Dissolved Aluminum (Al)	2016/07/22	<5.0		ug/L	
			Dissolved Antimony (Sb)	2016/07/22	<1.0		ug/L	
			Dissolved Arsenic (As)	2016/07/22	<1.0		ug/L	
			Dissolved Barium (Ba)	2016/07/22	<1.0		ug/L	
			Dissolved Beryllium (Be)	2016/07/22	<1.0		ug/L	
			Dissolved Bismuth (Bi)	2016/07/22	<2.0		ug/L	
			Dissolved Boron (B)	2016/07/22	<50		ug/L	
			Dissolved Cadmium (Cd)	2016/07/22	<0.010		ug/L	
			Dissolved Calcium (Ca)	2016/07/22	<100		ug/L	
			Dissolved Chromium (Cr)	2016/07/22	<1.0		ug/L	
			Dissolved Cobalt (Co)	2016/07/22	<0.40		ug/L	
			Dissolved Copper (Cu)	2016/07/22	<2.0		ug/L	
			Dissolved Iron (Fe)	2016/07/22	<50		ug/L	
			Dissolved Lead (Pb)	2016/07/22	<0.50		ug/L	
			Dissolved Magnesium (Mg)	2016/07/22	<100		ug/L	
			Dissolved Manganese (Mn)	2016/07/22	<2.0		ug/L	
			Dissolved Molybdenum (Mo)	2016/07/22	<2.0		ug/L	
			Dissolved Nickel (Ni)	2016/07/22	<2.0		ug/L	
			Dissolved Phosphorus (P)	2016/07/22	<100		ug/L	
			Dissolved Potassium (K)	2016/07/22	<100		ug/L	
			Dissolved Selenium (Se)	2016/07/22	<1.0		ug/L	
			Dissolved Silver (Ag)	2016/07/22	< 0.10		ug/L	
			Dissolved Sodium (Na)	2016/07/22	<100		ug/L	
			Dissolved Strontium (Sr)	2016/07/22	<2.0		ug/L	
			Dissolved Thallium (TI)	2016/07/22	< 0.10		ug/L	
			Dissolved Tin (Sn)	2016/07/22	<2.0		ug/L	

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016 Sampler Initials: AS

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			Dissolved Titanium (Ti)	2016/07/22	<2.0		ug/L	
			Dissolved Uranium (U)	2016/07/22	< 0.10		ug/L	
			Dissolved Vanadium (V)	2016/07/22	<2.0		ug/L	
			Dissolved Zinc (Zn)	2016/07/22	<5.0		ug/L	
4589406	BAN	RPD - Sample/Sample Dup	Dissolved Aluminum (Al)	2016/07/22	NC		%	20
			Dissolved Antimony (Sb)	2016/07/22	NC		%	20
			Dissolved Arsenic (As)	2016/07/22	NC		%	20
			Dissolved Barium (Ba)	2016/07/22	NC		%	20
			Dissolved Beryllium (Be)	2016/07/22	NC		%	20
			Dissolved Bismuth (Bi)	2016/07/22	NC		%	20
			Dissolved Boron (B)	2016/07/22	NC		%	20
			Dissolved Cadmium (Cd)	2016/07/22	NC		%	20
			Dissolved Calcium (Ca)	2016/07/22	NC		%	20
			Dissolved Chromium (Cr)	2016/07/22	NC		%	20
			Dissolved Cobalt (Co)	2016/07/22	NC		%	20
			Dissolved Copper (Cu)	2016/07/22	NC		%	20
			Dissolved Iron (Fe)	2016/07/22	NC		%	20
			Dissolved Lead (Pb)	2016/07/22	NC		%	20
			Dissolved Magnesium (Mg)	2016/07/22	NC		%	20
			Dissolved Manganese (Mn)	2016/07/22	NC		%	20
			Dissolved Molybdenum (Mo)	2016/07/22	NC		%	20
			Dissolved Nickel (Ni)	2016/07/22	NC		%	20
			Dissolved Phosphorus (P)	2016/07/22	NC		%	20
			Dissolved Priosphorus (F)	2016/07/22	NC		%	20
			Dissolved Fotassium (K)	2016/07/22	NC		%	20
			Dissolved Silver (Ag)	2016/07/22	NC		%	20
			Dissolved Sodium (Na)	2016/07/22	NC		%	20
			Dissolved Strontium (Sr)	2016/07/22	NC		%	20
			Dissolved Thallium (TI)	2016/07/22	NC		%	20
			Dissolved Tin (Sn)	2016/07/22	NC		%	20
			Dissolved Titr (Sit)	2016/07/22	NC		%	20
			Dissolved Tranium (T)	2016/07/22	NC		%	20
			Dissolved Vanadium (V)	2016/07/22	NC		% %	20
			• •	2016/07/22	NC		% %	20
4589410	JMV	QC Standard	Dissolved Zinc (Zn) pH	2016/07/22	INC	100	%	97 - 103
4589410	JMV	RPD - Sample/Sample Dup	рН	2016/07/22	0.70	100	% %	N/A
4589411	JMV	Spiked Blank	•	2016/07/22	0.70	100	%	80 - 120
4589411		Method Blank	Conductivity Conductivity	2016/07/22	1.1,	100	uS/cm	80 - 120
4303411	JIVIV	Wethou Blank	Conductivity	2010/07/22	RDL=1.0		us/ciii	
4500444	10.40.7	DDD Complete Complete	Consideration to	2046/07/22			0/	25
4589411	JMV	RPD - Sample/Sample Dup		2016/07/22	0.66	400	%	25
4589412	JMV	QC Standard	pH	2016/07/22		100	%	97 - 103
4589412	JMV	RPD - Sample/Sample Dup	•	2016/07/22	1.1		%	N/A
4589413	JMV	Spiked Blank	Conductivity	2016/07/22		100	%	80 - 120
4589413	JMV	Method Blank	Conductivity	2016/07/22	1.1,		uS/cm	
					RDL=1.0			
4589413	JMV	RPD - Sample/Sample Dup		2016/07/22	0.60		%	25
4589414	JMV	QC Standard	рН	2016/07/22		100	%	97 - 103
4589414	JMV	RPD - Sample/Sample Dup	рН	2016/07/22	1.6		%	N/A
4589415	JMV	Spiked Blank	Conductivity	2016/07/22		103	%	80 - 120
4589415	JMV	Method Blank	Conductivity	2016/07/22	1.3,		uS/cm	
					RDL=1.0			

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016 Sampler Initials: AS

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
4589415	JMV	RPD - Sample/Sample Dup	Conductivity	2016/07/22	0.79	-	%	25
4589416	BAN	Matrix Spike(CSR713)	Dissolved Aluminum (AI)	2016/07/22		106	%	80 - 120
			Dissolved Antimony (Sb)	2016/07/22		103	%	80 - 120
			Dissolved Arsenic (As)	2016/07/22		100	%	80 - 120
			Dissolved Barium (Ba)	2016/07/22		103	%	80 - 120
			Dissolved Beryllium (Be)	2016/07/22		102	%	80 - 120
			Dissolved Bismuth (Bi)	2016/07/22		103	%	80 - 120
			Dissolved Boron (B)	2016/07/22		99	%	80 - 120
			Dissolved Cadmium (Cd)	2016/07/22		103	%	80 - 120
			Dissolved Calcium (Ca)	2016/07/22		103	%	80 - 120
			Dissolved Chromium (Cr)	2016/07/22		101	%	80 - 120
			Dissolved Cobalt (Co)	2016/07/22		103	%	80 - 120
			Dissolved Copper (Cu)	2016/07/22		101	%	80 - 120
			Dissolved Iron (Fe)	2016/07/22		101	%	80 - 120
			Dissolved Lead (Pb)	2016/07/22		104	%	80 - 120
			Dissolved Magnesium (Mg)	2016/07/22		100	%	80 - 120
			Dissolved Manganese (Mn)	2016/07/22		NC	%	80 - 120
			Dissolved Molybdenum (Mo)	2016/07/22		103	%	80 - 120
			Dissolved Nickel (Ni)	2016/07/22		101	%	80 - 120
			Dissolved Phosphorus (P)	2016/07/22		106	%	80 - 120
			Dissolved Potassium (K)	2016/07/22		105	%	80 - 120
			Dissolved Selenium (Se)	2016/07/22		103	%	80 - 120
			Dissolved Silver (Ag)	2016/07/22		90	%	80 - 120
			Dissolved Sodium (Na)	2016/07/22		98	%	80 - 120
			Dissolved Strontium (Sr)	2016/07/22		100	%	80 - 120
			Dissolved Thallium (TI)	2016/07/22		104	%	80 - 120
			Dissolved Tin (Sn)	2016/07/22		103	%	80 - 120
			Dissolved Titanium (Ti)	2016/07/22		104	%	80 - 120
			Dissolved Tranium (T)	2016/07/22		104	%	80 - 120
			Dissolved Vanadium (V)	2016/07/22		105	%	80 - 120
			Dissolved Zinc (Zn)	2016/07/22		101	%	80 - 120
4589416	BAN	Spiked Blank	Dissolved Aluminum (Al)	2016/07/22		101	%	80 - 120
4303410	DAIN	Spiked Blatik	Dissolved Antimony (Sb)	2016/07/22		101	%	80 - 120
			Dissolved Artificity (35) Dissolved Arsenic (As)	2016/07/22		101	%	80 - 120
			Dissolved Barium (Ba)	2016/07/22		101	% %	80 - 120
			Dissolved Beryllium (Be)	2016/07/22		100	%	80 - 120
			Dissolved Bismuth (Bi)	2016/07/22		103	%	80 - 120
			Dissolved Bismuth (Bi)	2016/07/22		96	%	80 - 120
			Dissolved Cadmium (Cd)	2016/07/22		103	%	80 - 120
			Dissolved Calcium (Ca)	2016/07/22		103	% %	80 - 120
			Dissolved Chromium (Cr)	2016/07/22		103	%	80 - 120
			• •					
			Dissolved Copper (Cu)	2016/07/22		103	% %	80 - 120 80 - 120
			Dissolved Copper (Cu)	2016/07/22		101	%	80 - 120
			Dissolved Iron (Fe)	2016/07/22		103	%	80 - 120
			Dissolved Lead (Pb)	2016/07/22		104	%	80 - 120
			Dissolved Magnesium (Mg)	2016/07/22		102	%	80 - 120
			Dissolved Manganese (Mn)	2016/07/22		102	%	80 - 120
			Dissolved Molybdenum (Mo)	2016/07/22		103	%	80 - 120
			Dissolved Nickel (Ni)	2016/07/22		102	%	80 - 120
			Dissolved Phosphorus (P)	2016/07/22		108	%	80 - 120
			Dissolved Potassium (K)	2016/07/22		103	%	80 - 120

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016 Sampler Initials: AS

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			Dissolved Selenium (Se)	2016/07/22		103	%	80 - 120
			Dissolved Silver (Ag)	2016/07/22		100	%	80 - 120
			Dissolved Sodium (Na)	2016/07/22		100	%	80 - 120
			Dissolved Strontium (Sr)	2016/07/22		103	%	80 - 120
			Dissolved Thallium (TI)	2016/07/22		104	%	80 - 120
			Dissolved Tin (Sn)	2016/07/22		105	%	80 - 120
			Dissolved Titanium (Ti)	2016/07/22		103	%	80 - 120
			Dissolved Uranium (U)	2016/07/22		108	%	80 - 120
			Dissolved Vanadium (V)	2016/07/22		104	%	80 - 120
			Dissolved Zinc (Zn)	2016/07/22		101	%	80 - 120
4589416	BAN	Method Blank	Dissolved Aluminum (AI)	2016/07/22	<5.0		ug/L	
			Dissolved Antimony (Sb)	2016/07/22	<1.0		ug/L	
			Dissolved Arsenic (As)	2016/07/22	<1.0		ug/L	
			Dissolved Barium (Ba)	2016/07/22	<1.0		ug/L	
			Dissolved Beryllium (Be)	2016/07/22	<1.0		ug/L	
			Dissolved Bismuth (Bi)	2016/07/22	<2.0		ug/L	
			Dissolved Boron (B)	2016/07/22	<50		ug/L	
			Dissolved Cadmium (Cd)	2016/07/22	< 0.010		ug/L	
			Dissolved Calcium (Ca)	2016/07/22	<100		ug/L	
			Dissolved Chromium (Cr)	2016/07/22	<1.0		ug/L	
			Dissolved Cobalt (Co)	2016/07/22	< 0.40		ug/L	
			Dissolved Copper (Cu)	2016/07/22	<2.0		ug/L	
			Dissolved Iron (Fe)	2016/07/22	<50		ug/L	
			Dissolved Lead (Pb)	2016/07/22	< 0.50		ug/L	
			Dissolved Magnesium (Mg)	2016/07/22	<100		ug/L	
			Dissolved Manganese (Mn)	2016/07/22	<2.0		ug/L	
			Dissolved Molybdenum (Mo)	2016/07/22	<2.0		ug/L	
			Dissolved Nickel (Ni)	2016/07/22	<2.0		ug/L	
			Dissolved Phosphorus (P)	2016/07/22	<100		ug/L	
			Dissolved Potassium (K)	2016/07/22	<100		ug/L	
			Dissolved Selenium (Se)	2016/07/22	<1.0		ug/L	
			Dissolved Silver (Ag)	2016/07/22	< 0.10		ug/L	
			Dissolved Sodium (Na)	2016/07/22	<100		ug/L	
			Dissolved Strontium (Sr)	2016/07/22	<2.0		ug/L	
			Dissolved Thallium (TI)	2016/07/22	< 0.10		ug/L	
			Dissolved Tin (Sn)	2016/07/22	<2.0		ug/L	
			Dissolved Titanium (Ti)	2016/07/22	<2.0		ug/L	
			Dissolved Uranium (U)	2016/07/22	< 0.10		ug/L	
			Dissolved Vanadium (V)	2016/07/22	<2.0		ug/L	
			Dissolved Zinc (Zn)	2016/07/22	<5.0		ug/L	
4589416	BAN	RPD - Sample/Sample Dup	Dissolved Aluminum (AI)	2016/07/22	NC		%	20
			Dissolved Antimony (Sb)	2016/07/22	NC		%	20
			Dissolved Arsenic (As)	2016/07/22	NC		%	20
			Dissolved Barium (Ba)	2016/07/22	4.3		%	20
			Dissolved Beryllium (Be)	2016/07/22	NC		%	20
			Dissolved Bismuth (Bi)	2016/07/22	NC		%	20
			Dissolved Boron (B)	2016/07/22	NC		%	20
			Dissolved Cadmium (Cd)	2016/07/22	NC		%	20
			Dissolved Calcium (Ca)	2016/07/22	0.21		%	20
			Dissolved Chromium (Cr)	2016/07/22	NC		%	20
			Dissolved Cobalt (Co)	2016/07/22	3.3		%	20

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016 Sampler Initials: AS

QA/QC	·			Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			Dissolved Copper (Cu)	2016/07/22	NC		%	20
			Dissolved Iron (Fe)	2016/07/22	NC		%	20
			Dissolved Lead (Pb)	2016/07/22	NC		%	20
			Dissolved Magnesium (Mg)	2016/07/22	2.4		%	20
			Dissolved Manganese (Mn)	2016/07/22	1.1		%	20
			Dissolved Molybdenum (Mo)	2016/07/22	NC		%	20
			Dissolved Nickel (Ni)	2016/07/22	NC		%	20
			Dissolved Phosphorus (P)	2016/07/22	NC		%	20
			Dissolved Potassium (K)	2016/07/22	0.13		%	20
			Dissolved Selenium (Se)	2016/07/22	NC		%	20
			Dissolved Silver (Ag)	2016/07/22	NC		%	20
			Dissolved Sodium (Na)	2016/07/22	2.2		%	20
			Dissolved Strontium (Sr)	2016/07/22	0.29		%	20
			Dissolved Thallium (TI)	2016/07/22	NC		%	20
			Dissolved Tin (Sn)	2016/07/22	NC		%	20
			Dissolved Titanium (Ti)	2016/07/22	NC		%	20
			Dissolved Uranium (U)	2016/07/22	NC		%	20
			Dissolved Vanadium (V)	2016/07/22	NC		%	20
			Dissolved Zinc (Zn)	2016/07/22	NC		%	20
4589466	SMT	Matrix Spike	Total Organic Carbon (C)	2016/07/22		99	%	80 - 120
4589466	SMT	Spiked Blank	Total Organic Carbon (C)	2016/07/22		112	%	80 - 120
4589466	SMT	Method Blank	Total Organic Carbon (C)	2016/07/22	<0.50	112	mg/L	00 120
4589466	SMT	RPD - Sample/Sample Dup		2016/07/22	NC		%	20
4589502	JMV	QC Standard	Turbidity	2016/07/22		98	%	80 - 120
4589502	JMV	Spiked Blank	Turbidity	2016/07/22		99	%	80 - 120
4589502	JMV	Method Blank	Turbidity	2016/07/22	<0.10	33	NTU	00 120
4589502	JMV	RPD - Sample/Sample Dup	•	2016/07/22	11		%	20
4589508	JMV	QC Standard	Turbidity	2016/07/22		97	%	80 - 120
4589508	JMV	Spiked Blank	Turbidity	2016/07/22		98	%	80 - 120
4589508	JMV	Method Blank	Turbidity	2016/07/22	<0.10	30	NTU	00 120
4589508	JMV	RPD - Sample/Sample Dup	•	2016/07/22	2.4		%	20
4589515	JMV	QC Standard	Turbidity	2016/07/22	2.7	98	%	80 - 120
4589515	JMV	Spiked Blank	Turbidity	2016/07/22		98	%	80 - 120
4589515	JMV	Method Blank	Turbidity	2016/07/22	<0.10	30	NTU	00 120
4589515	JMV	RPD - Sample/Sample Dup	•	2016/07/22	3.4		%	20
4589522	JMV	QC Standard	Turbidity	2016/07/22	3.4	98	%	80 - 120
4589522	JMV	Spiked Blank	Turbidity	2016/07/22		99	%	80 - 120
4589522	JMV	Method Blank	Turbidity	2016/07/22	<0.10	33		80 - 120
4589522	JMV	RPD - Sample/Sample Dup		2016/07/22	NC		NTU %	20
4589617	SMT		•		IVC	117		
4589617	SMT	Matrix Spike	Total Organic Carbon (C)	2016/07/22 2016/07/22		117 112	% %	80 - 120 80 - 120
		Spiked Blank	Total Organic Carbon (C)		<0.F0	112		60 - 120
4589617	SMT	Method Blank	Total Organic Carbon (C)	2016/07/22	<0.50		mg/L %	20
4589617	SMT	RPD - Sample/Sample Dup		2016/07/22	NC	NC	%	20
4589703	NRG	Matrix Spike(CSR714)	Total Alkalinity (Total as CaCO3)	2016/07/26		NC 102	%	80 - 120
4589703	NRG	Spiked Blank	Total Alkalinity (Total as CaCO3)	2016/07/25	ر. د د	102	% ma/l	80 - 120
4589703	NRG	Method Blank	Total Alkalinity (Total as CaCO3)	2016/07/25	<5.0		mg/L	25
4589703	NRG		Total Alkalinity (Total as CaCO3)	2016/07/26	2.9	NIC	%	25
4589706	MCN	Matrix Spike(CSR714)	Dissolved Chloride (CI)	2016/07/26		NC	%	80 - 120
4589706	MCN	Spiked Blank	Dissolved Chloride (CI)	2016/07/26	.4.0	109	%	80 - 120
4589706		Method Blank	Dissolved Chloride (CI)	2016/07/26	<1.0		mg/L	25
4589706	MCN	RPD - Sample/Sample Dup	Dissolved Chioride (CI)	2016/07/26	14		%	25

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016 Sampler Initials: AS

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
4589707	NRG	Matrix Spike(CSR714)	Dissolved Sulphate (SO4)	2016/07/25		107	%	80 - 120
4589707	NRG	Spiked Blank	Dissolved Sulphate (SO4)	2016/07/25		109	%	80 - 120
4589707	NRG	Method Blank	Dissolved Sulphate (SO4)	2016/07/25	<2.0		mg/L	
4589707	NRG	RPD - Sample/Sample Dup	Dissolved Sulphate (SO4)	2016/07/25	NC		%	25
4589709	NRG	Matrix Spike(CSR714)	Reactive Silica (SiO2)	2016/07/26		NC	%	80 - 120
4589709	NRG	Spiked Blank	Reactive Silica (SiO2)	2016/07/26		99	%	80 - 120
4589709	NRG	Method Blank	Reactive Silica (SiO2)	2016/07/26	< 0.50		mg/L	
4589709	NRG	RPD - Sample/Sample Dup	Reactive Silica (SiO2)	2016/07/26	1.6		%	25
4589713	NRG	Spiked Blank	Colour	2016/07/25		104	%	80 - 120
4589713	NRG	Method Blank	Colour	2016/07/25	<5.0		TCU	
4589713	NRG	RPD - Sample/Sample Dup	Colour	2016/07/25	2.1		%	20
4589715	NRG	Matrix Spike(CSR714)	Orthophosphate (P)	2016/07/25		90	%	80 - 120
4589715	NRG	Spiked Blank	Orthophosphate (P)	2016/07/25		94	%	80 - 120
4589715	NRG	Method Blank	Orthophosphate (P)	2016/07/25	< 0.010		mg/L	
4589715	NRG	RPD - Sample/Sample Dup	Orthophosphate (P)	2016/07/25	NC		%	25
4589717	NRG	Matrix Spike(CSR714)	Nitrate + Nitrite (N)	2016/07/26		91	%	80 - 120
4589717	NRG	Spiked Blank	Nitrate + Nitrite (N)	2016/07/26		96	%	80 - 120
4589717	NRG	Method Blank	Nitrate + Nitrite (N)	2016/07/26	< 0.050		mg/L	
4589717	NRG	RPD - Sample/Sample Dup	Nitrate + Nitrite (N)	2016/07/26	NC		%	25
4589719	NRG	Matrix Spike(CSR714)	Nitrite (N)	2016/07/25		93	%	80 - 120
4589719	NRG	Spiked Blank	Nitrite (N)	2016/07/25		95	%	80 - 120
4589719	NRG	Method Blank	Nitrite (N)	2016/07/25	< 0.010		mg/L	
4589719	NRG	RPD - Sample/Sample Dup	Nitrite (N)	2016/07/25	NC		%	25
4589837	NRG	Matrix Spike	Nitrogen (Ammonia Nitrogen)	2016/07/25		103	%	80 - 120
4589837	NRG	Spiked Blank	Nitrogen (Ammonia Nitrogen)	2016/07/25		106	%	80 - 120
4589837	NRG	Method Blank	Nitrogen (Ammonia Nitrogen)	2016/07/25	< 0.050		mg/L	
4589837	NRG	RPD - Sample/Sample Dup	Nitrogen (Ammonia Nitrogen)	2016/07/25	NC		%	20
4589841	NRG	Matrix Spike	Nitrogen (Ammonia Nitrogen)	2016/07/25		106	%	80 - 120
4589841	NRG	Spiked Blank	Nitrogen (Ammonia Nitrogen)	2016/07/25		110	%	80 - 120
4589841	NRG	Method Blank	Nitrogen (Ammonia Nitrogen)	2016/07/25	< 0.050		mg/L	
4589841	NRG	RPD - Sample/Sample Dup	Nitrogen (Ammonia Nitrogen)	2016/07/25	4.5		%	20
4592060	JMV	QC Standard	рН	2016/07/25		100	%	97 - 103
4592060	JMV	RPD - Sample/Sample Dup	рН	2016/07/25	1.0		%	N/A

N/A = Not Applicable

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than 2x that of the native sample concentration).

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A06016 Sampler Initials: AS

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Mike MacGillivray, Scientific Specialist (Inorganics)

Mike Mac Gille

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Page 40 of 41

Page 41 of 41

Your P.O. #: A-06805

Your Project #: P-0010903-0-05-205-1 Site Location: LAKE GEORGE

Your C.O.C. #: D 18414

Attention:Aven Cole

Englobe Corp.
97 Troop Ave
Dartmouth, NS
CANADA B3B 2A7

Report Date: 2016/10/27 Report #: R4225875

Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B6M6998 Received: 2016/10/20, 10:15

Sample Matrix: Water # Samples Received: 2

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Carbonate, Bicarbonate and Hydroxide	1	N/A	2016/10/24	N/A	SM 22 4500-CO2 D
Alkalinity	1	N/A	2016/10/26	ATL SOP 00013	EPA 310.2 R1974 m
Chloride	1	N/A	2016/10/27	ATL SOP 00014	SM 22 4500-Cl- E m
Colour	1	N/A	2016/10/27	ATL SOP 00020	SM 22 2120C m
Conductance - water	1	N/A	2016/10/24	ATL SOP 00004	SM 22 2510B m
Hardness (calculated as CaCO3)	1	N/A	2016/10/26	ATL SOP 00048	SM 22 2340 B
Metals Water Total MS	2	2016/10/25	2016/10/25	ATL SOP 00058	EPA 6020A R1 m
Ion Balance (% Difference)	1	N/A	2016/10/27		Auto Calc.
Anion and Cation Sum	1	N/A	2016/10/27		Auto Calc.
Nitrogen Ammonia - water	1	N/A	2016/10/27	ATL SOP 00015	EPA 350.1 R2 m
Nitrogen - Nitrate + Nitrite	1	N/A	2016/10/27	ATL SOP 00016	USGS SOPINCF0452.2 m
Nitrogen - Nitrite	1	N/A	2016/10/26	ATL SOP 00017	SM 22 4500-NO2- B m
Nitrogen - Nitrate (as N)	1	N/A	2016/10/27	ATL SOP 00018	ASTM D3867-16
pH (1)	1	N/A	2016/10/24	ATL SOP 00003	SM 22 4500-H+ B m
Phosphorus - ortho	1	N/A	2016/10/27	ATL SOP 00021	EPA 365.2 m
Sat. pH and Langelier Index (@ 20C)	1	N/A	2016/10/27	ATL SOP 00049	Auto Calc.
Sat. pH and Langelier Index (@ 4C)	1	N/A	2016/10/27	ATL SOP 00049	Auto Calc.
Reactive Silica	1	N/A	2016/10/27	ATL SOP 00022	EPA 366.0 m
Sulphate	1	N/A	2016/10/27	ATL SOP 00023	ASTMD516-11 m
Total Dissolved Solids (TDS calc)	1	N/A	2016/10/27		Auto Calc.
Organic carbon - Total (TOC) (2)	1	N/A	2016/10/26	ATL SOP 00037	SM 22 5310C m
Turbidity	1	N/A	2016/10/25	ATL SOP 00011	EPA 180.1 R2 m

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

⁽¹⁾ The APHA Standard Method require pH to be analyzed within 15 minutes of sampling and therefore field analysis is required for compliance. All Laboratory pH analyses in this report are reported past the APHA Standard Method holding time.

⁽²⁾ TOC / DOC present in the sample should be considered as non-purgeable TOC / DOC.

Your P.O. #: A-06805

Your Project #: P-0010903-0-05-205-1 Site Location: LAKE GEORGE

Your C.O.C. #: D 18414

Attention:Aven Cole

Englobe Corp.
97 Troop Ave
Dartmouth, NS
CANADA B3B 2A7

Report Date: 2016/10/27

Report #: R4225875 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B6M6998 Received: 2016/10/20, 10:15

Encryption Key

Maxxam 27 Oct 2016 17:20:40 -03:00

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Avery Withrow, Project Manager Email: AWithrow@maxxam.ca Phone# (902)420-0203 Ext:233

This report has been generated and distributed using a secure automated process.

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Englobe Corp.

Client Project #: P-0010903-0-05-205-1

Site Location: LAKE GEORGE

Your P.O. #: A-06805 Sampler Initials: CM

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Maxxam ID		DHC273	DHC273			
Sampling Date		2016/10/19	2016/10/19			
COC Number		D 18414	D 18414			
	UNITS	PW3	PW3 Lab-Dup	RDL	QC Batch	MDI
Calculated Parameters						
Anion Sum	me/L	3.32		N/A	4710641	N/A
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	19		1.0	4711032	0.20
Calculated TDS	mg/L	200		1.0	4710635	0.20
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0		1.0	4711032	0.20
Cation Sum	me/L	3.24		N/A	4710641	N/A
Hardness (CaCO3)	mg/L	33		1.0	4710417	1.0
Ion Balance (% Difference)	%	1.22		N/A	4710640	N/A
Langelier Index (@ 20C)	N/A	-2.73			4711033	
Langelier Index (@ 4C)	N/A	-2.98			4711034	
Nitrate (N)	mg/L	0.12		0.050	4710546	N/A
Saturation pH (@ 20C)	N/A	9.12			4711033	
Saturation pH (@ 4C)	N/A	9.37			4711034	
Inorganics	•	•	•		-	
Total Alkalinity (Total as CaCO3)	mg/L	19		5.0	4718220	N/A
Dissolved Chloride (Cl)	mg/L	92		1.0	4718221	N/A
Colour	TCU	<5.0		5.0	4718224	N/A
Nitrate + Nitrite (N)	mg/L	0.12		0.050	4718226	N/A
Nitrite (N)	mg/L	<0.010		0.010	4718228	N/A
Nitrogen (Ammonia Nitrogen)	mg/L	<0.050		0.050	4718375	N/A
Total Organic Carbon (C)	mg/L	0.79	0.66	0.50	4716725	N/A
Orthophosphate (P)	mg/L	0.014		0.010	4718225	N/A
рН	рН	6.39		N/A	4714488	N/A
Reactive Silica (SiO2)	mg/L	11		0.50	4718223	N/A
Dissolved Sulphate (SO4)	mg/L	15		2.0	4718222	N/A
Turbidity	NTU	0.69		0.10	4716248	0.10
Conductivity	uS/cm	360		1.0	4714489	N/A
Metals						
Total Aluminum (AI)	ug/L	59		5.0	4716186	N/A
Total Antimony (Sb)	ug/L	<1.0		1.0	4716186	N/A
Total Arsenic (As)	ug/L	<1.0		1.0	4716186	N/A
Total Barium (Ba)	ug/L	22		1.0	4716186	N/A
Total Beryllium (Be)	ug/L	<1.0		1.0	4716186	N/A
RDL = Reportable Detection Limit						

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

Englobe Corp.

Client Project #: P-0010903-0-05-205-1

Site Location: LAKE GEORGE

Your P.O. #: A-06805 Sampler Initials: CM

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Maxxam ID		DHC273	DHC273			
Sampling Date		2016/10/19	2016/10/19			
COC Number		D 18414	D 18414			
	UNITS	PW3	PW3 Lab-Dup	RDL	QC Batch	MDL
Total Bismuth (Bi)	ug/L	<2.0		2.0	4716186	N/A
Total Boron (B)	ug/L	<50		50	4716186	N/A
Total Cadmium (Cd)	ug/L	0.050		0.010	4716186	N/A
Total Calcium (Ca)	ug/L	9800		100	4716186	N/A
Total Chromium (Cr)	ug/L	<1.0		1.0	4716186	N/A
Total Cobalt (Co)	ug/L	0.67		0.40	4716186	N/A
Total Copper (Cu)	ug/L	2.7		2.0	4716186	N/A
Total Iron (Fe)	ug/L	250		50	4716186	N/A
Total Lead (Pb)	ug/L	0.68		0.50	4716186	N/A
Total Magnesium (Mg)	ug/L	2100		100	4716186	N/A
Total Manganese (Mn)	ug/L	140		2.0	4716186	N/A
Total Molybdenum (Mo)	ug/L	<2.0		2.0	4716186	N/A
Total Nickel (Ni)	ug/L	<2.0		2.0	4716186	N/A
Total Phosphorus (P)	ug/L	<100		100	4716186	N/A
Total Potassium (K)	ug/L	900		100	4716186	N/A
Total Selenium (Se)	ug/L	<1.0		1.0	4716186	N/A
Total Silver (Ag)	ug/L	<0.10		0.10	4716186	N/A
Total Sodium (Na)	ug/L	59000		100	4716186	N/A
Total Strontium (Sr)	ug/L	55		2.0	4716186	N/A
Total Thallium (TI)	ug/L	<0.10		0.10	4716186	N/A
Total Tin (Sn)	ug/L	<2.0		2.0	4716186	N/A
Total Titanium (Ti)	ug/L	<2.0		2.0	4716186	N/A
Total Uranium (U)	ug/L	<0.10		0.10	4716186	N/A
Total Vanadium (V)	ug/L	<2.0		2.0	4716186	N/A
Total Zinc (Zn)	ug/L	11		5.0	4716186	N/A
PDI - Papartable Detection Limit						

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Englobe Corp.

Client Project #: P-0010903-0-05-205-1

Site Location: LAKE GEORGE

Your P.O. #: A-06805 Sampler Initials: CM

ELEMENTS BY ICP/MS (WATER)

Maxxam ID		DHC274			
Sampling Date		2016/10/19			
COC Number		D 18414			
	UNITS	PW3 - TAP	RDL	QC Batch	MDL
Metals					
Total Aluminum (Al)	ug/L	53	5.0	4716186	N/A
Total Antimony (Sb)	ug/L	<1.0	1.0	4716186	N/A
Total Arsenic (As)	ug/L	<1.0	1.0	4716186	N/A
Total Barium (Ba)	ug/L	19	1.0	4716186	N/A
Total Beryllium (Be)	ug/L	<1.0	1.0	4716186	N/A
Total Bismuth (Bi)	ug/L	<2.0	2.0	4716186	N/A
Total Boron (B)	ug/L	<50	50	4716186	N/A
Total Cadmium (Cd)	ug/L	0.046	0.010	4716186	N/A
Total Calcium (Ca)	ug/L	9100	100	4716186	N/A
Total Chromium (Cr)	ug/L	<1.0	1.0	4716186	N/A
Total Cobalt (Co)	ug/L	0.72	0.40	4716186	N/A
Total Copper (Cu)	ug/L	60	2.0	4716186	N/A
Total Iron (Fe)	ug/L	240	50	4716186	N/A
Total Lead (Pb)	ug/L	<0.50	0.50	4716186	N/A
Total Magnesium (Mg)	ug/L	1900	100	4716186	N/A
Total Manganese (Mn)	ug/L	140	2.0	4716186	N/A
Total Molybdenum (Mo)	ug/L	<2.0	2.0	4716186	N/A
Total Nickel (Ni)	ug/L	<2.0	2.0	4716186	N/A
Total Phosphorus (P)	ug/L	<100	100	4716186	N/A
Total Potassium (K)	ug/L	830	100	4716186	N/A
Total Selenium (Se)	ug/L	<1.0	1.0	4716186	N/A
Total Silver (Ag)	ug/L	<0.10	0.10	4716186	N/A
Total Sodium (Na)	ug/L	52000	100	4716186	N/A
Total Strontium (Sr)	ug/L	51	2.0	4716186	N/A
Total Thallium (Tl)	ug/L	<0.10	0.10	4716186	N/A
Total Tin (Sn)	ug/L	<2.0	2.0	4716186	N/A
Total Titanium (Ti)	ug/L	<2.0	2.0	4716186	N/A
Total Uranium (U)	ug/L	<0.10	0.10	4716186	N/A
Total Vanadium (V)	ug/L	<2.0	2.0	4716186	N/A
Total Zinc (Zn)	ug/L	8.1	5.0	4716186	N/A
RDL = Reportable Detection	Limit				

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Englobe Corp.

Client Project #: P-0010903-0-05-205-1

Site Location: LAKE GEORGE

Your P.O. #: A-06805 Sampler Initials: CM

TEST SUMMARY

Maxxam ID: DHC273 Sample ID: PW3

Collected:

2016/10/19

Matrix: Water

Shipped: Received: 2016/10/20

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4711032	N/A	2016/10/24	Automated Statchk
Alkalinity	KONE	4718220	N/A	2016/10/26	Nancy Rogers
Chloride	KONE	4718221	N/A	2016/10/27	Nancy Rogers
Colour	KONE	4718224	N/A	2016/10/27	Nancy Rogers
Conductance - water	AT	4714489	N/A	2016/10/24	Julia McGovern
Hardness (calculated as CaCO3)		4710417	N/A	2016/10/26	Automated Statchk
Metals Water Total MS	CICP/MS	4716186	2016/10/25	2016/10/25	Mike Leblanc
Ion Balance (% Difference)	CALC	4710640	N/A	2016/10/27	Automated Statchk
Anion and Cation Sum	CALC	4710641	N/A	2016/10/27	Automated Statchk
Nitrogen Ammonia - water	KONE	4718375	N/A	2016/10/27	Nancy Rogers
Nitrogen - Nitrate + Nitrite	KONE	4718226	N/A	2016/10/27	Nancy Rogers
Nitrogen - Nitrite	KONE	4718228	N/A	2016/10/26	Cecilia (Kate) Barrett
Nitrogen - Nitrate (as N)	CALC	4710546	N/A	2016/10/27	Automated Statchk
рН	AT	4714488	N/A	2016/10/24	Julia McGovern
Phosphorus - ortho	KONE	4718225	N/A	2016/10/27	Mary Clancey
Sat. pH and Langelier Index (@ 20C)	CALC	4711033	N/A	2016/10/27	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4711034	N/A	2016/10/27	Automated Statchk
Reactive Silica	KONE	4718223	N/A	2016/10/27	Nancy Rogers
Sulphate	KONE	4718222	N/A	2016/10/27	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4710635	N/A	2016/10/27	Automated Statchk
Organic carbon - Total (TOC)	TECH	4716725	N/A	2016/10/26	Soraya Merchant
Turbidity	TURB	4716248	N/A	2016/10/25	Julia McGovern

Maxxam ID: DHC273 Dup Sample ID: PW3 Matrix: Water **Collected:** 2016/10/19

Shipped:

Received: 2016/10/20

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Organic carbon - Total (TOC)	TECH	4716725	N/A	2016/10/26	Soraya Merchant

Maxxam ID: DHC274 Sample ID: PW3 - TAP

Water

Matrix:

Collected: 2016/10/19

Shipped:

Received: 2016/10/20

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Metals Water Total MS	CICP/MS	4716186	2016/10/25	2016/10/25	Mike Leblanc

Englobe Corp.

Client Project #: P-0010903-0-05-205-1

Site Location: LAKE GEORGE

Your P.O. #: A-06805 Sampler Initials: CM

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 3.3°C

Results relate only to the items tested.

Englobe Corp.

Client Project #: P-0010903-0-05-205-1

Site Location: LAKE GEORGE

Your P.O. #: A-06805 Sampler Initials: CM

QUALITY ASSURANCE REPORT

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
4714488	JMV	QC Standard	рН	2016/10/24		100	%	97 - 103
4714488	JMV	RPD - Sample/Sample Dup	Hq	2016/10/24	0.75		%	N/A
4714489	JMV	Spiked Blank	Conductivity	2016/10/24		100	%	80 - 120
4714489	JMV	Method Blank	Conductivity	2016/10/24	1.6,		uS/cm	
			,		RDL=1.0		,	
4714489	JMV	RPD - Sample/Sample Dup	Conductivity	2016/10/24	0.0015		%	25
4716186	MLB	Matrix Spike	Total Aluminum (Al)	2016/10/25	0.0013	97	%	80 - 120
1710100	IVILD	Width Spike	Total Antimony (Sb)	2016/10/25		102	%	80 - 120
			Total Arsenic (As)	2016/10/25		94	%	80 - 120
			Total Barium (Ba)	2016/10/25		87	%	80 - 120
			Total Beryllium (Be)	2016/10/25		94	%	80 - 120
			Total Bismuth (Bi)	2016/10/25		101	%	80 - 120
			Total Boron (B)	2016/10/25		103	%	80 - 120
			Total Cadmium (Cd)	2016/10/25		93	%	80 - 120
			Total Calcium (Ca)	2016/10/25		100	%	80 - 120
			Total Chromium (Cr)	2016/10/25		92	%	80 - 120
			Total Cobalt (Co)	2016/10/25		95	%	80 - 120
			Total Copper (Cu)	2016/10/25		93	%	80 - 120
			Total Iron (Fe)	2016/10/25		99	%	80 - 120
			Total Lead (Pb)	2016/10/25		94	%	80 - 120
			Total Magnesium (Mg)	2016/10/25		104	%	80 - 120
			Total Manganese (Mn)	2016/10/25		95	%	80 - 120
			Total Molybdenum (Mo)	2016/10/25		102	%	80 - 120
			Total Nickel (Ni)	2016/10/25		95	%	80 - 120
			Total Phosphorus (P)	2016/10/25		101	%	80 - 120
			Total Potassium (K)	2016/10/25		101	%	80 - 120
			Total Selenium (Se)	2016/10/25		94	%	80 - 120
			Total Silver (Ag)	2016/10/25		95	%	80 - 120
			Total Sodium (Na)	2016/10/25		NC	%	80 - 120
			Total Strontium (Sr)	2016/10/25		NC	%	80 - 120
			Total Thallium (TI)	2016/10/25		101	%	80 - 120
			Total Tin (Sn)	2016/10/25		104	%	80 - 120
			Total Titanium (Ti)	2016/10/25		99	%	80 - 120
			Total Uranium (U)	2016/10/25		101	%	80 - 120
			Total Vanadium (V)	2016/10/25		92	%	80 - 120
			Total Zinc (Zn)	2016/10/25		98	%	80 - 120
4716186	MLB	Spiked Blank	Total Aluminum (Al)	2016/10/25		105	%	80 - 120
		·	Total Antimony (Sb)	2016/10/25		102	%	80 - 120
			Total Arsenic (As)	2016/10/25		96	%	80 - 120
			Total Barium (Ba)	2016/10/25		88	%	80 - 120
			Total Beryllium (Be)	2016/10/25		97	%	80 - 120
			Total Bismuth (Bi)	2016/10/25		102	%	80 - 120
			Total Boron (B)	2016/10/25		103	%	80 - 120
			Total Cadmium (Cd)	2016/10/25		96	%	80 - 120
			Total Calcium (Ca)	2016/10/25		100	%	80 - 120
			Total Chromium (Cr)	2016/10/25		94	%	80 - 120
			Total Cobalt (Co)	2016/10/25		98	%	80 - 120
			Total Copper (Cu)	2016/10/25		98	%	80 - 120
			Total Iron (Fe)	2016/10/25		100	%	80 - 120
			Total Lead (Pb)	2016/10/25		98	%	80 - 120
			Total Magnesium (Mg)	2016/10/25		104	%	80 - 120

Englobe Corp.

Client Project #: P-0010903-0-05-205-1

Site Location: LAKE GEORGE

Your P.O. #: A-06805 Sampler Initials: CM

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			Total Manganese (Mn)	2016/10/25		98	%	80 - 120
			Total Molybdenum (Mo)	2016/10/25		102	%	80 - 120
			Total Nickel (Ni)	2016/10/25		99	%	80 - 120
			Total Phosphorus (P)	2016/10/25		99	%	80 - 120
			Total Potassium (K)	2016/10/25		101	%	80 - 120
			Total Selenium (Se)	2016/10/25		96	%	80 - 120
			Total Silver (Ag)	2016/10/25		98	%	80 - 120
			Total Sodium (Na)	2016/10/25		103	%	80 - 120
			Total Strontium (Sr)	2016/10/25		98	%	80 - 120
			Total Thallium (TI)	2016/10/25		102	%	80 - 120
			Total Tin (Sn)	2016/10/25		103	%	80 - 120
			Total Titanium (Ti)	2016/10/25		97	%	80 - 120
			Total Uranium (U)	2016/10/25		105	%	80 - 120
			Total Vanadium (V)	2016/10/25		94	%	80 - 120
			Total Zinc (Zn)	2016/10/25		100	%	80 - 120
4716186	MLB	Method Blank	Total Aluminum (Al)	2016/10/25	8.5,		ug/L	
					RDL=5.0			
			Total Antimony (Sb)	2016/10/25	<1.0		ug/L	
			Total Arsenic (As)	2016/10/25	<1.0		ug/L	
			Total Barium (Ba)	2016/10/25	<1.0		ug/L	
			Total Beryllium (Be)	2016/10/25	<1.0		ug/L	
			Total Bismuth (Bi)	2016/10/25	<2.0		ug/L	
			Total Boron (B)	2016/10/25	<50		ug/L	
			Total Cadmium (Cd)	2016/10/25	< 0.010		ug/L	
			Total Calcium (Ca)	2016/10/25	<100		ug/L	
			Total Chromium (Cr)	2016/10/25	<1.0		ug/L	
			Total Cobalt (Co)	2016/10/25	< 0.40		ug/L	
			Total Copper (Cu)	2016/10/25	<2.0		ug/L	
			Total Iron (Fe)	2016/10/25	<50		ug/L	
			Total Lead (Pb)	2016/10/25	<0.50		ug/L	
			Total Magnesium (Mg)	2016/10/25	<100		ug/L	
			Total Manganese (Mn)	2016/10/25	<2.0		ug/L	
			Total Molybdenum (Mo)	2016/10/25	<2.0		ug/L	
			Total Nickel (Ni)	2016/10/25	<2.0		ug/L	
			Total Phosphorus (P)	2016/10/25	<100		ug/L	
			Total Potassium (K)	2016/10/25	<100		ug/L	
			Total Selenium (Se)	2016/10/25	<1.0		ug/L	
			Total Silver (Ag)	2016/10/25	< 0.10		ug/L	
			Total Sodium (Na)	2016/10/25	<100		ug/L	
			Total Strontium (Sr)	2016/10/25	<2.0		ug/L	
			Total Thallium (TI)	2016/10/25	< 0.10		ug/L	
			Total Tin (Sn)	2016/10/25	<2.0		ug/L	
			Total Titanium (Ti)	2016/10/25	<2.0		ug/L	
			Total Uranium (U)	2016/10/25	<0.10		ug/L	
			Total Vanadium (V)	2016/10/25	<2.0		ug/L	
			Total Zinc (Zn)	2016/10/25	<5.0		ug/L	
4716186	MLB	RPD - Sample/Sample Dup		2016/10/25	1.3		%	20
			Total Antimony (Sb)	2016/10/25	NC		%	20
			Total Arsenic (As)	2016/10/25	NC		%	20
			Total Barium (Ba)	2016/10/25	0.34		%	20
				_510,10,25	0.0 .		, ,	_0

Englobe Corp.

Client Project #: P-0010903-0-05-205-1

Site Location: LAKE GEORGE

Your P.O. #: A-06805 Sampler Initials: CM

QA/QC		<u> </u>		Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			Total Bismuth (Bi)	2016/10/25	NC	·	%	20
			Total Boron (B)	2016/10/25	NC		%	20
			Total Cadmium (Cd)	2016/10/25	NC		%	20
			Total Calcium (Ca)	2016/10/25	0.77		%	20
			Total Chromium (Cr)	2016/10/25	NC		%	20
			Total Cobalt (Co)	2016/10/25	NC		%	20
			Total Copper (Cu)	2016/10/25	NC		%	20
			Total Iron (Fe)	2016/10/25	NC		%	20
			Total Lead (Pb)	2016/10/25	NC		%	20
			Total Magnesium (Mg)	2016/10/25	1.1		%	20
			Total Manganese (Mn)	2016/10/25	1.0		%	20
			Total Molybdenum (Mo)	2016/10/25	NC		%	20
			Total Nickel (Ni)	2016/10/25	NC		%	20
			Total Phosphorus (P)	2016/10/25	NC		%	20
			Total Potassium (K)	2016/10/25	4.1		%	20
			Total Selenium (Se)	2016/10/25	NC		%	20
			Total Silver (Ag)	2016/10/25	NC		%	20
			Total Sodium (Na)	2016/10/25	0.072		%	20
			Total Strontium (Sr)	2016/10/25	1.3		%	20
			Total Thallium (TI)	2016/10/25	NC		%	20
			Total Tin (Sn)	2016/10/25	NC		%	20
			Total Titanium (Ti)	2016/10/25	NC		%	20
			Total Uranium (U)	2016/10/25	NC		%	20
			Total Vanadium (V)	2016/10/25	NC		%	20
			Total Zinc (Zn)	2016/10/25	NC		%	20
4716248	JMV	QC Standard	Turbidity	2016/10/25	110	101	%	80 - 120
4716248	JMV	Spiked Blank	Turbidity	2016/10/25		96	%	80 - 120
4716248	JMV	Method Blank	Turbidity	2016/10/25	<0.10	30	NTU	00 120
4716248	JMV	RPD - Sample/Sample Dup	· · · · · · · · · · · · · · · · · · ·	2016/10/25	NC		%	20
4716725	SMT	Matrix Spike(DHC273)	Total Organic Carbon (C)	2016/10/26	110	106	%	80 - 120
4716725	SMT	Spiked Blank	Total Organic Carbon (C)	2016/10/26		102	%	80 - 120
4716725	SMT	Method Blank	Total Organic Carbon (C)	2016/10/26	< 0.50	102	mg/L	00 120
4716725	SMT	RPD - Sample/Sample Dup		2016/10/26	NC		%	20
4718220	NRG	Matrix Spike	Total Alkalinity (Total as CaCO3)	2016/10/27	IVC	NC	%	80 - 120
4718220	NRG	Spiked Blank	Total Alkalinity (Total as CaCO3)	2016/10/26		104	%	80 - 120
4718220	NRG	Method Blank	Total Alkalinity (Total as CaCO3)	2016/10/26	<5.0	104	mg/L	00 120
4718220			Total Alkalinity (Total as CaCO3)	2016/10/27	0.47		%	25
4718221	NRG		Dissolved Chloride (Cl)	2016/10/27	0.47	NC	%	80 - 120
4718221	NRG	QC Standard	Dissolved Chloride (CI)	2016/10/27		105	%	80 - 120
4718221	NRG	Spiked Blank	Dissolved Chloride (CI)	2016/10/27		100	%	80 - 120
4718221	NRG	Method Blank	Dissolved Chloride (CI)	2016/10/27	<1.0	100	mg/L	00 120
4718221	NRG		Dissolved Chloride (Cl)	2016/10/27	0.80		111g/L %	25
4718221	NRG	Matrix Spike	Dissolved Chloride (Cl) Dissolved Sulphate (SO4)	2016/10/27	0.00	NC	%	80 - 120
4718222	NRG	Spiked Blank	Dissolved Sulphate (SO4)	2016/10/27		102	%	80 - 120
4718222	NRG	Method Blank	Dissolved Sulphate (SO4)	2016/10/27	<2.0	102	mg/L	00 - 120
4718222	NRG	RPD - Sample/Sample Dup		2016/10/27	7.8		mg/L %	25
4718223	NRG	Matrix Spike	Reactive Silica (SiO2)	2016/10/27	7.0	93	%	80 - 120
4718223	NRG	Spiked Blank	Reactive Silica (SiO2)	2016/10/27		100	%	80 - 120 80 - 120
4718223	NRG	Method Blank	• • •	2016/10/27	<0.50	100		00 - 120
4718223	NRG	RPD - Sample/Sample Dup	Reactive Silica (SiO2)	2016/10/27	0.36		mg/L %	25
4718223		Spiked Blank	Colour		0.30	100	% %	25 80 - 120
4/10224	NRG	Shiren pialik	Coloul	2016/10/27		100	%	00 - 120

Englobe Corp.

Client Project #: P-0010903-0-05-205-1

Site Location: LAKE GEORGE

Your P.O. #: A-06805 Sampler Initials: CM

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
4718224	NRG	Method Blank	Colour	2016/10/27	<5.0		TCU	
4718224	NRG	RPD - Sample/Sample Dup	Colour	2016/10/27	NC		%	20
4718225	MCN	Matrix Spike	Orthophosphate (P)	2016/10/27		87	%	80 - 120
4718225	MCN	Spiked Blank	Orthophosphate (P)	2016/10/27		95	%	80 - 120
4718225	MCN	Method Blank	Orthophosphate (P)	2016/10/27	< 0.010		mg/L	
4718225	MCN	RPD - Sample/Sample Dup	Orthophosphate (P)	2016/10/27	NC		%	25
4718226	NRG	Matrix Spike	Nitrate + Nitrite (N)	2016/10/27		96	%	80 - 120
4718226	NRG	Spiked Blank	Nitrate + Nitrite (N)	2016/10/27		97	%	80 - 120
4718226	NRG	Method Blank	Nitrate + Nitrite (N)	2016/10/27	<0.050		mg/L	
4718226	NRG	RPD - Sample/Sample Dup	Nitrate + Nitrite (N)	2016/10/27	NC		%	25
4718228	KBT	Matrix Spike	Nitrite (N)	2016/10/26		107	%	80 - 120
4718228	KBT	Spiked Blank	Nitrite (N)	2016/10/26		105	%	80 - 120
4718228	KBT	Method Blank	Nitrite (N)	2016/10/26	< 0.010		mg/L	
4718228	KBT	RPD - Sample/Sample Dup	Nitrite (N)	2016/10/26	NC		%	25
4718375	NRG	Matrix Spike	Nitrogen (Ammonia Nitrogen)	2016/10/26		99	%	80 - 120
4718375	NRG	Spiked Blank	Nitrogen (Ammonia Nitrogen)	2016/10/27		102	%	80 - 120
4718375	NRG	Method Blank	Nitrogen (Ammonia Nitrogen)	2016/10/27	< 0.050		mg/L	
4718375	NRG	RPD - Sample/Sample Dup	Nitrogen (Ammonia Nitrogen)	2016/10/26	NC		%	20

N/A = Not Applicable

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than 2x that of the native sample concentration).

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

Englobe Corp.

Client Project #: P-0010903-0-05-205-1

Site Location: LAKE GEORGE

Your P.O. #: A-06805 Sampler Initials: CM

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Mike MacGillivray, Scientific Specialist (Inorganics)

Mike Mac Galle

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Maxxam A Bureau Veritas Group Company

200 Bluewater Read, Sulie 105, Bedford, Nove Social 848 1G9 Tet 902-420-0003 Fax, 902-420-8612 Toil Free: 1-480-585-7227 49 Eicabean Avenue. St. Johnts, NL. A1A, 1W9.
Tel: 703-754-0203 Fax; 902-539-6504 Toil Free: 1-488-353-7770
Tel: 902-587-1255 Fax; 902-539-5504 Toil Free: 1-488-535-7770

E-mill: Custor

www.maxxam.ca

Tel: 709-754-0203 Fax: 708-754-861 2 Tell Free: 1-888-92-7227
Tel: 902-587-1255 Fax: 902-539-5904 Tell Free: 1-888-535-7770
CHAIN OF CUSTODY RECORD

COC#: D

CONTROL Name CONTROL NAME CO	Regular TAT (5 business days) Mout analyses	A -6680S PROVE ADVANCE NOTICE FOR FUSH PROJECTS PRICES PROVE ADVANCE NOTICE FOR FUSH PROJECTS PRICES PROVE ADVANCE NOTICE FOR FUSH PROJECTS	Section Lette Grange Date Required.	1	C, M. You was	Regulatory Regulerents	Н	Hq2110	a), ws fuel Achilos, I	6-C3) 6-C3) 7-ETEX, V	lož znodna D, X3TB (s) odeW side	NOCE DAME DOWN LEW LOW LEW				and the	192 Uni 24			DATE: (YYYY/MM/DD) TIME: (HH:MM) MAXXAM JOB #	24 F RC 1203 FRC
Montes Contact Name. Address: Address: Address: Address: Address: Address: Address: Annual Delay Warne Annual Maria Marked Mar	Overlation	P.O. W. AFER.	Site Location:	Ste #	Sampled By:	Anolysis Requested	(Soil)	٧	(At work A	CERTIE (A MIF/HCIC MIF/HCIC MIF/HCIC MIF/HCIC MIF/HCIC MIF/HCIC	crost black agid leret coliff) are evel wolly fidules ret MOO 1st by	zleseW flusted zleseW numeM rumeM eW toH								DATE: (YY	
Company Name. Contact Name. Address: Phone Email: From: Decides 9,: Contact Name. Phone From: Contact Name. Phone From: Contact Name. Phone From: Contact Name. Phone From: Contact Name. Phone From: Contact Name. Phone From: Contact Name. Phone From: Contact Name. Phone From: Contact Name. Phone From: Contact Name. Phone From: Contact Name. Phone From: Contact Name. Phone From: Contact Name. Phone From: Contact Name. Phone From: Contact Name. From: C			Postal Code:	File					25510 / TV	VASSERY brition (101 (100) (TTENED & STORED CRECKED & SOURCE SOUR	THE DESCRIPTION OF THE PROPERTY OF WAR!		/						RECEIVED BY: (Signature/Print)	1 00
T T T T T T T T T T T T T T T T T T T	Continue Marie	Contact Name:		Phone	Email:		WITGHETY TEST / MICE		Complete,			_	SPARE	7						TIME: (HH:MM)	r
Englobe NS Peril Code NS Peril Code NS Peril Code SE 488 Faz 802-44 ABE EUSEIGNED Laboratory II S 3 3 S 3 3 S 3 3 S 3 3 S 3 3 S 3 3 S 3 3 S 3 3 S 3 3 MPLE IDENTIFICATION D BY: [Signeture/Print) II MACOLINE D BY: [Signeture/Print) II MACOLINE II		J. Anton H.	838 2A7	8-4419	Con	Jse Only				7	AE OF SAMPLING UNTIL DI	(YYYY/MM/DD)	5/01/102	61/01/2102						_	
MAUST BE SAME SAME SAME SAME SAME SAME SAME SAM	Freho	Aver Cole	NS Postri Code	8 6481 m 202-4	ale Benglicherorg	Laboratory L	Ц			3 3	E KEPT COOL (< 10 °C FROM TIA	SAMPLE IDENTIFICATION	@ Pw3	PW3-Tap	2					RELINQUISHED BY: (Signature/Print)	The man

White: Maxxam

Pink: Client

Your P.O. #: A 06392

Your Project #: P-0010903-0-00-205

Site#: LAKE GEORGE

Attention:Aven Cole

Englobe Corp.
97 Troop Ave
Dartmouth, NS
CANADA B3B 2A7

Your C.O.C. #: 583336-01-01, 583336-02-01, 583336-03-01

Report Date: 2016/11/10

Report #: R4242622 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B6N8707 Received: 2016/11/02, 15:45

Sample Matrix: Water # Samples Received: 20

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Carbonate, Bicarbonate and Hydroxide	20	N/A	2016/11/08	N/A	SM 22 4500-CO2 D
Alkalinity	20	N/A	2016/11/08	ATL SOP 00013	EPA 310.2 R1974 m
Chloride	20	N/A	2016/11/08	ATL SOP 00014	SM 22 4500-Cl- E m
Colour	20	N/A	2016/11/08	ATL SOP 00020	SM 22 2120C m
Conductance - water	20	N/A	2016/11/08	ATL SOP 00004	SM 22 2510B m
Hardness (calculated as CaCO3)	13	N/A	2016/11/09	ATL SOP 00048	SM 22 2340 B
Hardness (calculated as CaCO3)	7	N/A	2016/11/10	ATL SOP 00048	SM 22 2340 B
Mercury - Total (CVAA,LL)	20	2016/11/07	2016/11/08	ATL SOP 00026	EPA 245.1 R3 m
Metals Water Diss. MS (1)	1	N/A	2016/11/08	ATL SOP 00058	EPA 6020A R1 m
Metals Water Diss. MS (as rec'd)	1	N/A	2016/11/08	ATL SOP 00058	EPA 6020A R1 m
Metals Water Diss. MS (as rec'd)	4	N/A	2016/11/09	ATL SOP 00058	EPA 6020A R1 m
Metals Water Total MS	13	2016/11/08	2016/11/08	ATL SOP 00058	EPA 6020A R1 m
Metals Water Total MS	5	2016/11/08	2016/11/09	ATL SOP 00058	EPA 6020A R1 m
Metals Water Total MS	2	2016/11/09	2016/11/10	ATL SOP 00058	EPA 6020A R1 m
Ion Balance (% Difference)	13	N/A	2016/11/09	N/A	Auto Calc.
Ion Balance (% Difference)	7	N/A	2016/11/10	N/A	Auto Calc.
Anion and Cation Sum	13	N/A	2016/11/09	N/A	Auto Calc.
Anion and Cation Sum	7	N/A	2016/11/10	N/A	Auto Calc.
Nitrogen Ammonia - water	12	N/A	2016/11/08	ATL SOP 00015	EPA 350.1 R2 m
Nitrogen Ammonia - water	8	N/A	2016/11/09	ATL SOP 00015	EPA 350.1 R2 m
Nitrogen - Nitrate + Nitrite	20	N/A	2016/11/09	ATL SOP 00016	USGS SOPINCF0452.2 m
Nitrogen - Nitrite	20	N/A	2016/11/09	ATL SOP 00017	SM 22 4500-NO2- B m
Nitrogen - Nitrate (as N)	20	N/A	2016/11/09	ATL SOP 00018	ASTM D3867-16
pH (2)	20	N/A	2016/11/08	ATL SOP 00003	SM 22 4500-H+ B m
Phosphorus - ortho	20	N/A	2016/11/08	ATL SOP 00021	EPA 365.2 m
Sat. pH and Langelier Index (@ 20C)	12	N/A	2016/11/09	ATL SOP 00049	Auto Calc.
Sat. pH and Langelier Index (@ 20C)	8	N/A	2016/11/10	ATL SOP 00049	Auto Calc.
Sat. pH and Langelier Index (@ 4C)	12	N/A	2016/11/09	ATL SOP 00049	Auto Calc.

Your P.O. #: A 06392

Your Project #: P-0010903-0-00-205

Site#: LAKE GEORGE

Attention:Aven Cole

Englobe Corp.
97 Troop Ave
Dartmouth, NS
CANADA B3B 2A7

Your C.O.C. #: 583336-01-01, 583336-02-01, 583336-03-01

Report Date: 2016/11/10

Report #: R4242622 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B6N8707 Received: 2016/11/02, 15:45

Sample Matrix: Water # Samples Received: 20

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Sat. pH and Langelier Index (@ 4C)	8	N/A	2016/11/10	ATL SOP 00049	Auto Calc.
Reactive Silica	20	N/A	2016/11/08	ATL SOP 00022	EPA 366.0 m
Sulphate	20	N/A	2016/11/08	ATL SOP 00023	ASTMD516-11 m
Total Dissolved Solids (TDS calc)	13	N/A	2016/11/09	N/A	Auto Calc.
Total Dissolved Solids (TDS calc)	7	N/A	2016/11/10	N/A	Auto Calc.
Organic carbon - Total (TOC) (3)	20	N/A	2016/11/09	ATL SOP 00037	SM 22 5310C m
Total Suspended Solids	2	2016/11/04	2016/11/09	ATL SOP 00007	SM 22 2540D m
Total Suspended Solids	4	2016/11/07	2016/11/07	ATL SOP 00007	SM 22 2540D m
Turbidity	20	N/A	2016/11/08	ATL SOP 00011	EPA 180.1 R2 m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported: unless indicated otherwise, associated sample data are not blank corrected.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods. Results relate to samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Your P.O. #: A 06392

Your Project #: P-0010903-0-00-205

Site#: LAKE GEORGE

Attention:Aven Cole

Englobe Corp.
97 Troop Ave
Dartmouth, NS
CANADA B3B 2A7

Your C.O.C. #: 583336-01-01, 583336-02-01, 583336-03-01

Report Date: 2016/11/10

Report #: R4242622 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B6N8707 Received: 2016/11/02, 15:45

- (1) Sample filtered in laboratory prior to analysis for dissolved metals.
- (2) The APHA Standard Method require pH to be analyzed within 15 minutes of sampling and therefore field analysis is required for compliance. All Laboratory pH analyses in this report are reported past the APHA Standard Method holding time.
- (3) TOC / DOC present in the sample should be considered as non-purgeable TOC / DOC.

Encryption Key

Maxxam 10 Nov 2016 17:06:04 -04:00

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Avery Withrow, Project Manager Email: AWithrow@maxxam.ca Phone# (902)420-0203 Ext:233

This report has been generated and distributed using a secure automated process.

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Englobe Corp.
Client Project #: P-0010903-0-00-205
Your P.O. #: A 06392

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Maxxam ID		DJN876			DJN877	DJN877			
Sampling Date		2016/10/31 14:20			2016/10/31 16:45	2016/10/31 16:45			
COC Number		583336-01-01			583336-01-01	583336-01-01			
	UNITS	SW1	RDL	QC Batch	SW2	SW2 Lab-Dup	RDL	QC Batch	MDL
Calculated Parameters									
Anion Sum	me/L	1.31	N/A	4732173	0.780		N/A	4732173	N/A
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	4732171	<1.0		1.0	4732171	0.20
Calculated TDS	mg/L	100	1.0	4732181	63		1.0	4732181	0.20
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	4732171	<1.0		1.0	4732171	0.20
Cation Sum	me/L	1.56	N/A	4732173	1.14		N/A	4732173	N/A
Hardness (CaCO3)	mg/L	15	1.0	4731970	21		1.0	4731970	1.0
Ion Balance (% Difference)	%	8.71	N/A	4732172	18.8		N/A	4732172	N/A
Langelier Index (@ 20C)	N/A	NC		4732179	NC			4732179	
Langelier Index (@ 4C)	N/A	NC		4732180	NC			4732180	
Nitrate (N)	mg/L	<0.050	0.050	4731895	<0.050		0.050	4731895	N/A
Saturation pH (@ 20C)	N/A	NC		4732179	NC			4732179	
Saturation pH (@ 4C)	N/A	NC		4732180	NC			4732180	
Inorganics					1	1			
Total Alkalinity (Total as CaCO3)	mg/L	<5.0	5.0	4738055	<5.0	<5.0	5.0	4738055	N/A
Dissolved Chloride (CI)	mg/L	23	1.0	4738056	18	19	1.0	4738056	N/A
Colour	TCU	1000	250	4738059	390	400	100	4738059	N/A
Nitrate + Nitrite (N)	mg/L	<0.050	0.050	4738061	<0.050	<0.050	0.050	4738061	N/A
Nitrite (N)	mg/L	<0.010	0.010	4738062	<0.010	<0.010	0.010	4738062	N/A
Nitrogen (Ammonia Nitrogen)	mg/L	<0.050	0.050	4736497	<0.050		0.050	4736496	N/A
Total Organic Carbon (C)	mg/L	55 (1)	5.0	4740037	34 (1)		5.0	4740037	N/A
Orthophosphate (P)	mg/L	0.033	0.010	4738060	0.018	0.017	0.010	4738060	N/A
рН	рН	4.67	N/A	4738014	5.07		N/A	4738016	N/A
Reactive Silica (SiO2)	mg/L	7.9	0.50	4738058	7.8	7.8	0.50	4738058	N/A
Dissolved Sulphate (SO4)	mg/L	32	2.0	4738057	13	13	2.0	4738057	N/A
Turbidity	NTU	5.2	0.10	4738100	7.7	7.8	0.10	4738092	0.10
Conductivity	uS/cm	170	1.0	4738015	120		1.0	4738017	N/A
Metals									
Total Aluminum (Al)	ug/L	1900	5.0	4738356	920		5.0	4738356	N/A
Total Antimony (Sb)	ug/L	<1.0	1.0	4738356	<1.0		1.0	4738356	N/A
Total Arsenic (As)	ug/L	1.8	1.0	4738356	1.1		1.0	4738356	N/A
Total Barium (Ba)	ug/L	8.6	1.0	4738356	8.4		1.0	4738356	N/A
Total Beryllium (Be)	ug/L	<1.0	1.0	4738356	<1.0		1.0	4738356	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

(1) Elevated reporting limit due to sample matrix.

Englobe Corp.
Client Project #: P-0010903-0-00-205
Your P.O. #: A 06392

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Maxxam ID		DJN876			DJN877	DJN877			
Sampling Date		2016/10/31			2016/10/31	2016/10/31			
		14:20			16:45	16:45			
COC Number		583336-01-01			583336-01-01	583336-01-01			
	UNITS	SW1	RDL	QC Batch	SW2	SW2 Lab-Dup	RDL	QC Batch	MDL
Total Bismuth (Bi)	ug/L	<2.0	2.0	4738356	<2.0		2.0	4738356	N/A
Total Boron (B)	ug/L	<50	50	4738356	<50		50	4738356	N/A
Total Cadmium (Cd)	ug/L	0.098	0.010	4738356	0.082		0.010	4738356	N/A
Total Calcium (Ca)	ug/L	3100	100	4738356	4100		100	4738356	N/A
Total Chromium (Cr)	ug/L	1.8	1.0	4738356	1.1		1.0	4738356	N/A
Total Cobalt (Co)	ug/L	1.2	0.40	4738356	0.81		0.40	4738356	N/A
Total Copper (Cu)	ug/L	4.1	2.0	4738356	<2.0		2.0	4738356	N/A
Total Iron (Fe)	ug/L	1300	50	4738356	670		50	4738356	N/A
Total Lead (Pb)	ug/L	8.4	0.50	4738356	3.3		0.50	4738356	N/A
Total Magnesium (Mg)	ug/L	1800	100	4738356	2900		100	4738356	N/A
Total Manganese (Mn)	ug/L	40	2.0	4738356	43		2.0	4738356	N/A
Total Molybdenum (Mo)	ug/L	<2.0	2.0	4738356	<2.0		2.0	4738356	N/A
Total Nickel (Ni)	ug/L	5.6	2.0	4738356	2.8		2.0	4738356	N/A
Total Phosphorus (P)	ug/L	<100	100	4738356	<100		100	4738356	N/A
Total Potassium (K)	ug/L	9200	100	4738356	3900		100	4738356	N/A
Total Selenium (Se)	ug/L	<1.0	1.0	4738356	<1.0		1.0	4738356	N/A
Total Silver (Ag)	ug/L	<0.10	0.10	4738356	<0.10		0.10	4738356	N/A
Total Sodium (Na)	ug/L	22000	100	4738356	14000		100	4738356	N/A
Total Strontium (Sr)	ug/L	23	2.0	4738356	29		2.0	4738356	N/A
Total Thallium (TI)	ug/L	<0.10	0.10	4738356	<0.10		0.10	4738356	N/A
Total Tin (Sn)	ug/L	<2.0	2.0	4738356	<2.0		2.0	4738356	N/A
Total Titanium (Ti)	ug/L	29	2.0	4738356	11		2.0	4738356	N/A
Total Uranium (U)	ug/L	<0.10	0.10	4738356	<0.10		0.10	4738356	N/A
Total Vanadium (V)	ug/L	3.2	2.0	4738356	<2.0		2.0	4738356	N/A
Total Zinc (Zn)	ug/L	12	5.0	4738356	11		5.0	4738356	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Englobe Corp.
Client Project #: P-0010903-0-00-205
Your P.O. #: A 06392

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Maxxam ID		DJN878			DJN879			DJN880			
Sampling Date		2016/11/01 08:40			2016/11/01 14:30			2016/11/01 08:45			
COC Number		583336-01-01			583336-01-01			583336-01-01			
	UNITS	SW3	RDL	QC Batch	SW4	RDL	QC Batch	SW5	RDL	QC Batch	MDL
Calculated Parameters											
Anion Sum	me/L	2.53	N/A	4732173	4.41	N/A	4732173	1.96	N/A	4732173	N/A
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	9.3	1.0	4732171	7.7	1.0	4732171	10	1.0	4732171	0.20
Calculated TDS	mg/L	180	1.0	4732181	280	1.0	4732181	140	1.0	4732181	0.20
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	4732171	<1.0	1.0	4732171	<1.0	1.0	4732171	0.20
Cation Sum	me/L	2.29	N/A	4732173	5.01	N/A	4732173	1.91	N/A	4732173	N/A
Hardness (CaCO3)	mg/L	59	1.0	4731970	76	1.0	4731970	49	1.0	4731970	1.0
Ion Balance (% Difference)	%	4.98	N/A	4732172	6.37	N/A	4732172	1.29	N/A	4732172	N/A
Langelier Index (@ 20C)	N/A	-3.19		4732179	-2.85		4732179	-3.05		4732179	
Langelier Index (@ 4C)	N/A	-3.44		4732180	-3.10		4732180	-3.30		4732180	
Nitrate (N)	mg/L	0.084	0.050	4731895	0.14	0.050	4731895	0.23	0.050	4731895	N/A
Saturation pH (@ 20C)	N/A	9.22		4732179	9.28		4732179	9.24		4732179	
Saturation pH (@ 4C)	N/A	9.47		4732180	9.53		4732180	9.49		4732180	
Inorganics											
Total Alkalinity (Total as CaCO3)	mg/L	9.3	5.0	4738055	7.7	5.0	4738055	10	5.0	4738055	N/A
Dissolved Chloride (CI)	mg/L	20	1.0	4738056	140	1.0	4738056	15	1.0	4738056	N/A
Colour	TCU	150	25	4738059	11	5.0	4738059	120	25	4738059	N/A
Nitrate + Nitrite (N)	mg/L	0.084	0.050	4738061	0.14	0.050	4738061	0.23	0.050	4738061	N/A
Nitrite (N)	mg/L	<0.010	0.010	4738062	<0.010	0.010	4738062	<0.010	0.010	4738062	N/A
Nitrogen (Ammonia Nitrogen)	mg/L	<0.050	0.050	4736497	0.10	0.050	4736492	<0.050	0.050	4736497	N/A
Total Organic Carbon (C)	mg/L	19 (1)	5.0	4740037	9.8 (1)	5.0	4740037	13 (1)	5.0	4740037	N/A
Orthophosphate (P)	mg/L	0.028	0.010	4738060	0.012	0.010	4738060	0.014	0.010	4738060	N/A
рН	рН	6.03	N/A	4738016	6.43	N/A	4738012	6.19	N/A	4738012	N/A
Reactive Silica (SiO2)	mg/L	14	0.50	4738058	8.2	0.50	4738058	9.5	0.50	4738058	N/A
Dissolved Sulphate (SO4)	mg/L	85	10	4738057	21	2.0	4738057	63	10	4738057	N/A
Turbidity	NTU	160	1.0	4738093	40	0.10	4738096	3.5	0.10	4738096	0.10
Conductivity	uS/cm	280	1.0	4738017	490	1.0	4738013	220	1.0	4738013	N/A
Metals	_										
Total Aluminum (AI)	ug/L	790	5.0	4738356	4600	5.0	4738356	230	5.0	4738356	N/A
Total Antimony (Sb)	ug/L	<1.0	1.0	4738356	<1.0	1.0	4738356	<1.0	1.0	4738356	N/A
Total Arsenic (As)	ug/L	2.2	1.0	4738356	13	1.0	4738356	1.0	1.0	4738356	N/A
Total Barium (Ba)	ug/L	25	1.0	4738356	48	1.0	4738356	18	1.0	4738356	N/A
Total Beryllium (Be)	ug/L	<1.0	1.0	4738356	<1.0	1.0	4738356	<1.0	1.0	4738356	N/A
Total Bismuth (Bi)	ug/L	<2.0	2.0	4738356	<2.0	2.0	4738356	<2.0	2.0	4738356	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

(1) Elevated reporting limit due to sample matrix.

Englobe Corp.
Client Project #: P-0010903-0-00-205
Your P.O. #: A 06392

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Maxxam ID		DJN878			DJN879			DJN880			
Sampling Date		2016/11/01 08:40			2016/11/01 14:30			2016/11/01 08:45			
COC Number		583336-01-01			583336-01-01			583336-01-01			
	UNITS	SW3	RDL	QC Batch	SW4	RDL	QC Batch	SW5	RDL	QC Batch	MDL
Total Boron (B)	ug/L	90	50	4738356	210	50	4738356	71	50	4738356	N/A
Total Cadmium (Cd)	ug/L	0.061	0.010	4738356	0.22	0.010	4738356	0.056	0.010	4738356	N/A
Total Calcium (Ca)	ug/L	17000	100	4738356	18000	100	4738356	13000	100	4738356	N/A
Total Chromium (Cr)	ug/L	1.8	1.0	4738356	7.9	1.0	4738356	<1.0	1.0	4738356	N/A
Total Cobalt (Co)	ug/L	1.3	0.40	4738356	17	0.40	4738356	1.4	0.40	4738356	N/A
Total Copper (Cu)	ug/L	3.5	2.0	4738356	7.1	2.0	4738356	3.0	2.0	4738356	N/A
Total Iron (Fe)	ug/L	2600	50	4738356	19000	50	4738356	860	50	4738356	N/A
Total Lead (Pb)	ug/L	2.2	0.50	4738356	18	0.50	4738356	<0.50	0.50	4738356	N/A
Total Magnesium (Mg)	ug/L	5400	100	4738356	7600	100	4738356	4100	100	4738356	N/A
Total Manganese (Mn)	ug/L	340	2.0	4738356	1200	2.0	4738356	420	2.0	4738356	N/A
Total Molybdenum (Mo)	ug/L	<2.0	2.0	4738356	<2.0	2.0	4738356	<2.0	2.0	4738356	N/A
Total Nickel (Ni)	ug/L	2.6	2.0	4738356	7.4	2.0	4738356	<2.0	2.0	4738356	N/A
Total Phosphorus (P)	ug/L	140	100	4738356	430	100	4738356	<100	100	4738356	N/A
Total Potassium (K)	ug/L	13000	100	4738356	2500	100	4738356	11000	100	4738356	N/A
Total Selenium (Se)	ug/L	<1.0	1.0	4738356	<1.0	1.0	4738356	<1.0	1.0	4738356	N/A
Total Silver (Ag)	ug/L	<0.10	0.10	4738356	<0.10	0.10	4738356	<0.10	0.10	4738356	N/A
Total Sodium (Na)	ug/L	18000	100	4738356	63000	100	4738356	14000	100	4738356	N/A
Total Strontium (Sr)	ug/L	87	2.0	4738356	130	2.0	4738356	68	2.0	4738356	N/A
Total Thallium (TI)	ug/L	<0.10	0.10	4738356	<0.10	0.10	4738356	<0.10	0.10	4738356	N/A
Total Tin (Sn)	ug/L	<2.0	2.0	4738356	<2.0	2.0	4738356	<2.0	2.0	4738356	N/A
Total Titanium (Ti)	ug/L	17	2.0	4738356	95	2.0	4738356	3.2	2.0	4738356	N/A
Total Uranium (U)	ug/L	<0.10	0.10	4738356	0.32	0.10	4738356	<0.10	0.10	4738356	N/A
Total Vanadium (V)	ug/L	<2.0	2.0	4738356	18	2.0	4738356	<2.0	2.0	4738356	N/A
Total Zinc (Zn)	ug/L	43	5.0	4738356	25	5.0	4738356	30	5.0	4738356	N/A

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Englobe Corp.
Client Project #: P-0010903-0-00-205
Your P.O. #: A 06392

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Maxxam ID		DJN881	DJN881			DJN882			
Sampling Date		2016/10/31 15:00	2016/10/31 15:00			2016/10/31 16:50			
COC Number		583336-01-01	583336-01-01			583336-01-01			
	UNITS	SW6	SW6 Lab-Dup	RDL	QC Batch	SW7	RDL	QC Batch	MDL
Calculated Parameters									
Anion Sum	me/L	1.79		N/A	4732173	0.760	N/A	4732173	N/A
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	10		1.0	4732171	<1.0	1.0	4732171	0.20
Calculated TDS	mg/L	120		1.0	4732181	64	1.0	4732181	0.20
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0		1.0	4732171	<1.0	1.0	4732171	0.20
Cation Sum	me/L	1.78		N/A	4732173	1.16	N/A	4732173	N/A
Hardness (CaCO3)	mg/L	36		1.0	4731970	23	1.0	4732313	1.0
Ion Balance (% Difference)	%	0.280		N/A	4732172	20.8	N/A	4732172	N/A
Langelier Index (@ 20C)	N/A	-2.61			4732179	NC		4732179	
Langelier Index (@ 4C)	N/A	-2.86			4732180	NC		4732180	
Nitrate (N)	mg/L	0.062		0.050	4732314	0.062	0.050	4732314	N/A
Saturation pH (@ 20C)	N/A	9.36			4732179	NC		4732179	
Saturation pH (@ 4C)	N/A	9.62			4732180	NC		4732180	
Inorganics									
Total Alkalinity (Total as CaCO3)	mg/L	10		5.0	4738067	<5.0	5.0	4738067	N/A
Dissolved Chloride (CI)	mg/L	20		1.0	4738070	18	1.0	4738070	N/A
Colour	TCU	38		5.0	4738074	400	130	4738074	N/A
Nitrate + Nitrite (N)	mg/L	0.062		0.050	4738078	0.062	0.050	4738078	N/A
Nitrite (N)	mg/L	<0.010		0.010	4738077	<0.010	0.010	4738077	N/A
Nitrogen (Ammonia Nitrogen)	mg/L	<0.050		0.050	4736492	<0.050	0.050	4736492	N/A
Total Organic Carbon (C)	mg/L	8.9	9.1	0.50	4740037	31 (1)	5.0	4740037	N/A
Orthophosphate (P)	mg/L	0.013		0.010	4738076	0.017	0.010	4738076	N/A
рН	рН	6.75		N/A	4738012	5.29	N/A	4738012	N/A
Reactive Silica (SiO2)	mg/L	7.5		0.50	4738072	8.3	0.50	4738072	N/A
Dissolved Sulphate (SO4)	mg/L	49		10	4738071	13	2.0	4738071	N/A
Turbidity	NTU	1.9		0.10	4738096	1.6	0.10	4738096	0.10
Conductivity	uS/cm	210		1.0	4738013	120	1.0	4738013	N/A
Metals	•	•	•	•	•	•	-	•	•
Total Aluminum (Al)	ug/L	130	140	5.0	4739997	800	5.0	4739997	N/A
Total Antimony (Sb)	ug/L	<1.0	<1.0	1.0	4739997	<1.0	1.0	4739997	N/A
Total Arsenic (As)	ug/L	<1.0	<1.0	1.0	4739997	1.2	1.0	4739997	N/A
Total Barium (Ba)	ug/L	6.8	7.1	1.0	4739997	7.4	1.0	4739997	N/A
Total Beryllium (Be)	ug/L	<1.0	<1.0	1.0	4739997	<1.0	1.0	4739997	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

(1) Elevated reporting limit due to sample matrix.

Englobe Corp.
Client Project #: P-0010903-0-00-205
Your P.O. #: A 06392

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Maxxam ID		DJN881	DJN881			DJN882			
		2016/10/31	2016/10/31			2016/10/31			
Sampling Date		15:00	15:00			16:50			
COC Number		583336-01-01	583336-01-01			583336-01-01			
	UNITS	SW6	SW6 Lab-Dup	RDL	QC Batch	SW7	RDL	QC Batch	MDL
Total Bismuth (Bi)	ug/L	<2.0	<2.0	2.0	4739997	<2.0	2.0	4739997	N/A
Total Boron (B)	ug/L	<50	51	50	4739997	<50	50	4739997	N/A
Total Cadmium (Cd)	ug/L	<0.010	<0.010	0.010	4739997	0.071	0.010	4739997	N/A
Total Calcium (Ca)	ug/L	9800	10000	100	4739997	4400	100	4739997	N/A
Total Chromium (Cr)	ug/L	<1.0	<1.0	1.0	4739997	1.1	1.0	4739997	N/A
Total Cobalt (Co)	ug/L	<0.40	<0.40	0.40	4739997	0.58	0.40	4739997	N/A
Total Copper (Cu)	ug/L	<2.0	<2.0	2.0	4739997	<2.0	2.0	4739997	N/A
Total Iron (Fe)	ug/L	220	230	50	4739997	690	50	4739997	N/A
Total Lead (Pb)	ug/L	<0.50	<0.50	0.50	4739997	2.6	0.50	4739997	N/A
Total Magnesium (Mg)	ug/L	2700	2800	100	4739997	2800	100	4739997	N/A
Total Manganese (Mn)	ug/L	4.8	4.6	2.0	4739997	44	2.0	4739997	N/A
Total Molybdenum (Mo)	ug/L	<2.0	<2.0	2.0	4739997	<2.0	2.0	4739997	N/A
Total Nickel (Ni)	ug/L	<2.0	<2.0	2.0	4739997	2.5	2.0	4739997	N/A
Total Phosphorus (P)	ug/L	<100	<100	100	4739997	<100	100	4739997	N/A
Total Potassium (K)	ug/L	7900	8000	100	4739997	3400	100	4739997	N/A
Total Selenium (Se)	ug/L	<1.0	<1.0	1.0	4739997	<1.0	1.0	4739997	N/A
Total Silver (Ag)	ug/L	<0.10	<0.10	0.10	4739997	<0.10	0.10	4739997	N/A
Total Sodium (Na)	ug/L	20000	20000	100	4739997	14000	100	4739997	N/A
Total Strontium (Sr)	ug/L	53	54	2.0	4739997	28	2.0	4739997	N/A
Total Thallium (TI)	ug/L	<0.10	<0.10	0.10	4739997	<0.10	0.10	4739997	N/A
Total Tin (Sn)	ug/L	<2.0	<2.0	2.0	4739997	<2.0	2.0	4739997	N/A
Total Titanium (Ti)	ug/L	3.4	3.8	2.0	4739997	12	2.0	4739997	N/A
Total Uranium (U)	ug/L	<0.10	<0.10	0.10	4739997	<0.10	0.10	4739997	N/A
Total Vanadium (V)	ug/L	<2.0	<2.0	2.0	4739997	2.1	2.0	4739997	N/A
Total Zinc (Zn)	ug/L	<5.0	<5.0	5.0	4739997	10	5.0	4739997	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Englobe Corp.
Client Project #: P-0010903-0-00-205
Your P.O. #: A 06392

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Maxxam ID		DJN883			DJN910	DJN910			
Sampling Date		2016/10/31 15:50			2016/11/01 09:25	2016/11/01 09:25			
COC Number		583336-01-01			583336-02-01	583336-02-01			
	UNITS	SW9	RDL	QC Batch	SW11	SW11 Lab-Dup	RDL	QC Batch	MDL
Calculated Parameters									
Anion Sum	me/L	3.00	N/A	4732173	1.35		N/A	4732173	N/A
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	55	1.0	4732171	<1.0		1.0	4732171	0.20
Calculated TDS	mg/L	200	1.0	4732181	100		1.0	4732181	0.20
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	4732171	<1.0		1.0	4732171	0.20
Cation Sum	me/L	3.17	N/A	4732173	1.51		N/A	4732173	N/A
Hardness (CaCO3)	mg/L	41	1.0	4732313	12		1.0	4732313	1.0
Ion Balance (% Difference)	%	2.76	N/A	4732172	5.59		N/A	4732172	N/A
Langelier Index (@ 20C)	N/A	-2.30		4732179	NC			4732179	
Langelier Index (@ 4C)	N/A	-2.55		4732180	NC			4732180	
Nitrate (N)	mg/L	<0.050	0.050	4732314	0.37		0.050	4732314	N/A
Saturation pH (@ 20C)	N/A	8.65		4732179	NC			4732179	
Saturation pH (@ 4C)	N/A	8.90		4732180	NC			4732180	
Inorganics		1			•	1	ı	<u>.</u>	
Total Alkalinity (Total as CaCO3)	mg/L	55	5.0	4738067	<5.0		5.0	4738067	N/A
Dissolved Chloride (Cl)	mg/L	48	1.0	4738070	22		1.0	4738070	N/A
Colour	TCU	540	150	4738074	1100		250	4738074	N/A
Nitrate + Nitrite (N)	mg/L	<0.050	0.050	4738078	0.37		0.050	4738078	N/A
Nitrite (N)	mg/L	<0.010	0.010	4738077	<0.010		0.010	4738077	N/A
Nitrogen (Ammonia Nitrogen)	mg/L	0.055	0.050	4736492	0.076		0.050	4736493	N/A
Total Organic Carbon (C)	mg/L	28 (1)	5.0	4740037	58 (1)		5.0	4740037	N/A
Orthophosphate (P)	mg/L	0.074	0.010	4738076	0.035		0.010	4738076	N/A
рН	рН	6.36	N/A	4738010	4.40	4.36	N/A	4738010	N/A
Reactive Silica (SiO2)	mg/L	8.1	0.50	4738072	7.7		0.50	4738072	N/A
Dissolved Sulphate (SO4)	mg/L	27	2.0	4738071	33		2.0	4738071	N/A
Turbidity	NTU	19	0.10	4738096	3.7		0.10	4738096	0.10
Conductivity	uS/cm	310	1.0	4738011	170	170	1.0	4738011	N/A
Metals					•		!		
Total Aluminum (AI)	ug/L	1300	5.0	4738394	1700		5.0	4738394	N/A
Total Antimony (Sb)	ug/L	<1.0	1.0	4738394	<1.0		1.0	4738394	N/A
Total Arsenic (As)	ug/L	11	1.0	4738394	1.8		1.0	4738394	N/A
Total Barium (Ba)	ug/L	17	1.0	4738394	6.5		1.0	4738394	N/A
Total Beryllium (Be)	ug/L	<1.0	1.0	4738394	<1.0		1.0	4738394	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

(1) Elevated reporting limit due to sample matrix.

Englobe Corp.
Client Project #: P-0010903-0-00-205
Your P.O. #: A 06392

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Maxxam ID		DJN883			DJN910	DJN910			
Sampling Date		2016/10/31 15:50			2016/11/01 09:25	2016/11/01 09:25			
COC Number		583336-01-01			583336-02-01	583336-02-01			
	UNITS	SW9	RDL	QC Batch	SW11	SW11 Lab-Dup	RDL	QC Batch	MDL
Total Bismuth (Bi)	ug/L	<2.0	2.0	4738394	<2.0		2.0	4738394	N/A
Total Boron (B)	ug/L	60	50	4738394	<50		50	4738394	N/A
Total Cadmium (Cd)	ug/L	0.088	0.010	4738394	0.097		0.010	4738394	N/A
Total Calcium (Ca)	ug/L	9900	100	4738394	2300		100	4738394	N/A
Total Chromium (Cr)	ug/L	2.9	1.0	4738394	2.8		1.0	4738394	N/A
Total Cobalt (Co)	ug/L	3.8	0.40	4738394	0.97		0.40	4738394	N/A
Total Copper (Cu)	ug/L	9.3	2.0	4738394	3.2		2.0	4738394	N/A
Total Iron (Fe)	ug/L	6400	50	4738394	930		50	4738394	N/A
Total Lead (Pb)	ug/L	3.4	0.50	4738394	7.6		0.50	4738394	N/A
Total Magnesium (Mg)	ug/L	4000	100	4738394	1500		100	4738394	N/A
Total Manganese (Mn)	ug/L	400	2.0	4738394	18		2.0	4738394	N/A
Total Molybdenum (Mo)	ug/L	2.3	2.0	4738394	<2.0		2.0	4738394	N/A
Total Nickel (Ni)	ug/L	4.3	2.0	4738394	4.7		2.0	4738394	N/A
Total Phosphorus (P)	ug/L	190	100	4738394	<100		100	4738394	N/A
Total Potassium (K)	ug/L	28000	100	4738394	9900		100	4738394	N/A
Total Selenium (Se)	ug/L	<1.0	1.0	4738394	<1.0		1.0	4738394	N/A
Total Silver (Ag)	ug/L	<0.10	0.10	4738394	<0.10		0.10	4738394	N/A
Total Sodium (Na)	ug/L	32000	100	4738394	22000		100	4738394	N/A
Total Strontium (Sr)	ug/L	56	2.0	4738394	17		2.0	4738394	N/A
Total Thallium (TI)	ug/L	<0.10	0.10	4738394	<0.10		0.10	4738394	N/A
Total Tin (Sn)	ug/L	<2.0	2.0	4738394	<2.0		2.0	4738394	N/A
Total Titanium (Ti)	ug/L	42	2.0	4738394	25		2.0	4738394	N/A
Total Uranium (U)	ug/L	0.17	0.10	4738394	<0.10		0.10	4738394	N/A
Total Vanadium (V)	ug/L	7.0	2.0	4738394	2.9		2.0	4738394	N/A
Total Zinc (Zn)	ug/L	15	5.0	4738394	11		5.0	4738394	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Englobe Corp.
Client Project #: P-0010903-0-00-205
Your P.O. #: A 06392

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Maxxam ID		DJN911		DJN912			DJN913			
Sampling Date		2016/10/31 16:15		2016/10/31 14:45			2016/10/31 15:15			
COC Number		583336-02-01		583336-02-01			583336-02-01			
	UNITS	SW13	RDL	SW14	RDL	QC Batch	SW15	RDL	QC Batch	MDL
Calculated Parameters										
Anion Sum	me/L	0.470	N/A	2.87	N/A	4732173	2.00	N/A	4732173	N/A
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	5.5	1.0	4732171	6.7	1.0	4732171	
Calculated TDS	mg/L	43	1.0	170	1.0	4732181	120	1.0	4732181	0.20
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	<1.0	1.0	4732171	<1.0	1.0	4732171	0.20
Cation Sum	me/L	0.790	N/A	2.55	N/A	4732173	1.86	N/A	4732173	N/A
Hardness (CaCO3)	mg/L	12	1.0	41	1.0	4732313	44	1.0	4732313	1.0
Ion Balance (% Difference)	%	25.4	N/A	5.90	N/A	4732172	3.63	N/A	4732172	
Langelier Index (@ 20C)	N/A	NC		-3.50		4732179	-3.44		4732179	
Langelier Index (@ 4C)	N/A	NC		-3.75		4732180	-3.69		4732180	
Nitrate (N)	mg/L	<0.050	0.050	<0.050	0.050	4732314	<0.050	0.050	4732314	N/A
Saturation pH (@ 20C)	N/A	NC		9.72		4732179	9.54		4732179	
Saturation pH (@ 4C)	N/A	NC		9.97		4732180	9.79		4732180	
Inorganics					•	•		•		
Total Alkalinity (Total as CaCO3)	mg/L	<5.0	5.0	5.5	5.0	4738067	6.7	5.0	4738067	N/A
Dissolved Chloride (CI)	mg/L	15	1.0	81	1.0	4738070	56	1.0	4738070	N/A
Colour	TCU	320	130	66	25	4738074	16	5.0	4738074	N/A
Nitrate + Nitrite (N)	mg/L	<0.050	0.050	<0.050	0.050	4738078	<0.050	0.050	4738078	N/A
Nitrite (N)	mg/L	<0.010	0.010	<0.010	0.010	4738077	<0.010	0.010	4738077	N/A
Nitrogen (Ammonia Nitrogen)	mg/L	0.091	0.050	<0.050	0.050	4736494	<0.050	0.050	4736496	N/A
Total Organic Carbon (C)	mg/L	31 (1)	5.0	6.9	0.50	4740037	3.2	0.50	4740037	N/A
Orthophosphate (P)	mg/L	0.014	0.010	0.013	0.010	4738076	0.012	0.010	4738076	N/A
рН	рН	4.93	N/A	6.22	N/A	4738010	6.10	N/A	4738010	N/A
Reactive Silica (SiO2)	mg/L	9.0	0.50	8.6	0.50	4738072	7.6	0.50	4738072	N/A
Dissolved Sulphate (SO4)	mg/L	2.1	2.0	22	2.0	4738071	14	2.0	4738071	N/A
Turbidity	NTU	1.2	0.10	0.90	0.10	4738096	1.1	0.10	4738093	0.10
Conductivity	uS/cm	100	1.0	310	1.0	4738011	210	1.0	4738011	N/A
Metals										
Total Aluminum (AI)	ug/L	820	5.0	240	5.0	4738394	120	5.0	4738394	N/A
Total Antimony (Sb)	ug/L	<1.0	1.0	<1.0	1.0	4738394	<1.0	1.0	4738394	N/A
Total Arsenic (As)	ug/L	<1.0	1.0	<1.0	1.0	4738394	<1.0	1.0	4738394	N/A
Total Barium (Ba)	ug/L	5.0	1.0	15	1.0	4738394	19	1.0	4738394	N/A
Total Beryllium (Be)	ug/L	<1.0	1.0	<1.0	1.0	4738394	<1.0	1.0	4738394	N/A
Total Bismuth (Bi)	ug/L	<2.0	2.0	<2.0	2.0	4738394	<2.0	2.0	4738394	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

(1) Elevated reporting limit due to sample matrix.

Englobe Corp.
Client Project #: P-0010903-0-00-205
Your P.O. #: A 06392

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Maxxam ID		DJN911		DJN912			DJN913			
Sampling Date		2016/10/31 16:15		2016/10/31 14:45			2016/10/31 15:15			
COC Number		583336-02-01		583336-02-01			583336-02-01			
	UNITS	SW13	RDL	SW14	RDL	QC Batch	SW15	RDL	QC Batch	MDL
Total Boron (B)	ug/L	<50	50	100	50	4738394	<50	50	4738394	N/A
Total Cadmium (Cd)	ug/L	0.059	0.010	0.071	0.010	4738394	0.082	0.010	4738394	N/A
Total Calcium (Ca)	ug/L	1800	100	8600	100	4738394	9700	100	4738394	N/A
Total Chromium (Cr)	ug/L	1.8	1.0	<1.0	1.0	4738394	<1.0	1.0	4738394	N/A
Total Cobalt (Co)	ug/L	1.2	0.40	0.45	0.40	4738394	4.3	0.40	4738394	N/A
Total Copper (Cu)	ug/L	<2.0	2.0	<2.0	2.0	4738394	<2.0	2.0	4738394	N/A
Total Iron (Fe)	ug/L	1100	50	200	50	4738394	470	50	4738394	N/A
Total Lead (Pb)	ug/L	1.8	0.50	<0.50	0.50	4738394	<0.50	0.50	4738394	N/A
Total Magnesium (Mg)	ug/L	1900	100	5000	100	4738394	4700	100	4738394	N/A
Total Manganese (Mn)	ug/L	20	2.0	38	2.0	4738394	500	2.0	4738394	N/A
Total Molybdenum (Mo)	ug/L	<2.0	2.0	<2.0	2.0	4738394	<2.0	2.0	4738394	N/A
Total Nickel (Ni)	ug/L	2.7	2.0	<2.0	2.0	4738394	2.3	2.0	4738394	N/A
Total Phosphorus (P)	ug/L	<100	100	<100	100	4738394	<100	100	4738394	N/A
Total Potassium (K)	ug/L	2200	100	2500	100	4738394	1400	100	4738394	N/A
Total Selenium (Se)	ug/L	<1.0	1.0	<1.0	1.0	4738394	<1.0	1.0	4738394	N/A
Total Silver (Ag)	ug/L	<0.10	0.10	<0.10	0.10	4738394	<0.10	0.10	4738394	N/A
Total Sodium (Na)	ug/L	9900	100	40000	100	4738394	22000	100	4738394	N/A
Total Strontium (Sr)	ug/L	16	2.0	65	2.0	4738394	70	2.0	4738394	N/A
Total Thallium (TI)	ug/L	<0.10	0.10	<0.10	0.10	4738394	<0.10	0.10	4738394	N/A
Total Tin (Sn)	ug/L	<2.0	2.0	<2.0	2.0	4738394	<2.0	2.0	4738394	N/A
Total Titanium (Ti)	ug/L	6.4	2.0	3.4	2.0	4738394	<2.0	2.0	4738394	N/A
Total Uranium (U)	ug/L	<0.10	0.10	<0.10	0.10	4738394	<0.10	0.10	4738394	N/A
Total Vanadium (V)	ug/L	<2.0	2.0	<2.0	2.0	4738394	<2.0	2.0	4738394	N/A
Total Zinc (Zn)	ug/L	6.6	5.0	11	5.0	4738394	26	5.0	4738394	N/A

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Englobe Corp.
Client Project #: P-0010903-0-00-205
Your P.O. #: A 06392

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Maxxam ID		DJN914			DJN915			DJN916			
Sampling Date		2016/11/02 09:45			2016/10/31			2016/11/01			
COC Number		583336-02-01			583336-02-01			583336-02-01			
	UNITS	SW16	RDL	QC Batch	SW-DUP1	RDL	QC Batch	SW-DUP2	RDL	QC Batch	MDL
Calculated Parameters											
Anion Sum	me/L	0.670	N/A	4732173	3.05	N/A	4732173	1.46	N/A	4732173	N/A
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	5.3	1.0	4732171	56	1.0	4732171	5.3	1.0	4732171	0.20
Calculated TDS	mg/L	46	1.0	4732181	200	1.0	4732181	93	1.0	4732181	0.20
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	4732171	<1.0	1.0	4732171	<1.0	1.0	4732171	0.20
Cation Sum	me/L	0.800	N/A	4732173	3.22	N/A	4732173	1.20	N/A	4732173	N/A
Hardness (CaCO3)	mg/L	17	1.0	4732313	43	1.0	4732313	26	1.0	4732313	1.0
Ion Balance (% Difference)	%	8.84	N/A	4732172	2.71	N/A	4732172	9.77	N/A	4732172	N/A
Langelier Index (@ 20C)	N/A	-4.34		4732179	-2.22		4732179	-4.16		4732179	
Langelier Index (@ 4C)	N/A	-4.60		4732180	-2.47		4732180	-4.41		4732180	
Nitrate (N)	mg/L	<0.050	0.050	4732314	<0.050	0.050	4732314	<0.050	0.050	4732314	N/A
Saturation pH (@ 20C)	N/A	10.1		4732179	8.62		4732179	9.94		4732179	
Saturation pH (@ 4C)	N/A	10.3		4732180	8.87		4732180	10.2		4732180	
Inorganics	•		•			•	•		•		
Total Alkalinity (Total as CaCO3)	mg/L	5.3	5.0	4738067	56	5.0	4738067	5.3	5.0	4738067	N/A
Dissolved Chloride (CI)	mg/L	16	1.0	4738070	49	1.0	4738070	34	1.0	4738070	N/A
Colour	TCU	120	25	4738074	520	150	4738074	85	25	4738074	N/A
Nitrate + Nitrite (N)	mg/L	<0.050	0.050	4738078	<0.050	0.050	4738078	<0.050	0.050	4738078	N/A
Nitrite (N)	mg/L	<0.010	0.010	4738077	<0.010	0.010	4738077	<0.010	0.010	4738077	N/A
Nitrogen (Ammonia Nitrogen)	mg/L	<0.050	0.050	4736496	0.10	0.050	4736494	0.061	0.050	4736497	N/A
Total Organic Carbon (C)	mg/L	13 (1)	5.0	4740037	29 (1)	5.0	4740037	11	0.50	4740037	N/A
Orthophosphate (P)	mg/L	0.011	0.010	4738076	0.073	0.010	4738076	0.015	0.010	4738076	N/A
рН	рН	5.72	N/A	4738016	6.40	N/A	4738012	5.78	N/A	4738014	N/A
Reactive Silica (SiO2)	mg/L	4.9	0.50	4738072	7.9	0.50	4738072	12	0.50	4738072	N/A
Dissolved Sulphate (SO4)	mg/L	5.4	2.0	4738071	27	2.0	4738071	20	2.0	4738071	N/A
Turbidity	NTU	1.0	0.10	4738093	27	0.10	4738096	2.0	0.10	4738100	0.10
Conductivity	uS/cm	90	1.0	4738017	310	1.0	4738013	160	1.0	4738015	N/A
Metals											
Total Aluminum (AI)	ug/L	220	5.0	4738394	1400	5.0	4738394	310	5.0	4738394	N/A
Total Antimony (Sb)	ug/L	<1.0	1.0	4738394	<1.0	1.0	4738394	<1.0	1.0	4738394	N/A
Total Arsenic (As)	ug/L	<1.0	1.0	4738394	11	1.0	4738394	1.2	1.0	4738394	N/A
Total Barium (Ba)	ug/L	4.6	1.0	4738394	19	1.0	4738394	20	1.0	4738394	N/A
Total Beryllium (Be)	ug/L	<1.0	1.0	4738394	<1.0	1.0	4738394	<1.0	1.0	4738394	N/A
Total Bismuth (Bi)	ug/L	<2.0	2.0	4738394	<2.0	2.0	4738394	<2.0	2.0	4738394	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

(1) Elevated reporting limit due to sample matrix.

Englobe Corp.
Client Project #: P-0010903-0-00-205
Your P.O. #: A 06392

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Maxxam ID		DJN914			DJN915			DJN916			
Sampling Date		2016/11/02 09:45			2016/10/31			2016/11/01			
COC Number		583336-02-01			583336-02-01			583336-02-01			
	UNITS	SW16	RDL	QC Batch	SW-DUP1	RDL	QC Batch	SW-DUP2	RDL	QC Batch	MDL
Total Boron (B)	ug/L	<50	50	4738394	59	50	4738394	<50	50	4738394	N/A
Total Cadmium (Cd)	ug/L	0.020	0.010	4738394	0.096	0.010	4738394	0.045	0.010	4738394	N/A
Total Calcium (Ca)	ug/L	3300	100	4738394	10000	100	4738394	5400	100	4738394	N/A
Total Chromium (Cr)	ug/L	1.1	1.0	4738394	3.5	1.0	4738394	<1.0	1.0	4738394	N/A
Total Cobalt (Co)	ug/L	<0.40	0.40	4738394	4.1	0.40	4738394	1.1	0.40	4738394	N/A
Total Copper (Cu)	ug/L	<2.0	2.0	4738394	9.8	2.0	4738394	<2.0	2.0	4738394	N/A
Total Iron (Fe)	ug/L	180	50	4738394	7700	50	4738394	630	50	4738394	N/A
Total Lead (Pb)	ug/L	0.51	0.50	4738394	3.8	0.50	4738394	<0.50	0.50	4738394	N/A
Total Magnesium (Mg)	ug/L	2100	100	4738394	4100	100	4738394	4800	100	4738394	N/A
Total Manganese (Mn)	ug/L	22	2.0	4738394	430	2.0	4738394	41	2.0	4738394	N/A
Total Molybdenum (Mo)	ug/L	<2.0	2.0	4738394	2.3	2.0	4738394	<2.0	2.0	4738394	N/A
Total Nickel (Ni)	ug/L	<2.0	2.0	4738394	4.5	2.0	4738394	<2.0	2.0	4738394	N/A
Total Phosphorus (P)	ug/L	<100	100	4738394	290	100	4738394	<100	100	4738394	N/A
Total Potassium (K)	ug/L	960	100	4738394	27000	100	4738394	1600	100	4738394	N/A
Total Selenium (Se)	ug/L	<1.0	1.0	4738394	<1.0	1.0	4738394	<1.0	1.0	4738394	N/A
Total Silver (Ag)	ug/L	<0.10	0.10	4738394	<0.10	0.10	4738394	<0.10	0.10	4738394	N/A
Total Sodium (Na)	ug/L	9900	100	4738394	32000	100	4738394	16000	100	4738394	N/A
Total Strontium (Sr)	ug/L	24	2.0	4738394	59	2.0	4738394	34	2.0	4738394	N/A
Total Thallium (TI)	ug/L	<0.10	0.10	4738394	<0.10	0.10	4738394	<0.10	0.10	4738394	N/A
Total Tin (Sn)	ug/L	<2.0	2.0	4738394	<2.0	2.0	4738394	<2.0	2.0	4738394	N/A
Total Titanium (Ti)	ug/L	<2.0	2.0	4738394	51	2.0	4738394	4.1	2.0	4738394	N/A
Total Uranium (U)	ug/L	<0.10	0.10	4738394	0.19	0.10	4738394	<0.10	0.10	4738394	N/A
Total Vanadium (V)	ug/L	<2.0	2.0	4738394	7.5	2.0	4738394	<2.0	2.0	4738394	N/A
Total Zinc (Zn)	ug/L	<5.0	5.0	4738394	16	5.0	4738394	9.9	5.0	4738394	N/A

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Englobe Corp.
Client Project #: P-0010903-0-00-205
Your P.O. #: A 06392

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Maxxam ID		DJN917			DJN918			DJN932			
Sampling Date		2016/11/01 10:15			2016/11/01 09:50			2016/11/01 10:45			
COC Number		583336-02-01			583336-02-01			583336-03-01			
	UNITS	P1A	RDL	QC Batch	P1B	RDL	QC Batch	P2B	RDL	QC Batch	MDL
Calculated Parameters											
Anion Sum	me/L	2.13	N/A	4732173	1.28	N/A	4732173	1.63	N/A	4732173	N/A
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	11	1.0	4732171	6.9	1.0	4732171	8.8	1.0	4732171	0.20
Calculated TDS	mg/L	160	1.0	4732181	150	1.0	4732181	140	1.0	4732181	0.20
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	4732171	<1.0	1.0	4732171	<1.0	1.0	4732171	0.20
Cation Sum	me/L	2.40	N/A	4732173	3.44	N/A	4732173	2.76	N/A	4732173	N/A
Hardness (CaCO3)	mg/L	57	1.0	4732313	100	1.0	4732313	34	1.0	4732313	1.0
Ion Balance (% Difference)	%	5.96	N/A	4732172	45.8	N/A	4732172	25.7	N/A	4732172	N/A
Langelier Index (@ 20C)	N/A	-3.62		4732179	-4.07		4732179	-3.80		4732179	
Langelier Index (@ 4C)	N/A	-3.87		4732180	-4.32		4732180	-4.05		4732180	
Nitrate (N)	mg/L	<0.050	0.050	4732314	0.12	0.050	4732314	<0.050	0.050	4732314	N/A
Saturation pH (@ 20C)	N/A	9.18		4732179	9.14		4732179	9.59		4732179	
Saturation pH (@ 4C)	N/A	9.43		4732180	9.39		4732180	9.84		4732180	
Inorganics			•	•		•	•		•	•	•
Total Alkalinity (Total as CaCO3)	mg/L	11	5.0	4738067	6.9	5.0	4738067	8.8	5.0	4738067	N/A
Dissolved Chloride (Cl)	mg/L	22	1.0	4738070	13	1.0	4738070	27	1.0	4738070	N/A
Colour	TCU	400	150	4738074	210	25	4738074	440	130	4738074	N/A
Nitrate + Nitrite (N)	mg/L	<0.050	0.050	4738078	0.21	0.050	4738078	<0.050	0.050	4738078	N/A
Nitrite (N)	mg/L	<0.010	0.010	4738077	0.10	0.010	4738077	<0.010	0.010	4738077	N/A
Nitrogen (Ammonia Nitrogen)	mg/L	0.37	0.050	4736496	4.1	0.25	4736496	0.14	0.050	4736493	N/A
Total Organic Carbon (C)	mg/L	33 (1)	5.0	4740037	40 (2)	2.5	4740037	42 (3)	25	4740037	N/A
Orthophosphate (P)	mg/L	0.034	0.010	4738076	0.038	0.010	4738076	0.052	0.010	4738076	N/A
рН	рН	5.56	N/A	4738010	5.07	N/A	4738012	5.79	N/A	4738014	N/A
Reactive Silica (SiO2)	mg/L	15	0.50	4738072	22	0.50	4738072	5.7	0.50	4738072	N/A
Dissolved Sulphate (SO4)	mg/L	61	10	4738071	36	4.0	4738071	33	2.0	4738071	N/A
Turbidity	NTU	17	0.10	4738096	>1000	1.0	4738096	510	1.0	4738100	0.10
Conductivity	uS/cm	240	1.0	4738011	150	1.0	4738013	200	1.0	4738015	N/A
Metals											
Total Aluminum (AI)	ug/L	680	5.0	4738394	40000	5.0	4738394	11000	5.0	4738394	N/A
Total Antimony (Sb)	ug/L	<1.0	1.0	4738394	<1.0	1.0	4738394	<1.0	1.0	4738394	N/A
Total Arsenic (As)	ug/L	4.0	1.0	4738394	8.4	1.0	4738394	7.6	1.0	4738394	N/A
Total Barium (Ba)	ug/L	26	1.0	4738394	220	1.0	4738394	59	1.0	4738394	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

- (1) Elevated reporting limit due to sample matrix.
- (2) Analysis performed on decanted sample due to sediment content.
- (3) Reporting limit was increased due to turbidity.

Englobe Corp.
Client Project #: P-0010903-0-00-205
Your P.O. #: A 06392

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Maxxam ID		DJN917			DJN918			DJN932			
Sampling Date		2016/11/01			2016/11/01			2016/11/01			
		10:15			09:50			10:45			
COC Number		583336-02-01		000.1	583336-02-01		000	583336-03-01	201	000.1	
	UNITS	P1A	RDL	QC Batch	P1B	RDL	QC Batch	P2B	RDL	QC Batch	MDL
Total Beryllium (Be)	ug/L	<1.0	1.0	4738394	2.3	1.0	4738394	<1.0	1.0	4738394	N/A
Total Bismuth (Bi)	ug/L	<2.0	2.0	4738394	<2.0	2.0	4738394	<2.0	2.0	4738394	N/A
Total Boron (B)	ug/L	130	50	4738394	<50	50	4738394	55	50	4738394	N/A
Total Cadmium (Cd)	ug/L	0.088	0.010	4738394	0.98	0.010	4738394	0.58	0.010	4738394	N/A
Total Calcium (Ca)	ug/L	14000	100	4738394	24000	100	4738394	6800	100	4738394	N/A
Total Chromium (Cr)	ug/L	2.1	1.0	4738394	17	1.0	4738394	16	1.0	4738394	N/A
Total Cobalt (Co)	ug/L	2.6	0.40	4738394	12	0.40	4738394	6.1	0.40	4738394	N/A
Total Copper (Cu)	ug/L	6.2	2.0	4738394	51	2.0	4738394	36	2.0	4738394	N/A
Total Iron (Fe)	ug/L	3300	50	4738394	13000	50	4738394	18000	50	4738394	N/A
Total Lead (Pb)	ug/L	2.7	0.50	4738394	110	0.50	4738394	27	0.50	4738394	N/A
Total Magnesium (Mg)	ug/L	5300	100	4738394	9700	100	4738394	4200	100	4738394	N/A
Total Manganese (Mn)	ug/L	790	2.0	4738394	210	2.0	4738394	380	2.0	4738394	N/A
Total Molybdenum (Mo)	ug/L	<2.0	2.0	4738394	8.7	2.0	4738394	3.5	2.0	4738394	N/A
Total Nickel (Ni)	ug/L	3.6	2.0	4738394	35	2.0	4738394	17	2.0	4738394	N/A
Total Phosphorus (P)	ug/L	140	100	4738394	5300	100	4738394	1100	100	4738394	N/A
Total Potassium (K)	ug/L	14000	100	4738394	2200	100	4738394	20000	100	4738394	N/A
Total Selenium (Se)	ug/L	<1.0	1.0	4738394	5.1	1.0	4738394	1.0	1.0	4738394	N/A
Total Silver (Ag)	ug/L	0.12	0.10	4738394	0.55	0.10	4738394	0.16	0.10	4738394	N/A
Total Sodium (Na)	ug/L	17000	100	4738394	14000	100	4738394	21000	100	4738394	N/A
Total Strontium (Sr)	ug/L	74	2.0	4738394	250	2.0	4738394	47	2.0	4738394	N/A
Total Thallium (TI)	ug/L	<0.10	0.10	4738394	<0.10	0.10	4738394	<0.10	0.10	4738394	N/A
Total Tin (Sn)	ug/L	<2.0	2.0	4738394	9.3	2.0	4738394	<2.0	2.0	4738394	N/A
Total Titanium (Ti)	ug/L	17	2.0	4738394	360	2.0	4738394	310	2.0	4738394	N/A
Total Uranium (U)	ug/L	0.10	0.10	4738394	3.3	0.10	4738394	0.57	0.10	4738394	N/A
Total Vanadium (V)	ug/L	2.6	2.0	4738394	36	2.0	4738394	31	2.0	4738394	N/A
Total Zinc (Zn)	ug/L	61	5.0	4738394	47	5.0	4738394	70	5.0	4738394	N/A

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Englobe Corp.
Client Project #: P-0010903-0-00-205
Your P.O. #: A 06392

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Maxxam ID		DJN933			DJN934			
Sampling Date		2016/11/01 10:55			2016/11/01 13:35			
COC Number		583336-03-01			583336-03-01			
	UNITS	Р3	RDL	QC Batch	ВАСК2	RDL	QC Batch	MDL
Calculated Parameters								
Anion Sum	me/L	1.15	N/A	4732173	1.27	N/A	4732173	N/A
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	11	1.0	4732171	5.2	1.0	4732171	0.20
Calculated TDS	mg/L	82	1.0	4732181	87	1.0	4732181	0.20
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	4732171	<1.0	1.0	4732171	0.20
Cation Sum	me/L	1.45	N/A	4732173	1.23	N/A	4732173	N/A
Hardness (CaCO3)	mg/L	25	1.0	4732313	27	1.0	4732313	1.0
Ion Balance (% Difference)	%	11.5	N/A	4732172	1.60	N/A	4732172	N/A
Langelier Index (@ 20C)	N/A	-3.70		4732179	-3.74		4732179	
Langelier Index (@ 4C)	N/A	-3.95		4732180	-3.99		4732180	
Nitrate (N)	mg/L	<0.050	0.050	4732314	<0.050	0.050	4732314	N/A
Saturation pH (@ 20C)	N/A	9.55		4732179	9.94		4732179	
Saturation pH (@ 4C)	N/A	9.80		4732180	10.2		4732180	
Inorganics		I.			I.	ı		ı
Total Alkalinity (Total as CaCO3)	mg/L	11	5.0	4738067	5.2	5.0	4738067	N/A
Dissolved Chloride (CI)	mg/L	25	1.0	4738070	26	1.0	4738070	N/A
Colour	TCU	570	250	4738074	99	25	4738074	N/A
Nitrate + Nitrite (N)	mg/L	<0.050	0.050	4738078	<0.050	0.050	4738078	N/A
Nitrite (N)	mg/L	<0.010	0.010	4738077	<0.010	0.010	4738077	N/A
Nitrogen (Ammonia Nitrogen)	mg/L	0.078	0.050	4736494	<0.050	0.050	4736496	N/A
Total Organic Carbon (C)	mg/L	42 (1)	25	4740037	11	0.50	4740256	N/A
Orthophosphate (P)	mg/L	0.072	0.010	4738076	0.015	0.010	4738076	N/A
рН	рН	5.84	N/A	4738016	6.20	N/A	4738010	N/A
Reactive Silica (SiO2)	mg/L	5.6	0.50	4738072	12	0.50	4738072	N/A
Dissolved Sulphate (SO4)	mg/L	9.8	2.0	4738071	21	2.0	4738071	N/A
Turbidity	NTU	390	1.0	4738093	0.78	0.10	4738093	0.10
Conductivity	uS/cm	170	1.0	4738017	140	1.0	4738011	N/A
Metals		·			·			
Total Aluminum (AI)	ug/L	1600	5.0	4738394	280	5.0	4738394	N/A
Total Antimony (Sb)	ug/L	<1.0	1.0	4738394	<1.0	1.0	4738394	N/A
Total Arsenic (As)	ug/L	1.7	1.0	4738394	1.2	1.0	4738394	N/A
Total Barium (Ba)	ug/L	9.4	1.0	4738394	19	1.0	4738394	N/A
Total Beryllium (Be)	ug/L	<1.0	1.0	4738394	<1.0	1.0	4738394	N/A
Total Bismuth (Bi)	ug/L	<2.0	2.0	4738394	<2.0	2.0	4738394	N/A
	· · · ·							

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

(1) Reporting limit was increased due to turbidity.

Englobe Corp.
Client Project #: P-0010903-0-00-205
Your P.O. #: A 06392

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Maxxam ID		DJN933			DJN934			
Sampling Date		2016/11/01 10:55			2016/11/01 13:35			
COC Number		583336-03-01			583336-03-01			
	UNITS	Р3	RDL	QC Batch	ВАСК2	RDL	QC Batch	MDL
Total Boron (B)	ug/L	<50	50	4738394	<50	50	4738394	N/A
Total Cadmium (Cd)	ug/L	0.077	0.010	4738394	0.041	0.010	4738394	N/A
Total Calcium (Ca)	ug/L	5500	100	4738394	5200	100	4738394	N/A
Total Chromium (Cr)	ug/L	2.3	1.0	4738394	3.4	1.0	4738394	N/A
Total Cobalt (Co)	ug/L	1.1	0.40	4738394	1.1	0.40	4738394	N/A
Total Copper (Cu)	ug/L	5.7	2.0	4738394	<2.0	2.0	4738394	N/A
Total Iron (Fe)	ug/L	1600	50	4738394	620	50	4738394	N/A
Total Lead (Pb)	ug/L	4.3	0.50	4738394	<0.50	0.50	4738394	N/A
Total Magnesium (Mg)	ug/L	2700	100	4738394	4700	100	4738394	N/A
Total Manganese (Mn)	ug/L	60	2.0	4738394	40	2.0	4738394	N/A
Total Molybdenum (Mo)	ug/L	<2.0	2.0	4738394	<2.0	2.0	4738394	N/A
Total Nickel (Ni)	ug/L	4.8	2.0	4738394	2.9	2.0	4738394	N/A
Total Phosphorus (P)	ug/L	310	100	4738394	<100	100	4738394	N/A
Total Potassium (K)	ug/L	9300	100	4738394	1600	100	4738394	N/A
Total Selenium (Se)	ug/L	<1.0	1.0	4738394	<1.0	1.0	4738394	N/A
Total Silver (Ag)	ug/L	<0.10	0.10	4738394	<0.10	0.10	4738394	N/A
Total Sodium (Na)	ug/L	15000	100	4738394	16000	100	4738394	N/A
Total Strontium (Sr)	ug/L	31	2.0	4738394	32	2.0	4738394	N/A
Total Thallium (TI)	ug/L	<0.10	0.10	4738394	<0.10	0.10	4738394	N/A
Total Tin (Sn)	ug/L	5.8	2.0	4738394	<2.0	2.0	4738394	N/A
Total Titanium (Ti)	ug/L	29	2.0	4738394	4.0	2.0	4738394	N/A
Total Uranium (U)	ug/L	0.18	0.10	4738394	<0.10	0.10	4738394	N/A
Total Vanadium (V)	ug/L	3.1	2.0	4738394	<2.0	2.0	4738394	N/A
Total Zinc (Zn)	ug/L	9.3	5.0	4738394	11	5.0	4738394	N/A

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Englobe Corp.
Client Project #: P-0010903-0-00-205
Your P.O. #: A 06392

RESULTS OF ANALYSES OF WATER

Maxxam ID		DJN876	DJN877		DJN878			DJN912			
Sampling Date		2016/10/31 14:20	2016/10/31 16:45		2016/11/01 08:40			2016/10/31 14:45			
COC Number		583336-01-01	583336-01-01		583336-01-01			583336-02-01			
	UNITS	SW1	SW2	RDL	SW3	RDL	QC Batch	SW14	RDL	QC Batch	MDL
Inorganics											
Total Suspended Solids	mg/L	<1.0	<1.0	1.0	220	10	4736265	8.2	1.0	4733407	N/A

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

N/A = Not Applicable

Maxxam ID		DJN916		DJN934			
Sampling Date		2016/11/01		2016/11/01 13:35			
COC Number		583336-02-01		583336-03-01			
	UNITS	SW-DUP2	QC Batch	BACK2	RDL	QC Batch	MDL
Inorganics							
Total Suspended Solids	mg/L	3.2	4733407	<1.0	1.0	4736265	N/A
RDI = Reportable Detection I	imit						

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Englobe Corp. Client Project #: P-0010903-0-00-205 Your P.O. #: A 06392

MERCURY BY COLD VAPOUR AA (WATER)

Maxxam ID		DJN876	DJN877	DJN878	DJN879	DJN880	DJN880			
Sampling Date		2016/10/31 14:20	2016/10/31 16:45	2016/11/01 08:40	2016/11/01 14:30	2016/11/01 08:45	2016/11/01 08:45			
COC Number		583336-01-01	583336-01-01	583336-01-01	583336-01-01	583336-01-01	583336-01-01			
	UNITS	SW1	SW2	SW3	SW4	SW5	SW5 Lab-Dup	RDL	QC Batch	MDL
Metals										
Total Mercury (Hg)								0.013	4736732	

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

Maxxam ID		DJN881	DJN882	DJN883	DJN910	DJN911	DJN912			
Sampling Date		2016/10/31 15:00	2016/10/31 16:50	2016/10/31 15:50	2016/11/01 09:25	2016/10/31 16:15	2016/10/31 14:45			
COC Number		583336-01-01	583336-01-01	583336-01-01	583336-02-01	583336-02-01	583336-02-01			
	UNITS	SW6	SW7	SW9	SW11	SW13	SW14	RDL	QC Batch	MDL
Metals										
Total Mercury (Hg)	ug/L	< 0.013	0.013	0.033	0.045	< 0.013	< 0.013	0.013	4736732	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Maxxam ID		DJN913	DJN914	DJN915	DJN916	DJN917	DJN918			
Sampling Date		2016/10/31 15:15	2016/11/02 09:45	2016/10/31	2016/11/01	2016/11/01 10:15	2016/11/01 09:50			
COC Number		583336-02-01	583336-02-01	583336-02-01	583336-02-01	583336-02-01	583336-02-01			
	UNITS	SW15	SW16	SW-DUP1	SW-DUP2	P1A	P1B	RDL	QC Batch	MDL
Metals										
Total Mercury (Hg)	ug/L	< 0.013	< 0.013	0.037	<0.013	0.022	0.50	0.013	4736732	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Maxxam ID		DJN932	DJN933		DJN934			
Sampling Date		2016/11/01 10:45	2016/11/01 10:55		2016/11/01 13:35			
COC Number		583336-03-01	583336-03-01		583336-03-01			
	UNITS	P2B	Р3	QC Batch	BACK2	RDL	QC Batch	MDL
Metals								
Total Mercury (Hg)	ug/L	0.21	0.20	4736732	< 0.013	0.013	4736738	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Englobe Corp.
Client Project #: P-0010903-0-00-205
Your P.O. #: A 06392

ELEMENTS BY ICP/MS (WATER)

Maxxam ID		DJN876		DJN877	DJN878		DJN912			
Sampling Date		2016/10/31		2016/10/31	2016/11/01		2016/10/31			
. 5		14:20		16:45	08:40		14:45			
COC Number		583336-01-01		583336-01-01	583336-01-01		583336-02-01	<u> </u>		
	UNITS	SW1	QC Batch	SW2	SW3	QC Batch	SW14	RDL	QC Batch	MDL
Metals										
Dissolved Aluminum (Al)	ug/L	1800	4738315	830	320	4740054	190	5.0	4738302	N/A
Dissolved Antimony (Sb)	ug/L	<1.0	4738315	<1.0	<1.0	4740054	<1.0	1.0	4738302	N/A
Dissolved Arsenic (As)	ug/L	1.7	4738315	1.0	1.1	4740054	<1.0	1.0	4738302	N/A
Dissolved Barium (Ba)	ug/L	8.6	4738315	7.8	21	4740054	14	1.0	4738302	N/A
Dissolved Beryllium (Be)	ug/L	<1.0	4738315	<1.0	<1.0	4740054	<1.0	1.0	4738302	N/A
Dissolved Bismuth (Bi)	ug/L	<2.0	4738315	<2.0	<2.0	4740054	<2.0	2.0	4738302	N/A
Dissolved Boron (B)	ug/L	<50	4738315	<50	93	4740054	96	50	4738302	N/A
Dissolved Cadmium (Cd)	ug/L	0.11	4738315	0.072	0.042	4740054	0.063	0.010	4738302	N/A
Dissolved Calcium (Ca)	ug/L	3000	4738315	4000	16000	4740054	8200	100	4738302	N/A
Dissolved Chromium (Cr)	ug/L	1.7	4738315	1.1	2.7	4740054	<1.0	1.0	4738302	N/A
Dissolved Cobalt (Co)	ug/L	1.2	4738315	0.71	0.93	4740054	<0.40	0.40	4738302	N/A
Dissolved Copper (Cu)	ug/L	3.9	4738315	<2.0	2.3	4740054	<2.0	2.0	4738302	N/A
Dissolved Iron (Fe)	ug/L	1200	4738315	610	840	4740054	100	50	4738302	N/A
Dissolved Lead (Pb)	ug/L	8.0	4738315	3.1	0.67	4740054	<0.50	0.50	4738302	N/A
Dissolved Magnesium (Mg)	ug/L	1800	4738315	2700	4900	4740054	5000	100	4738302	N/A
Dissolved Manganese (Mn)	ug/L	40	4738315	41	270	4740054	37	2.0	4738302	N/A
Dissolved Molybdenum (Mo)	ug/L	<2.0	4738315	<2.0	<2.0	4740054	<2.0	2.0	4738302	N/A
Dissolved Nickel (Ni)	ug/L	6.1	4738315	2.9	2.0	4740054	<2.0	2.0	4738302	N/A
Dissolved Phosphorus (P)	ug/L	<100	4738315	<100	<100	4740054	<100	100	4738302	N/A
Dissolved Potassium (K)	ug/L	9100	4738315	3900	13000	4740054	3000	100	4738302	N/A
Dissolved Selenium (Se)	ug/L	<1.0	4738315	<1.0	<1.0	4740054	<1.0	1.0	4738302	N/A
Dissolved Silver (Ag)	ug/L	<0.10	4738315	<0.10	<0.10	4740054	<0.10	0.10	4738302	N/A
Dissolved Sodium (Na)	ug/L	22000	4738315	13000	17000	4740054	38000	100	4738302	N/A
Dissolved Strontium (Sr)	ug/L	23	4738315	26	79	4740054	60	2.0	4738302	N/A
Dissolved Thallium (TI)	ug/L	<0.10	4738315	<0.10	<0.10	4740054	<0.10	0.10	4738302	N/A
Dissolved Tin (Sn)	ug/L	<2.0	4738315	<2.0	<2.0	4740054	<2.0	2.0	4738302	N/A
Dissolved Titanium (Ti)	ug/L	28	4738315	9.6	4.8	4740054	2.1	2.0	4738302	N/A
Dissolved Uranium (U)	ug/L	<0.10	4738315	<0.10	<0.10	4740054	<0.10	0.10	4738302	N/A
Dissolved Vanadium (V)	ug/L	3.1	4738315	<2.0	<2.0	4740054	<2.0	2.0	4738302	N/A
Dissolved Zinc (Zn)	ug/L	16	4738315	13	38	4740054	11	5.0	4738302	N/A
	•									

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Englobe Corp.
Client Project #: P-0010903-0-00-205
Your P.O. #: A 06392

ELEMENTS BY ICP/MS (WATER)

Maxxam ID		DJN912		DJN916		DJN934			
Sampling Date		2016/10/31 14:45		2016/11/01		2016/11/01 13:35			
COC Number		583336-02-01		583336-02-01		583336-03-01			
	UNITS	SW14 Lab-Dup	QC Batch	SW-DUP2	QC Batch	BACK2	RDL	QC Batch	MDL
Metals									
Dissolved Aluminum (Al)	ug/L	180	4738302	280	4740054	280	5.0	4738315	N/A
Dissolved Antimony (Sb)	ug/L	<1.0	4738302	<1.0	4740054	<1.0	1.0	4738315	N/A
Dissolved Arsenic (As)	ug/L	<1.0	4738302	<1.0	4740054	<1.0	1.0	4738315	N/A
Dissolved Barium (Ba)	ug/L	14	4738302	16	4740054	16	1.0	4738315	N/A
Dissolved Beryllium (Be)	ug/L	<1.0	4738302	<1.0	4740054	<1.0	1.0	4738315	N/A
Dissolved Bismuth (Bi)	ug/L	<2.0	4738302	<2.0	4740054	<2.0	2.0	4738315	N/A
Dissolved Boron (B)	ug/L	100	4738302	<50	4740054	<50	50	4738315	N/A
Dissolved Cadmium (Cd)	ug/L	0.062	4738302	0.031	4740054	0.056	0.010	4738315	N/A
Dissolved Calcium (Ca)	ug/L	8000	4738302	4700	4740054	4700	100	4738315	N/A
Dissolved Chromium (Cr)	ug/L	<1.0	4738302	<1.0	4740054	<1.0	1.0	4738315	N/A
Dissolved Cobalt (Co)	ug/L	<0.40	4738302	0.55	4740054	0.55	0.40	4738315	N/A
Dissolved Copper (Cu)	ug/L	<2.0	4738302	<2.0	4740054	<2.0	2.0	4738315	N/A
Dissolved Iron (Fe)	ug/L	100	4738302	320	4740054	300	50	4738315	N/A
Dissolved Lead (Pb)	ug/L	<0.50	4738302	<0.50	4740054	<0.50	0.50	4738315	N/A
Dissolved Magnesium (Mg)	ug/L	5000	4738302	3500	4740054	3700	100	4738315	N/A
Dissolved Manganese (Mn)	ug/L	38	4738302	23	4740054	24	2.0	4738315	N/A
Dissolved Molybdenum (Mo)	ug/L	<2.0	4738302	<2.0	4740054	<2.0	2.0	4738315	N/A
Dissolved Nickel (Ni)	ug/L	<2.0	4738302	<2.0	4740054	<2.0	2.0	4738315	N/A
Dissolved Phosphorus (P)	ug/L	<100	4738302	<100	4740054	<100	100	4738315	N/A
Dissolved Potassium (K)	ug/L	2800	4738302	1500	4740054	1500	100	4738315	N/A
Dissolved Selenium (Se)	ug/L	<1.0	4738302	<1.0	4740054	<1.0	1.0	4738315	N/A
Dissolved Silver (Ag)	ug/L	<0.10	4738302	<0.10	4740054	<0.10	0.10	4738315	N/A
Dissolved Sodium (Na)	ug/L	38000	4738302	14000	4740054	15000	100	4738315	N/A
Dissolved Strontium (Sr)	ug/L	62	4738302	30	4740054	31	2.0	4738315	N/A
Dissolved Thallium (TI)	ug/L	<0.10	4738302	<0.10	4740054	<0.10	0.10	4738315	N/A
Dissolved Tin (Sn)	ug/L	<2.0	4738302	<2.0	4740054	<2.0	2.0	4738315	N/A
Dissolved Titanium (Ti)	ug/L	<2.0	4738302	2.8	4740054	2.6	2.0	4738315	N/A
Dissolved Uranium (U)	ug/L	<0.10	4738302	<0.10	4740054	<0.10	0.10	4738315	N/A
Dissolved Vanadium (V)	ug/L	<2.0	4738302	<2.0	4740054	<2.0	2.0	4738315	N/A
Dissolved Zinc (Zn)	ug/L	11	4738302	9.6	4740054	11	5.0	4738315	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Englobe Corp.

Client Project #: P-0010903-0-00-205

Your P.O. #: A 06392

TEST SUMMARY

Maxxam ID: DJN876 Sample ID: SW1 Matrix: Water Collected:

2016/10/31

Shipped:

Received: 2016/11/02

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4732171	N/A	2016/11/08	Automated Statchk
Alkalinity	KONE	4738055	N/A	2016/11/08	Nancy Rogers
Chloride	KONE	4738056	N/A	2016/11/08	Nancy Rogers
Colour	KONE	4738059	N/A	2016/11/08	Nancy Rogers
Conductance - water	AT	4738015	N/A	2016/11/08	Julia McGovern
Hardness (calculated as CaCO3)		4731970	N/A	2016/11/10	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4736732	2016/11/07	2016/11/08	Arlene Rossiter
Metals Water Diss. MS (as rec'd)	CICP/MS	4738315	N/A	2016/11/09	Mike Leblanc
Metals Water Total MS	CICP/MS	4738356	2016/11/08	2016/11/09	Bryon Angevine
Ion Balance (% Difference)	CALC	4732172	N/A	2016/11/10	Automated Statchk
Anion and Cation Sum	CALC	4732173	N/A	2016/11/10	Automated Statchk
Nitrogen Ammonia - water	KONE	4736497	N/A	2016/11/08	Mary Clancey
Nitrogen - Nitrate + Nitrite	KONE	4738061	N/A	2016/11/09	Nancy Rogers
Nitrogen - Nitrite	KONE	4738062	N/A	2016/11/09	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4731895	N/A	2016/11/09	Automated Statchk
рН	AT	4738014	N/A	2016/11/08	Julia McGovern
Phosphorus - ortho	KONE	4738060	N/A	2016/11/08	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4732179	N/A	2016/11/10	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4732180	N/A	2016/11/10	Automated Statchk
Reactive Silica	KONE	4738058	N/A	2016/11/08	Nancy Rogers
Sulphate	KONE	4738057	N/A	2016/11/08	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4732181	N/A	2016/11/10	Automated Statchk
Organic carbon - Total (TOC)	TECH	4740037	N/A	2016/11/09	Soraya Merchant
Total Suspended Solids	BAL	4736265	2016/11/07	2016/11/07	Leslie Power
Turbidity	TURB	4738100	N/A	2016/11/08	Julia McGovern

Maxxam ID: DJN877 Sample ID: SW2

Matrix: Water

Collected: 2016/10/31

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4732171	N/A	2016/11/08	Automated Statchk
Alkalinity	KONE	4738055	N/A	2016/11/08	Nancy Rogers
Chloride	KONE	4738056	N/A	2016/11/08	Nancy Rogers
Colour	KONE	4738059	N/A	2016/11/08	Nancy Rogers
Conductance - water	AT	4738017	N/A	2016/11/08	Julia McGovern
Hardness (calculated as CaCO3)		4731970	N/A	2016/11/10	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4736732	2016/11/07	2016/11/08	Arlene Rossiter
Metals Water Diss. MS (as rec'd)	CICP/MS	4740054	N/A	2016/11/09	Bryon Angevine
Metals Water Total MS	CICP/MS	4738356	2016/11/08	2016/11/09	Bryon Angevine
Ion Balance (% Difference)	CALC	4732172	N/A	2016/11/10	Automated Statchk
Anion and Cation Sum	CALC	4732173	N/A	2016/11/10	Automated Statchk
Nitrogen Ammonia - water	KONE	4736496	N/A	2016/11/09	Mary Clancey
Nitrogen - Nitrate + Nitrite	KONE	4738061	N/A	2016/11/09	Nancy Rogers
Nitrogen - Nitrite	KONE	4738062	N/A	2016/11/09	Nancy Rogers

Englobe Corp.

Client Project #: P-0010903-0-00-205

Your P.O. #: A 06392

TEST SUMMARY

Maxxam ID: DJN877 Sample ID: SW2

Collected:

2016/10/31

Matrix: Water

Shipped:

Received: 2016/11/02

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Nitrogen - Nitrate (as N)	CALC	4731895	N/A	2016/11/09	Automated Statchk
рН	AT	4738016	N/A	2016/11/08	Julia McGovern
Phosphorus - ortho	KONE	4738060	N/A	2016/11/08	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4732179	N/A	2016/11/10	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4732180	N/A	2016/11/10	Automated Statchk
Reactive Silica	KONE	4738058	N/A	2016/11/08	Nancy Rogers
Sulphate	KONE	4738057	N/A	2016/11/08	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4732181	N/A	2016/11/10	Automated Statchk
Organic carbon - Total (TOC)	TECH	4740037	N/A	2016/11/09	Soraya Merchant
Total Suspended Solids	BAL	4736265	2016/11/07	2016/11/07	Leslie Power
Turbidity	TURB	4738092	N/A	2016/11/08	Julia McGovern

Maxxam ID: DJN877 Dup Sample ID: SW2 Matrix: Water

Collected: 2016/10/31 Shipped:

Received: 2016/11/02

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	KONE	4738055	N/A	2016/11/08	Nancy Rogers
Chloride	KONE	4738056	N/A	2016/11/08	Nancy Rogers
Colour	KONE	4738059	N/A	2016/11/08	Nancy Rogers
Nitrogen - Nitrate + Nitrite	KONE	4738061	N/A	2016/11/09	Nancy Rogers
Nitrogen - Nitrite	KONE	4738062	N/A	2016/11/09	Nancy Rogers
Phosphorus - ortho	KONE	4738060	N/A	2016/11/08	Nancy Rogers
Reactive Silica	KONE	4738058	N/A	2016/11/08	Nancy Rogers
Sulphate	KONE	4738057	N/A	2016/11/08	Nancy Rogers
Turbidity	TURB	4738092	N/A	2016/11/08	Julia McGovern

Maxxam ID: DJN878 Sample ID: SW3 Matrix: Water

2016/11/01

Collected: Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4732171	N/A	2016/11/08	Automated Statchk
Alkalinity	KONE	4738055	N/A	2016/11/08	Nancy Rogers
Chloride	KONE	4738056	N/A	2016/11/08	Nancy Rogers
Colour	KONE	4738059	N/A	2016/11/08	Nancy Rogers
Conductance - water	AT	4738017	N/A	2016/11/08	Julia McGovern
Hardness (calculated as CaCO3)		4731970	N/A	2016/11/10	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4736732	2016/11/07	2016/11/08	Arlene Rossiter
Metals Water Diss. MS (as rec'd)	CICP/MS	4740054	N/A	2016/11/09	Bryon Angevine
Metals Water Total MS	CICP/MS	4738356	2016/11/08	2016/11/09	Bryon Angevine
Ion Balance (% Difference)	CALC	4732172	N/A	2016/11/10	Automated Statchk
Anion and Cation Sum	CALC	4732173	N/A	2016/11/10	Automated Statchk
Nitrogen Ammonia - water	KONE	4736497	N/A	2016/11/09	Mary Clancey
Nitrogen - Nitrate + Nitrite	KONE	4738061	N/A	2016/11/09	Nancy Rogers

Englobe Corp. Client Project #: P-0010903-0-00-205 Your P.O. #: A 06392

TEST SUMMARY

Maxxam ID: DJN878 Sample ID: SW3

Collected: 2016/11/01

Matrix: Water

Shipped: **Received:** 2016/11/02

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Nitrogen - Nitrite	KONE	4738062	N/A	2016/11/09	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4731895	N/A	2016/11/09	Automated Statchk
рН	AT	4738016	N/A	2016/11/08	Julia McGovern
Phosphorus - ortho	KONE	4738060	N/A	2016/11/08	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4732179	N/A	2016/11/10	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4732180	N/A	2016/11/10	Automated Statchk
Reactive Silica	KONE	4738058	N/A	2016/11/08	Nancy Rogers
Sulphate	KONE	4738057	N/A	2016/11/08	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4732181	N/A	2016/11/10	Automated Statchk
Organic carbon - Total (TOC)	TECH	4740037	N/A	2016/11/09	Soraya Merchant
Total Suspended Solids	BAL	4736265	2016/11/07	2016/11/07	Leslie Power
Turbidity	TURB	4738093	N/A	2016/11/08	Julia McGovern

Maxxam ID: DJN879 Sample ID: SW4 Matrix: Water

Collected: 2016/11/01

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4732171	N/A	2016/11/08	Automated Statchk
Alkalinity	KONE	4738055	N/A	2016/11/08	Nancy Rogers
Chloride	KONE	4738056	N/A	2016/11/08	Nancy Rogers
Colour	KONE	4738059	N/A	2016/11/08	Nancy Rogers
Conductance - water	AT	4738013	N/A	2016/11/08	Julia McGovern
Hardness (calculated as CaCO3)		4731970	N/A	2016/11/10	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4736732	2016/11/07	2016/11/08	Arlene Rossiter
Metals Water Total MS	CICP/MS	4738356	2016/11/08	2016/11/09	Bryon Angevine
Ion Balance (% Difference)	CALC	4732172	N/A	2016/11/10	Automated Statchk
Anion and Cation Sum	CALC	4732173	N/A	2016/11/10	Automated Statchk
Nitrogen Ammonia - water	KONE	4736492	N/A	2016/11/08	Mary Clancey
Nitrogen - Nitrate + Nitrite	KONE	4738061	N/A	2016/11/09	Nancy Rogers
Nitrogen - Nitrite	KONE	4738062	N/A	2016/11/09	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4731895	N/A	2016/11/09	Automated Statchk
рН	AT	4738012	N/A	2016/11/08	Julia McGovern
Phosphorus - ortho	KONE	4738060	N/A	2016/11/08	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4732179	N/A	2016/11/10	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4732180	N/A	2016/11/10	Automated Statchk
Reactive Silica	KONE	4738058	N/A	2016/11/08	Nancy Rogers
Sulphate	KONE	4738057	N/A	2016/11/08	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4732181	N/A	2016/11/10	Automated Statchk
Organic carbon - Total (TOC)	TECH	4740037	N/A	2016/11/09	Soraya Merchant
Turbidity	TURB	4738096	N/A	2016/11/08	Julia McGovern

Englobe Corp.

Client Project #: P-0010903-0-00-205

Your P.O. #: A 06392

TEST SUMMARY

Maxxam ID: DJN880 Sample ID: SW5

Matrix: Water

Collected: 2016/11/01

Shipped:

Received: 2016/11/02

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4732171	N/A	2016/11/08	Automated Statchk
Alkalinity	KONE	4738055	N/A	2016/11/08	Nancy Rogers
Chloride	KONE	4738056	N/A	2016/11/08	Nancy Rogers
Colour	KONE	4738059	N/A	2016/11/08	Nancy Rogers
Conductance - water	AT	4738013	N/A	2016/11/08	Julia McGovern
Hardness (calculated as CaCO3)		4731970	N/A	2016/11/10	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4736732	2016/11/07	2016/11/08	Arlene Rossiter
Metals Water Total MS	CICP/MS	4738356	2016/11/08	2016/11/09	Bryon Angevine
Ion Balance (% Difference)	CALC	4732172	N/A	2016/11/10	Automated Statchk
Anion and Cation Sum	CALC	4732173	N/A	2016/11/10	Automated Statchk
Nitrogen Ammonia - water	KONE	4736497	N/A	2016/11/09	Mary Clancey
Nitrogen - Nitrate + Nitrite	KONE	4738061	N/A	2016/11/09	Nancy Rogers
Nitrogen - Nitrite	KONE	4738062	N/A	2016/11/09	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4731895	N/A	2016/11/09	Automated Statchk
pH	AT	4738012	N/A	2016/11/08	Julia McGovern
Phosphorus - ortho	KONE	4738060	N/A	2016/11/08	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4732179	N/A	2016/11/10	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4732180	N/A	2016/11/10	Automated Statchk
Reactive Silica	KONE	4738058	N/A	2016/11/08	Nancy Rogers
Sulphate	KONE	4738057	N/A	2016/11/08	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4732181	N/A	2016/11/10	Automated Statchk
Organic carbon - Total (TOC)	TECH	4740037	N/A	2016/11/09	Soraya Merchant
Turbidity	TURB	4738096	N/A	2016/11/08	Julia McGovern

Maxxam ID: DJN880 Dup

Sample ID: SW5

Matrix: Water

Shipped:

Collected: 2016/11/01

Received: 2016/11/02

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Mercury - Total (CVAA,LL)	CV/AA	4736732	2016/11/07	2016/11/08	Arlene Rossiter

Maxxam ID: DJN881 Sample ID: SW6 Matrix: Water

Shipped:

Collected: 2016/10/31

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4732171	N/A	2016/11/08	Automated Statchk
Alkalinity	KONE	4738067	N/A	2016/11/08	Nancy Rogers
Chloride	KONE	4738070	N/A	2016/11/08	Nancy Rogers
Colour	KONE	4738074	N/A	2016/11/08	Nancy Rogers
Conductance - water	AT	4738013	N/A	2016/11/08	Julia McGovern
Hardness (calculated as CaCO3)		4731970	N/A	2016/11/10	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4736732	2016/11/07	2016/11/08	Arlene Rossiter
Metals Water Total MS	CICP/MS	4739997	2016/11/09	2016/11/10	Bryon Angevine
Ion Balance (% Difference)	CALC	4732172	N/A	2016/11/10	Automated Statchk

Englobe Corp.

Client Project #: P-0010903-0-00-205

Your P.O. #: A 06392

TEST SUMMARY

Maxxam ID: DJN881 Sample ID: SW6

Collected: Shipped:

2016/10/31

mple ID: SW6 Matrix: Water

Received: 2016/11/02

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Anion and Cation Sum	CALC	4732173	N/A	2016/11/10	Automated Statchk
Nitrogen Ammonia - water	KONE	4736492	N/A	2016/11/08	Mary Clancey
Nitrogen - Nitrate + Nitrite	KONE	4738078	N/A	2016/11/09	Nancy Rogers
Nitrogen - Nitrite	KONE	4738077	N/A	2016/11/09	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4732314	N/A	2016/11/09	Automated Statchk
рН	AT	4738012	N/A	2016/11/08	Julia McGovern
Phosphorus - ortho	KONE	4738076	N/A	2016/11/08	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4732179	N/A	2016/11/10	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4732180	N/A	2016/11/10	Automated Statchk
Reactive Silica	KONE	4738072	N/A	2016/11/08	Nancy Rogers
Sulphate	KONE	4738071	N/A	2016/11/08	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4732181	N/A	2016/11/10	Automated Statchk
Organic carbon - Total (TOC)	TECH	4740037	N/A	2016/11/09	Soraya Merchant
Turbidity	TURB	4738096	N/A	2016/11/08	Julia McGovern

Maxxam ID: DJN881 Dup

Collected: 2016/10/31

Sample ID: SW6
Matrix: Water

Shipped:

Received: 2016/11/02

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Metals Water Total MS	CICP/MS	4739997	2016/11/09	2016/11/10	Bryon Angevine
Organic carbon - Total (TOC)	TECH	4740037	N/A	2016/11/09	Soraya Merchant

Maxxam ID: DJN882

Collected: 20

: 2016/10/31

Sample ID: SW7 Matrix: Water Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4732171	N/A	2016/11/08	Automated Statchk
Alkalinity	KONE	4738067	N/A	2016/11/08	Nancy Rogers
Chloride	KONE	4738070	N/A	2016/11/08	Nancy Rogers
Colour	KONE	4738074	N/A	2016/11/08	Nancy Rogers
Conductance - water	AT	4738013	N/A	2016/11/08	Julia McGovern
Hardness (calculated as CaCO3)		4732313	N/A	2016/11/10	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4736732	2016/11/07	2016/11/08	Arlene Rossiter
Metals Water Total MS	CICP/MS	4739997	2016/11/09	2016/11/10	Bryon Angevine
Ion Balance (% Difference)	CALC	4732172	N/A	2016/11/10	Automated Statchk
Anion and Cation Sum	CALC	4732173	N/A	2016/11/10	Automated Statchk
Nitrogen Ammonia - water	KONE	4736492	N/A	2016/11/08	Mary Clancey
Nitrogen - Nitrate + Nitrite	KONE	4738078	N/A	2016/11/09	Nancy Rogers
Nitrogen - Nitrite	KONE	4738077	N/A	2016/11/09	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4732314	N/A	2016/11/09	Automated Statchk
рН	AT	4738012	N/A	2016/11/08	Julia McGovern
Phosphorus - ortho	KONE	4738076	N/A	2016/11/08	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4732179	N/A	2016/11/10	Automated Statchk

Englobe Corp.

Client Project #: P-0010903-0-00-205

Your P.O. #: A 06392

TEST SUMMARY

Maxxam ID: DJN882

Collected: 2016/10/31

Sample ID: SW7 Matrix: Water Shipped:

Received: 2016/11/02

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Sat. pH and Langelier Index (@ 4C)	CALC	4732180	N/A	2016/11/10	Automated Statchk
Reactive Silica	KONE	4738072	N/A	2016/11/08	Nancy Rogers
Sulphate	KONE	4738071	N/A	2016/11/08	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4732181	N/A	2016/11/10	Automated Statchk
Organic carbon - Total (TOC)	TECH	4740037	N/A	2016/11/09	Soraya Merchant
Turbidity	TURB	4738096	N/A	2016/11/08	Julia McGovern

Maxxam ID: DJN883 Sample ID: SW9 Matrix: Water

Collected: 2016/10/31

Shipped:

Received: 2016/11/02

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4732171	N/A	2016/11/08	Automated Statchk
Alkalinity	KONE	4738067	N/A	2016/11/08	Nancy Rogers
Chloride	KONE	4738070	N/A	2016/11/08	Nancy Rogers
Colour	KONE	4738074	N/A	2016/11/08	Nancy Rogers
Conductance - water	AT	4738011	N/A	2016/11/08	Julia McGovern
Hardness (calculated as CaCO3)		4732313	N/A	2016/11/09	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4736732	2016/11/07	2016/11/08	Arlene Rossiter
Metals Water Total MS	CICP/MS	4738394	2016/11/08	2016/11/08	Mike Leblanc
Ion Balance (% Difference)	CALC	4732172	N/A	2016/11/09	Automated Statchk
Anion and Cation Sum	CALC	4732173	N/A	2016/11/09	Automated Statchk
Nitrogen Ammonia - water	KONE	4736492	N/A	2016/11/08	Mary Clancey
Nitrogen - Nitrate + Nitrite	KONE	4738078	N/A	2016/11/09	Nancy Rogers
Nitrogen - Nitrite	KONE	4738077	N/A	2016/11/09	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4732314	N/A	2016/11/09	Automated Statchk
рН	AT	4738010	N/A	2016/11/08	Julia McGovern
Phosphorus - ortho	KONE	4738076	N/A	2016/11/08	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4732179	N/A	2016/11/09	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4732180	N/A	2016/11/09	Automated Statchk
Reactive Silica	KONE	4738072	N/A	2016/11/08	Nancy Rogers
Sulphate	KONE	4738071	N/A	2016/11/08	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4732181	N/A	2016/11/09	Automated Statchk
Organic carbon - Total (TOC)	TECH	4740037	N/A	2016/11/09	Soraya Merchant
Turbidity	TURB	4738096	N/A	2016/11/08	Julia McGovern

Maxxam ID: DJN910 Sample ID: SW11 Matrix: Water

Collected: 2016/11/01

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4732171	N/A	2016/11/08	Automated Statchk
Alkalinity	KONE	4738067	N/A	2016/11/08	Nancy Rogers
Chloride	KONE	4738070	N/A	2016/11/08	Nancy Rogers
Colour	KONE	4738074	N/A	2016/11/08	Nancy Rogers

Englobe Corp.

Client Project #: P-0010903-0-00-205

Your P.O. #: A 06392

TEST SUMMARY

Maxxam ID: DJN910 Sample ID: SW11

Matrix: Water

Collected:

2016/11/01

Shipped:

Received: 2016/11/02

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Conductance - water	AT	4738011	N/A	2016/11/08	Julia McGovern
Hardness (calculated as CaCO3)		4732313	N/A	2016/11/09	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4736732	2016/11/07	2016/11/08	Arlene Rossiter
Metals Water Total MS	CICP/MS	4738394	2016/11/08	2016/11/08	Mike Leblanc
Ion Balance (% Difference)	CALC	4732172	N/A	2016/11/09	Automated Statchk
Anion and Cation Sum	CALC	4732173	N/A	2016/11/09	Automated Statchk
Nitrogen Ammonia - water	KONE	4736493	N/A	2016/11/08	Mary Clancey
Nitrogen - Nitrate + Nitrite	KONE	4738078	N/A	2016/11/09	Nancy Rogers
Nitrogen - Nitrite	KONE	4738077	N/A	2016/11/09	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4732314	N/A	2016/11/09	Automated Statchk
pH	AT	4738010	N/A	2016/11/08	Julia McGovern
Phosphorus - ortho	KONE	4738076	N/A	2016/11/08	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4732179	N/A	2016/11/09	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4732180	N/A	2016/11/09	Automated Statchk
Reactive Silica	KONE	4738072	N/A	2016/11/08	Nancy Rogers
Sulphate	KONE	4738071	N/A	2016/11/08	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4732181	N/A	2016/11/09	Automated Statchk
Organic carbon - Total (TOC)	TECH	4740037	N/A	2016/11/09	Soraya Merchant
Turbidity	TURB	4738096	N/A	2016/11/08	Julia McGovern

Maxxam ID: DJN910 Dup

Sample ID: SW11 Matrix: Water Collected: 2016/11/01 Shipped:

2016/11/02

Received:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Conductance - water	AT	4738011	N/A	2016/11/08	Julia McGovern
рН	AT	4738010	N/A	2016/11/08	Julia McGovern

Maxxam ID: DJN911

Sample ID: SW13

Matrix: Water

Collected: 2016/10/31

Shipped: Received:

2016/11/02

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4732171	N/A	2016/11/08	Automated Statchk
Alkalinity	KONE	4738067	N/A	2016/11/08	Nancy Rogers
Chloride	KONE	4738070	N/A	2016/11/08	Nancy Rogers
Colour	KONE	4738074	N/A	2016/11/08	Nancy Rogers
Conductance - water	AT	4738011	N/A	2016/11/08	Julia McGovern
Hardness (calculated as CaCO3)		4732313	N/A	2016/11/09	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4736732	2016/11/07	2016/11/08	Arlene Rossiter
Metals Water Total MS	CICP/MS	4738394	2016/11/08	2016/11/08	Mike Leblanc
Ion Balance (% Difference)	CALC	4732172	N/A	2016/11/09	Automated Statchk
Anion and Cation Sum	CALC	4732173	N/A	2016/11/09	Automated Statchk
Nitrogen Ammonia - water	KONE	4736494	N/A	2016/11/08	Mary Clancey
Nitrogen - Nitrate + Nitrite	KONE	4738078	N/A	2016/11/09	Nancy Rogers

Englobe Corp.

Client Project #: P-0010903-0-00-205

Your P.O. #: A 06392

TEST SUMMARY

Maxxam ID: DJN911 Sample ID: SW13 Matrix: Water

Collected: 2016/10/31

Shipped:

Received: 2016/11/02

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Nitrogen - Nitrite	KONE	4738077	N/A	2016/11/09	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4732314	N/A	2016/11/09	Automated Statchk
рН	AT	4738010	N/A	2016/11/08	Julia McGovern
Phosphorus - ortho	KONE	4738076	N/A	2016/11/08	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4732179	N/A	2016/11/09	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4732180	N/A	2016/11/09	Automated Statchk
Reactive Silica	KONE	4738072	N/A	2016/11/08	Nancy Rogers
Sulphate	KONE	4738071	N/A	2016/11/08	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4732181	N/A	2016/11/09	Automated Statchk
Organic carbon - Total (TOC)	TECH	4740037	N/A	2016/11/09	Soraya Merchant
Turbidity	TURB	4738096	N/A	2016/11/08	Julia McGovern

Maxxam ID: DJN912 Sample ID: SW14 Matrix: Water

Collected: 2016/10/31 Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4732171	N/A	2016/11/08	Automated Statchk
Alkalinity	KONE	4738067	N/A	2016/11/08	Nancy Rogers
Chloride	KONE	4738070	N/A	2016/11/08	Nancy Rogers
Colour	KONE	4738074	N/A	2016/11/08	Nancy Rogers
Conductance - water	AT	4738011	N/A	2016/11/08	Julia McGovern
Hardness (calculated as CaCO3)		4732313	N/A	2016/11/09	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4736732	2016/11/07	2016/11/08	Arlene Rossiter
Metals Water Diss. MS	CICP/MS	4738302	N/A	2016/11/08	Mike Leblanc
Metals Water Total MS	CICP/MS	4738394	2016/11/08	2016/11/08	Mike Leblanc
Ion Balance (% Difference)	CALC	4732172	N/A	2016/11/09	Automated Statchk
Anion and Cation Sum	CALC	4732173	N/A	2016/11/09	Automated Statchk
Nitrogen Ammonia - water	KONE	4736494	N/A	2016/11/08	Mary Clancey
Nitrogen - Nitrate + Nitrite	KONE	4738078	N/A	2016/11/09	Nancy Rogers
Nitrogen - Nitrite	KONE	4738077	N/A	2016/11/09	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4732314	N/A	2016/11/09	Automated Statchk
рН	AT	4738010	N/A	2016/11/08	Julia McGovern
Phosphorus - ortho	KONE	4738076	N/A	2016/11/08	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4732179	N/A	2016/11/09	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4732180	N/A	2016/11/09	Automated Statchk
Reactive Silica	KONE	4738072	N/A	2016/11/08	Nancy Rogers
Sulphate	KONE	4738071	N/A	2016/11/08	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4732181	N/A	2016/11/09	Automated Statchk
Organic carbon - Total (TOC)	TECH	4740037	N/A	2016/11/09	Soraya Merchant
Total Suspended Solids	BAL	4733407	2016/11/04	2016/11/09	Megan MacMillan
Turbidity	TURB	4738096	N/A	2016/11/08	Julia McGovern

Englobe Corp.

Client Project #: P-0010903-0-00-205

Your P.O. #: A 06392

TEST SUMMARY

Maxxam ID: DJN912 Dup

Sample ID: SW14

Collected:

2016/10/31

Matrix: Water

Shipped:

Received: 2016/11/02

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Metals Water Diss. MS	CICP/MS	4738302	N/A	2016/11/08	Mike Leblanc

Maxxam ID: DJN913 Collected:

2016/10/31

Sample ID: SW15 Matrix: Water Shipped:

Received: 2016/11/02

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4732171	N/A	2016/11/08	Automated Statchk
Alkalinity	KONE	4738067	N/A	2016/11/08	Nancy Rogers
Chloride	KONE	4738070	N/A	2016/11/08	Nancy Rogers
Colour	KONE	4738074	N/A	2016/11/08	Nancy Rogers
Conductance - water	AT	4738011	N/A	2016/11/08	Julia McGovern
Hardness (calculated as CaCO3)		4732313	N/A	2016/11/09	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4736732	2016/11/07	2016/11/08	Arlene Rossiter
Metals Water Total MS	CICP/MS	4738394	2016/11/08	2016/11/08	Mike Leblanc
Ion Balance (% Difference)	CALC	4732172	N/A	2016/11/09	Automated Statchk
Anion and Cation Sum	CALC	4732173	N/A	2016/11/09	Automated Statchk
Nitrogen Ammonia - water	KONE	4736496	N/A	2016/11/09	Mary Clancey
Nitrogen - Nitrate + Nitrite	KONE	4738078	N/A	2016/11/09	Nancy Rogers
Nitrogen - Nitrite	KONE	4738077	N/A	2016/11/09	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4732314	N/A	2016/11/09	Automated Statchk
рН	AT	4738010	N/A	2016/11/08	Julia McGovern
Phosphorus - ortho	KONE	4738076	N/A	2016/11/08	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4732179	N/A	2016/11/09	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4732180	N/A	2016/11/09	Automated Statchk
Reactive Silica	KONE	4738072	N/A	2016/11/08	Nancy Rogers
Sulphate	KONE	4738071	N/A	2016/11/08	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4732181	N/A	2016/11/09	Automated Statchk
Organic carbon - Total (TOC)	TECH	4740037	N/A	2016/11/09	Soraya Merchant
Turbidity	TURB	4738093	N/A	2016/11/08	Julia McGovern

Maxxam ID: DJN914 Sample ID: SW16 Matrix: Water

Collected: 2016/11/02 Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4732171	N/A	2016/11/08	Automated Statchk
Alkalinity	KONE	4738067	N/A	2016/11/08	Nancy Rogers
Chloride	KONE	4738070	N/A	2016/11/08	Nancy Rogers
Colour	KONE	4738074	N/A	2016/11/08	Nancy Rogers
Conductance - water	AT	4738017	N/A	2016/11/08	Julia McGovern
Hardness (calculated as CaCO3)		4732313	N/A	2016/11/09	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4736732	2016/11/07	2016/11/08	Arlene Rossiter
Metals Water Total MS	CICP/MS	4738394	2016/11/08	2016/11/08	Mike Leblanc
Ion Balance (% Difference)	CALC	4732172	N/A	2016/11/09	Automated Statchk

Englobe Corp.

Client Project #: P-0010903-0-00-205

Your P.O. #: A 06392

TEST SUMMARY

Maxxam ID: DJN914 Sample ID: SW16 Matrix: Water

Collected: 2016/11/02

Shipped:

Received: 2016/11/02

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Anion and Cation Sum	CALC	4732173	N/A	2016/11/09	Automated Statchk
Nitrogen Ammonia - water	KONE	4736496	N/A	2016/11/09	Mary Clancey
Nitrogen - Nitrate + Nitrite	KONE	4738078	N/A	2016/11/09	Nancy Rogers
Nitrogen - Nitrite	KONE	4738077	N/A	2016/11/09	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4732314	N/A	2016/11/09	Automated Statchk
pH	AT	4738016	N/A	2016/11/08	Julia McGovern
Phosphorus - ortho	KONE	4738076	N/A	2016/11/08	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4732179	N/A	2016/11/09	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4732180	N/A	2016/11/09	Automated Statchk
Reactive Silica	KONE	4738072	N/A	2016/11/08	Nancy Rogers
Sulphate	KONE	4738071	N/A	2016/11/08	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4732181	N/A	2016/11/09	Automated Statchk
Organic carbon - Total (TOC)	TECH	4740037	N/A	2016/11/09	Soraya Merchant
Turbidity	TURB	4738093	N/A	2016/11/08	Julia McGovern

Maxxam ID: DJN915 Sample ID: SW-DUP1
Matrix: Water **Collected:** 2016/10/31

Shipped:

					Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4732171	N/A	2016/11/08	Automated Statchk
Alkalinity	KONE	4738067	N/A	2016/11/08	Nancy Rogers
Chloride	KONE	4738070	N/A	2016/11/08	Nancy Rogers
Colour	KONE	4738074	N/A	2016/11/08	Nancy Rogers
Conductance - water	AT	4738013	N/A	2016/11/08	Julia McGovern
Hardness (calculated as CaCO3)		4732313	N/A	2016/11/09	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4736732	2016/11/07	2016/11/08	Arlene Rossiter
Metals Water Total MS	CICP/MS	4738394	2016/11/08	2016/11/08	Mike Leblanc
Ion Balance (% Difference)	CALC	4732172	N/A	2016/11/09	Automated Statchk
Anion and Cation Sum	CALC	4732173	N/A	2016/11/09	Automated Statchk
Nitrogen Ammonia - water	KONE	4736494	N/A	2016/11/08	Mary Clancey
Nitrogen - Nitrate + Nitrite	KONE	4738078	N/A	2016/11/09	Nancy Rogers
Nitrogen - Nitrite	KONE	4738077	N/A	2016/11/09	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4732314	N/A	2016/11/09	Automated Statchk
рН	AT	4738012	N/A	2016/11/08	Julia McGovern
Phosphorus - ortho	KONE	4738076	N/A	2016/11/08	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4732179	N/A	2016/11/09	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4732180	N/A	2016/11/09	Automated Statchk
Reactive Silica	KONE	4738072	N/A	2016/11/08	Nancy Rogers
Sulphate	KONE	4738071	N/A	2016/11/08	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4732181	N/A	2016/11/09	Automated Statchk
Organic carbon - Total (TOC)	TECH	4740037	N/A	2016/11/09	Soraya Merchant
Turbidity	TURB	4738096	N/A	2016/11/08	Julia McGovern

Englobe Corp.

Client Project #: P-0010903-0-00-205

Your P.O. #: A 06392

TEST SUMMARY

Maxxam ID: DJN916 Sample ID: SW-DUP2

Matrix: Water

Collected:

2016/11/01

Shipped:

Received: 2016/11/02

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4732171	N/A	2016/11/08	Automated Statchk
Alkalinity	KONE	4738067	N/A	2016/11/08	Nancy Rogers
Chloride	KONE	4738070	N/A	2016/11/08	Nancy Rogers
Colour	KONE	4738074	N/A	2016/11/08	Nancy Rogers
Conductance - water	AT	4738015	N/A	2016/11/08	Julia McGovern
Hardness (calculated as CaCO3)		4732313	N/A	2016/11/09	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4736732	2016/11/07	2016/11/08	Arlene Rossiter
Metals Water Diss. MS (as rec'd)	CICP/MS	4740054	N/A	2016/11/09	Bryon Angevine
Metals Water Total MS	CICP/MS	4738394	2016/11/08	2016/11/08	Mike Leblanc
Ion Balance (% Difference)	CALC	4732172	N/A	2016/11/09	Automated Statchk
Anion and Cation Sum	CALC	4732173	N/A	2016/11/09	Automated Statchk
Nitrogen Ammonia - water	KONE	4736497	N/A	2016/11/08	Mary Clancey
Nitrogen - Nitrate + Nitrite	KONE	4738078	N/A	2016/11/09	Nancy Rogers
Nitrogen - Nitrite	KONE	4738077	N/A	2016/11/09	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4732314	N/A	2016/11/09	Automated Statchk
рН	AT	4738014	N/A	2016/11/08	Julia McGovern
Phosphorus - ortho	KONE	4738076	N/A	2016/11/08	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4732179	N/A	2016/11/10	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4732180	N/A	2016/11/10	Automated Statchk
Reactive Silica	KONE	4738072	N/A	2016/11/08	Nancy Rogers
Sulphate	KONE	4738071	N/A	2016/11/08	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4732181	N/A	2016/11/09	Automated Statchk
Organic carbon - Total (TOC)	TECH	4740037	N/A	2016/11/09	Soraya Merchant
Total Suspended Solids	BAL	4733407	2016/11/04	2016/11/09	Megan MacMillan
Turbidity	TURB	4738100	N/A	2016/11/08	Julia McGovern

Maxxam ID: DJN917 Sample ID: P1A

Matrix: Water

Collected: Shipped:

2016/11/01

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4732171	N/A	2016/11/08	Automated Statchk
Alkalinity	KONE	4738067	N/A	2016/11/08	Nancy Rogers
Chloride	KONE	4738070	N/A	2016/11/08	Nancy Rogers
Colour	KONE	4738074	N/A	2016/11/08	Nancy Rogers
Conductance - water	AT	4738011	N/A	2016/11/08	Julia McGovern
Hardness (calculated as CaCO3)		4732313	N/A	2016/11/09	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4736732	2016/11/07	2016/11/08	Arlene Rossiter
Metals Water Total MS	CICP/MS	4738394	2016/11/08	2016/11/08	Mike Leblanc
Ion Balance (% Difference)	CALC	4732172	N/A	2016/11/09	Automated Statchk
Anion and Cation Sum	CALC	4732173	N/A	2016/11/09	Automated Statchk
Nitrogen Ammonia - water	KONE	4736496	N/A	2016/11/09	Mary Clancey
Nitrogen - Nitrate + Nitrite	KONE	4738078	N/A	2016/11/09	Nancy Rogers
Nitrogen - Nitrite	KONE	4738077	N/A	2016/11/09	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4732314	N/A	2016/11/09	Automated Statchk

Englobe Corp.

Client Project #: P-0010903-0-00-205

Your P.O. #: A 06392

TEST SUMMARY

Maxxam ID: DJN917 Sample ID: P1A

Collected: 2016/11/01

Matrix: Water

Shipped:

Received: 2016/11/02

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
рН	AT	4738010	N/A	2016/11/08	Julia McGovern
Phosphorus - ortho	KONE	4738076	N/A	2016/11/08	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4732179	N/A	2016/11/09	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4732180	N/A	2016/11/09	Automated Statchk
Reactive Silica	KONE	4738072	N/A	2016/11/08	Nancy Rogers
Sulphate	KONE	4738071	N/A	2016/11/08	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4732181	N/A	2016/11/09	Automated Statchk
Organic carbon - Total (TOC)	TECH	4740037	N/A	2016/11/09	Soraya Merchant
Turbidity	TURB	4738096	N/A	2016/11/08	Julia McGovern

Maxxam ID: DJN918 Sample ID: P1B Matrix: Water

Collected: 2016/11/01

Shipped:

Received: 2016/11/02

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4732171	N/A	2016/11/08	Automated Statchk
Alkalinity	KONE	4738067	N/A	2016/11/08	Nancy Rogers
Chloride	KONE	4738070	N/A	2016/11/08	Nancy Rogers
Colour	KONE	4738074	N/A	2016/11/08	Nancy Rogers
Conductance - water	AT	4738013	N/A	2016/11/08	Julia McGovern
Hardness (calculated as CaCO3)		4732313	N/A	2016/11/09	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4736732	2016/11/07	2016/11/08	Arlene Rossiter
Metals Water Total MS	CICP/MS	4738394	2016/11/08	2016/11/08	Mike Leblanc
Ion Balance (% Difference)	CALC	4732172	N/A	2016/11/09	Automated Statchk
Anion and Cation Sum	CALC	4732173	N/A	2016/11/09	Automated Statchk
Nitrogen Ammonia - water	KONE	4736496	N/A	2016/11/09	Mary Clancey
Nitrogen - Nitrate + Nitrite	KONE	4738078	N/A	2016/11/09	Nancy Rogers
Nitrogen - Nitrite	KONE	4738077	N/A	2016/11/09	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4732314	N/A	2016/11/09	Automated Statchk
рН	AT	4738012	N/A	2016/11/08	Julia McGovern
Phosphorus - ortho	KONE	4738076	N/A	2016/11/08	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4732179	N/A	2016/11/09	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4732180	N/A	2016/11/09	Automated Statchk
Reactive Silica	KONE	4738072	N/A	2016/11/08	Nancy Rogers
Sulphate	KONE	4738071	N/A	2016/11/08	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4732181	N/A	2016/11/09	Automated Statchk
Organic carbon - Total (TOC)	TECH	4740037	N/A	2016/11/09	Soraya Merchant
Turbidity	TURB	4738096	N/A	2016/11/08	Julia McGovern

Maxxam ID: DJN932 Sample ID: P2B Matrix: Water

Collected: 2016/11/01

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4732171	N/A	2016/11/08	Automated Statchk

Englobe Corp.

Client Project #: P-0010903-0-00-205

Your P.O. #: A 06392

TEST SUMMARY

Maxxam ID: DJN932 Sample ID: P2B Matrix: Water

Collected: 2016/11/01

Shipped:

Received: 2016/11/02

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	KONE	4738067	N/A	2016/11/08	Nancy Rogers
Chloride	KONE	4738070	N/A	2016/11/08	Nancy Rogers
Colour	KONE	4738074	N/A	2016/11/08	Nancy Rogers
Conductance - water	AT	4738015	N/A	2016/11/08	Julia McGovern
Hardness (calculated as CaCO3)		4732313	N/A	2016/11/09	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4736732	2016/11/07	2016/11/08	Arlene Rossiter
Metals Water Total MS	CICP/MS	4738394	2016/11/08	2016/11/08	Mike Leblanc
Ion Balance (% Difference)	CALC	4732172	N/A	2016/11/09	Automated Statchk
Anion and Cation Sum	CALC	4732173	N/A	2016/11/09	Automated Statchk
Nitrogen Ammonia - water	KONE	4736493	N/A	2016/11/08	Mary Clancey
Nitrogen - Nitrate + Nitrite	KONE	4738078	N/A	2016/11/09	Nancy Rogers
Nitrogen - Nitrite	KONE	4738077	N/A	2016/11/09	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4732314	N/A	2016/11/09	Automated Statchk
рН	AT	4738014	N/A	2016/11/08	Julia McGovern
Phosphorus - ortho	KONE	4738076	N/A	2016/11/08	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4732179	N/A	2016/11/09	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4732180	N/A	2016/11/09	Automated Statchk
Reactive Silica	KONE	4738072	N/A	2016/11/08	Nancy Rogers
Sulphate	KONE	4738071	N/A	2016/11/08	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4732181	N/A	2016/11/09	Automated Statchk
Organic carbon - Total (TOC)	TECH	4740037	N/A	2016/11/09	Soraya Merchant
Turbidity	TURB	4738100	N/A	2016/11/08	Julia McGovern

Maxxam ID: DJN933 Sample ID: P3 Matrix: Water

Collected: 2016/11/01

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4732171	N/A	2016/11/08	Automated Statchk
Alkalinity	KONE	4738067	N/A	2016/11/08	Nancy Rogers
Chloride	KONE	4738070	N/A	2016/11/08	Nancy Rogers
Colour	KONE	4738074	N/A	2016/11/08	Nancy Rogers
Conductance - water	AT	4738017	N/A	2016/11/08	Julia McGovern
Hardness (calculated as CaCO3)		4732313	N/A	2016/11/09	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4736732	2016/11/07	2016/11/08	Arlene Rossiter
Metals Water Total MS	CICP/MS	4738394	2016/11/08	2016/11/08	Mike Leblanc
Ion Balance (% Difference)	CALC	4732172	N/A	2016/11/09	Automated Statchk
Anion and Cation Sum	CALC	4732173	N/A	2016/11/09	Automated Statchk
Nitrogen Ammonia - water	KONE	4736494	N/A	2016/11/08	Mary Clancey
Nitrogen - Nitrate + Nitrite	KONE	4738078	N/A	2016/11/09	Nancy Rogers
Nitrogen - Nitrite	KONE	4738077	N/A	2016/11/09	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4732314	N/A	2016/11/09	Automated Statchk
рН	AT	4738016	N/A	2016/11/08	Julia McGovern
Phosphorus - ortho	KONE	4738076	N/A	2016/11/08	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4732179	N/A	2016/11/09	Automated Statchk

Englobe Corp.

Client Project #: P-0010903-0-00-205

Your P.O. #: A 06392

TEST SUMMARY

Maxxam ID: DJN933 Sample ID: P3

Collected: 2016/11/01

Matrix: Water

Shipped:

Received: 2016/11/02

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Sat. pH and Langelier Index (@ 4C)	CALC	4732180	N/A	2016/11/09	Automated Statchk
Reactive Silica	KONE	4738072	N/A	2016/11/08	Nancy Rogers
Sulphate	KONE	4738071	N/A	2016/11/08	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4732181	N/A	2016/11/09	Automated Statchk
Organic carbon - Total (TOC)	TECH	4740037	N/A	2016/11/09	Soraya Merchant
Turbidity	TURB	4738093	N/A	2016/11/08	Julia McGovern

Maxxam ID: DJN934 Sample ID: BACK2

Collected: Shipped:

2016/11/01

Matrix: Water

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4732171	N/A	2016/11/08	Automated Statchk
Alkalinity	KONE	4738067	N/A	2016/11/08	Nancy Rogers
Chloride	KONE	4738070	N/A	2016/11/08	Nancy Rogers
Colour	KONE	4738074	N/A	2016/11/08	Nancy Rogers
Conductance - water	AT	4738011	N/A	2016/11/08	Julia McGovern
Hardness (calculated as CaCO3)		4732313	N/A	2016/11/09	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4736738	2016/11/07	2016/11/08	Arlene Rossiter
Metals Water Diss. MS (as rec'd)	CICP/MS	4738315	N/A	2016/11/08	Mike Leblanc
Metals Water Total MS	CICP/MS	4738394	2016/11/08	2016/11/08	Mike Leblanc
Ion Balance (% Difference)	CALC	4732172	N/A	2016/11/09	Automated Statchk
Anion and Cation Sum	CALC	4732173	N/A	2016/11/09	Automated Statchk
Nitrogen Ammonia - water	KONE	4736496	N/A	2016/11/09	Mary Clancey
Nitrogen - Nitrate + Nitrite	KONE	4738078	N/A	2016/11/09	Nancy Rogers
Nitrogen - Nitrite	KONE	4738077	N/A	2016/11/09	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4732314	N/A	2016/11/09	Automated Statchk
рН	AT	4738010	N/A	2016/11/08	Julia McGovern
Phosphorus - ortho	KONE	4738076	N/A	2016/11/08	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4732179	N/A	2016/11/09	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4732180	N/A	2016/11/09	Automated Statchk
Reactive Silica	KONE	4738072	N/A	2016/11/08	Nancy Rogers
Sulphate	KONE	4738071	N/A	2016/11/08	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4732181	N/A	2016/11/09	Automated Statchk
Organic carbon - Total (TOC)	TECH	4740256	N/A	2016/11/09	Soraya Merchant
Total Suspended Solids	BAL	4736265	2016/11/07	2016/11/07	Leslie Power
Turbidity	TURB	4738093	N/A	2016/11/08	Julia McGovern

Englobe Corp. Client Project #: P-0010903-0-00-205 Your P.O. #: A 06392

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1	4.3°C
Package 2	6.0°C
Package 3	5.3°C

Sample DJN876 [SW1]: RCAp Ion Balance acceptable. Low ionic strength sample.

Sample DJN877 [SW2]: RCAp Ion Balance acceptable. Low ionic strength sample.

Sample DJN879 [SW4]: Poor RCAp Ion Balance due to sample matrix.

Sample DJN882 [SW7]: RCAp Ion Balance acceptable. Low ionic strength sample.

Sample DJN910 [SW11]: RCAp Ion Balance acceptable. Anion/cation agreement within 0.2 meq/L.

Sample DJN911 [SW13]: RCAp Ion Balance acceptable. Low ionic strength sample.

Sample DJN912 [SW14]: Poor RCAp Ion Balance due to sample matrix.

Sample DJN914 [SW16]: RCAp Ion Balance acceptable. Anion/cation agreement within 0.2 meg/L.

Sample DJN916 [SW-DUP2]: RCAp Ion Balance acceptable. Low ionic strength sample.

Sample DJN917 [P1A] : Poor RCAp Ion Balance due to sample matrix.

Sample DJN918 [P1B]: Poor RCAp Ion Balance due to sample matrix. Excess cations due to presence of turbidity.

Sample DJN932 [P2B]: Poor RCAp Ion Balance due to sample matrix. Excess cations due to presence of turbidity.

Sample DJN933 [P3]: Poor RCAp Ion Balance due to sample matrix. Excess cations due to presence of turbidity.

Results relate only to the items tested.

Englobe Corp.
Client Project #: P-0010903-0-00-205
Your P.O. #: A 06392

QUALITY ASSURANCE REPORT

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
4733407	MM9	QC Standard	Total Suspended Solids	2016/11/09		94	%	80 - 120
4733407	MM9	Method Blank	Total Suspended Solids	2016/11/09		54	mg/L	00 120
4736265	LPW	QC Standard	Total Suspended Solids	2016/11/07		97	%	80 - 120
4736265	LPW	Method Blank	Total Suspended Solids	2016/11/07		37	mg/L	00 120
4736265	LPW	RPD - Sample/Sample Dup	Total Suspended Solids	2016/11/07			%	25
4736492	MCN	Matrix Spike	Nitrogen (Ammonia Nitrogen)	2016/11/08		100	%	80 - 120
4736492	MCN	Spiked Blank	Nitrogen (Ammonia Nitrogen)	2016/11/08		103	%	80 - 120
4736492	MCN	Method Blank	Nitrogen (Ammonia Nitrogen)	2016/11/08		103	mg/L	00 120
4736492	MCN	RPD - Sample/Sample Dup	Nitrogen (Ammonia Nitrogen)	2016/11/08			%	20
4736493	MCN	Matrix Spike	Nitrogen (Ammonia Nitrogen)	2016/11/08		97	%	80 - 120
4736493	MCN	Spiked Blank	Nitrogen (Ammonia Nitrogen)	2016/11/08		103	%	80 - 120
4736493	MCN	Method Blank	Nitrogen (Ammonia Nitrogen)	2016/11/08		103	mg/L	00 120
4736493	MCN	RPD - Sample/Sample Dup	Nitrogen (Ammonia Nitrogen)	2016/11/08			%	20
4736494	MCN	Matrix Spike	Nitrogen (Ammonia Nitrogen)	2016/11/08		NC	%	80 - 120
4736494	MCN	Spiked Blank	Nitrogen (Ammonia Nitrogen)	2016/11/08		104	%	80 - 120
4736494	MCN	Method Blank	Nitrogen (Ammonia Nitrogen)	2016/11/08		20.	mg/L	00 120
4736494	MCN	RPD - Sample/Sample Dup	Nitrogen (Ammonia Nitrogen)	2016/11/08			%	20
4736496	MCN	Matrix Spike	Nitrogen (Ammonia Nitrogen)	2016/11/09		104	%	80 - 120
4736496	MCN	Spiked Blank	Nitrogen (Ammonia Nitrogen)	2016/11/08		102	%	80 - 120
4736496	MCN	Method Blank	Nitrogen (Ammonia Nitrogen)	2016/11/08		102	mg/L	00 120
4736496	MCN	RPD - Sample/Sample Dup	Nitrogen (Ammonia Nitrogen)	2016/11/09			%	20
4736497	MCN	Matrix Spike	Nitrogen (Ammonia Nitrogen)	2016/11/09		104	%	80 - 120
4736497	MCN	Spiked Blank	Nitrogen (Ammonia Nitrogen)	2016/11/09		106	%	80 - 120
4736497	MCN	Method Blank	Nitrogen (Ammonia Nitrogen)	2016/11/09		100	mg/L	00 120
4736497	MCN		Nitrogen (Ammonia Nitrogen)	2016/11/09			%	20
4736732	ARS	Matrix Spike(DJN881)	Total Mercury (Hg)	2016/11/08		106	%	80 - 120
4736732	ARS	Spiked Blank	Total Mercury (Hg)	2016/11/08		105	%	80 - 120
4736732	ARS	Method Blank	Total Mercury (Hg)	2016/11/08		200	ug/L	00 120
4736732	ARS	RPD - Sample/Sample Dup	Total Mercury (Hg)	2016/11/08			%	20
4736738	ARS	Matrix Spike	Total Mercury (Hg)	2016/11/08		103	%	80 - 120
4736738	ARS	Spiked Blank	Total Mercury (Hg)	2016/11/08		107	%	80 - 120
4736738	ARS	Method Blank	Total Mercury (Hg)	2016/11/08		207	ug/L	00 120
4736738	ARS		Total Mercury (Hg)	2016/11/08			%	20
4738010	JMV	QC Standard	pH	2016/11/08		100	%	97 - 103
4738010	JMV	RPD - Sample/Sample Dup	pH	2016/11/08		200	%	N/A
4738011	JMV	Spiked Blank	Conductivity	2016/11/08		100	%	80 - 120
4738011	JMV	Method Blank	Conductivity	2016/11/08		200	uS/cm	00 120
			,	, ,	RDL=1.0		,	
4738011	JMV	RPD - Sample/Sample Dup	Conductivity	2016/11/08			%	25
4738011	JMV	QC Standard	рН	2016/11/08		100	% %	97 - 103
4738012	JMV	RPD - Sample/Sample Dup	•	2016/11/08		100	%	N/A
4738012	JMV	Spiked Blank	Conductivity	2016/11/08		100	%	80 - 120
4738013	JMV	Method Blank	Conductivity	2016/11/08		100	uS/cm	80 - 120
4/36013	JIVIV	Wethou Blank	Conductivity	2010/11/06	RDL=1.0		us/ciii	
4738013	JMV	RPD - Sample/Sample Dup	Conductivity	2016/11/08	0.089		%	25
4738014	JMV	QC Standard	рН	2016/11/08	3	100	%	97 - 103
4738014	JMV	RPD - Sample/Sample Dup	рН	2016/11/08	3 1.5		%	N/A
4738015	JMV	Spiked Blank	Conductivity	2016/11/08	3	100	%	80 - 120
4738015	JMV	Method Blank	Conductivity	2016/11/08	3 1.7,		uS/cm	
					RDL=1.0			
4738015	JMV	RPD - Sample/Sample Dup	Conductivity	2016/11/08	3 0.77		%	25
4738016	JMV	QC Standard	pH	2016/11/08	3	100	%	97 - 103
4738016	JMV	RPD - Sample/Sample Dup	pH	2016/11/08	0.36		%	N/A

Englobe Corp.
Client Project #: P-0010903-0-00-205
Your P.O. #: A 06392

0.100						21		
QA/QC		00.7		Date		%		001: "
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
4738017	JMV	Spiked Blank	Conductivity	2016/11/08	4.2	100	%	80 - 120
4738017	JMV	Method Blank	Conductivity	2016/11/08	1.3,		uS/cm	
					RDL=1.0		-,	
4738017	JMV	RPD - Sample/Sample Dup		2016/11/08	0.66		%	25
4738055	NRG	Matrix Spike(DJN877)	Total Alkalinity (Total as CaCO3)	2016/11/08		101	%	80 - 120
4738055	NRG	Spiked Blank	Total Alkalinity (Total as CaCO3)	2016/11/08		107	%	80 - 120
4738055	NRG	Method Blank	Total Alkalinity (Total as CaCO3)	2016/11/08	<5.0		mg/L	
4738055	NRG	RPD - Sample/Sample Dup	Total Alkalinity (Total as CaCO3)	2016/11/08	NC		%	25
4738056	NRG	Matrix Spike(DJN877)	Dissolved Chloride (Cl)	2016/11/08		NC	%	80 - 120
4738056	NRG	QC Standard	Dissolved Chloride (CI)	2016/11/08		104	%	80 - 120
4738056	NRG	Spiked Blank	Dissolved Chloride (Cl)	2016/11/08	.4.0	106	%	80 - 120
4738056	NRG	Method Blank	Dissolved Chloride (Cl)	2016/11/08	<1.0		mg/L	25
4738056	NRG	RPD - Sample/Sample Dup		2016/11/08	3.7		%	25
4738057	NRG	Matrix Spike(DJN877)	Dissolved Sulphate (SO4)	2016/11/08		NC	%	80 - 120
4738057	NRG	Spiked Blank	Dissolved Sulphate (SO4)	2016/11/08	-2.0	103	%	80 - 120
4738057	NRG	Method Blank	Dissolved Sulphate (SO4)	2016/11/08	<2.0		mg/L	25
4738057	NRG	RPD - Sample/Sample Dup	Dissolved Sulphate (SO4)	2016/11/08	2.6	NG	%	25
4738058	NRG	Matrix Spike(DJN877)	Reactive Silica (SiO2)	2016/11/08		NC	%	80 - 120
4738058	NRG	Spiked Blank	Reactive Silica (SiO2)	2016/11/08	40 F0	99	%	80 - 120
4738058	NRG	Method Blank	Reactive Silica (SiO2)	2016/11/08	<0.50		mg/L	25
4738058	NRG	RPD - Sample/Sample Dup		2016/11/08	0.63	0.7	%	25
4738059	NRG	Spiked Blank	Colour	2016/11/08	4F.O	97	% TCU	80 - 120
4738059	NRG	Method Blank	Colour	2016/11/08	<5.0		TCU %	20
4738059	NRG	RPD - Sample/Sample Dup		2016/11/08	NC	02		20 80 - 120
4738060	NRG	Matrix Spike(DJN877) Spiked Blank	Orthophosphate (P)	2016/11/08		82 98	% %	80 - 120 80 - 120
4738060 4738060	NRG NRG	Method Blank	Orthophosphate (P) Orthophosphate (P)	2016/11/08 2016/11/08	<0.010	98		80 - 120
4738060	NRG	RPD - Sample/Sample Dup	Orthophosphate (P)	2016/11/08	NC		mg/L %	25
4738061	NRG	Matrix Spike(DJN877)	Nitrate + Nitrite (N)	2016/11/08	INC	101	% %	80 - 120
4738061	NRG	Spiked Blank	Nitrate + Nitrite (N)	2016/11/09		97	%	80 - 120
4738061	NRG	Method Blank	Nitrate + Nitrite (N)	2016/11/09	<0.050	37	mg/L	00 - 120
4738061	NRG	RPD - Sample/Sample Dup	. ,	2016/11/09	NC		111g/L %	25
4738062	NRG	Matrix Spike(DJN877)	Nitrite (N)	2016/11/09	NC	72 (1)	%	80 - 120
4738062	NRG	Spiked Blank	Nitrite (N)	2016/11/09		94	%	80 - 120
4738062	NRG	Method Blank	Nitrite (N)	2016/11/09	<0.010	54	mg/L	00 120
4738062	NRG	RPD - Sample/Sample Dup		2016/11/09	NC		// // // // // // // // // // // // //	25
4738067	NRG	Matrix Spike	Total Alkalinity (Total as CaCO3)	2016/11/08	140	NC	%	80 - 120
4738067	NRG	Spiked Blank	Total Alkalinity (Total as CaCO3)	2016/11/08		107	%	80 - 120
4738067	NRG	Method Blank	Total Alkalinity (Total as CaCO3)	2016/11/08	<5.0	10,	mg/L	00 120
4738067	NRG	RPD - Sample/Sample Dup		2016/11/08	1.5		%	25
4738070	NRG	Matrix Spike	Dissolved Chloride (CI)	2016/11/08	2.0	NC	%	80 - 120
4738070	NRG	QC Standard	Dissolved Chloride (CI)	2016/11/08		105	%	80 - 120
4738070	NRG	Spiked Blank	Dissolved Chloride (CI)	2016/11/08		98	%	80 - 120
4738070	NRG	Method Blank	Dissolved Chloride (CI)	2016/11/08	<1.0	30	mg/L	00 120
4738070	NRG	RPD - Sample/Sample Dup	Dissolved Chloride (CI)	2016/11/08	6.3		%	25
4738071	NRG	Matrix Spike	Dissolved Sulphate (SO4)	2016/11/08		NC	%	80 - 120
4738071	NRG	Spiked Blank	Dissolved Sulphate (SO4)	2016/11/08		102	%	80 - 120
4738071	NRG	Method Blank	Dissolved Sulphate (SO4)	2016/11/08	<2.0		mg/L	
4738071	NRG			2016/11/08	5.8		%	25
4738072	NRG	Matrix Spike	Reactive Silica (SiO2)	2016/11/08		NC	%	80 - 120
4738072	NRG	Spiked Blank	Reactive Silica (SiO2)	2016/11/08		100	%	80 - 120
4738072	NRG	Method Blank	Reactive Silica (SiO2)	2016/11/08	<0.50		mg/L	3
4738072	NRG	RPD - Sample/Sample Dup		2016/11/08	1.1		%	25
		1 / 1	, ,	, , ,				

Englobe Corp.
Client Project #: P-0010903-0-00-205
Your P.O. #: A 06392

0.1/0.0						0/		
QA/QC	114	007	David and the same	Date	\/-l	%	LINUTC	001::
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
4738074	NRG	Spiked Blank	Colour	2016/11/08		93	%	80 - 120
4738074	NRG	Method Blank	Colour	2016/11/08	<5.0		TCU	
4738074	NRG	RPD - Sample/Sample Dup		2016/11/08	NC		%	20
4738076	NRG	Matrix Spike	Orthophosphate (P)	2016/11/08		93	%	80 - 120
4738076	NRG	Spiked Blank	Orthophosphate (P)	2016/11/08		100	%	80 - 120
4738076	NRG	Method Blank	Orthophosphate (P)	2016/11/08	<0.010		mg/L	
4738076	NRG			2016/11/08	NC		%	25
4738077	NRG	Matrix Spike	Nitrite (N)	2016/11/09		91	%	80 - 120
4738077	NRG	Spiked Blank	Nitrite (N)	2016/11/09		92	%	80 - 120
4738077	NRG	Method Blank	Nitrite (N)	2016/11/09	<0.010		mg/L	
4738077	NRG	RPD - Sample/Sample Dup		2016/11/09	NC		%	25
4738078	NRG	Matrix Spike	Nitrate + Nitrite (N)	2016/11/09		NC	%	80 - 120
4738078	NRG	Spiked Blank	Nitrate + Nitrite (N)	2016/11/09		95	%	80 - 120
4738078	NRG	Method Blank	Nitrate + Nitrite (N)	2016/11/09	<0.050		mg/L	
4738078	NRG	RPD - Sample/Sample Dup		2016/11/09	0.21		%	25
4738092	JMV	QC Standard	Turbidity	2016/11/08		102	%	80 - 120
4738092	JMV	Spiked Blank	Turbidity	2016/11/08		94	%	80 - 120
4738092	JMV	Method Blank	Turbidity	2016/11/08	<0.10		NTU	
4738092	JMV	RPD - Sample/Sample Dup	Turbidity	2016/11/08	2.1		%	20
4738093	JMV	QC Standard	Turbidity	2016/11/08		101	%	80 - 120
4738093	JMV	Spiked Blank	Turbidity	2016/11/08		95	%	80 - 120
4738093	JMV	Method Blank	Turbidity	2016/11/08	< 0.10		NTU	
4738093	JMV	RPD - Sample/Sample Dup	Turbidity	2016/11/08	NC		%	20
4738096	JMV	QC Standard	Turbidity	2016/11/08		101	%	80 - 120
4738096	JMV	Spiked Blank	Turbidity	2016/11/08		95	%	80 - 120
4738096	JMV	Method Blank	Turbidity	2016/11/08	< 0.10		NTU	
4738096	JMV	RPD - Sample/Sample Dup	Turbidity	2016/11/08	1.3		%	20
4738100	JMV	QC Standard	Turbidity	2016/11/08		101	%	80 - 120
4738100	JMV	Spiked Blank	Turbidity	2016/11/08		95	%	80 - 120
4738100	JMV	Method Blank	Turbidity	2016/11/08	< 0.10		NTU	
4738100	JMV	RPD - Sample/Sample Dup	Turbidity	2016/11/08	NC		%	20
4738302	MLB	Matrix Spike(DJN912)	Dissolved Aluminum (Al)	2016/11/08		102	%	80 - 120
			Dissolved Antimony (Sb)	2016/11/08		98	%	80 - 120
			Dissolved Arsenic (As)	2016/11/08		97	%	80 - 120
			Dissolved Barium (Ba)	2016/11/08		97	%	80 - 120
			Dissolved Beryllium (Be)	2016/11/08		95	%	80 - 120
			Dissolved Bismuth (Bi)	2016/11/08		99	%	80 - 120
			Dissolved Boron (B)	2016/11/08		95	%	80 - 120
			Dissolved Cadmium (Cd)	2016/11/08		96	%	80 - 120
			Dissolved Calcium (Ca)	2016/11/08		99	%	80 - 120
			Dissolved Chromium (Cr)	2016/11/08		96	%	80 - 120
			Dissolved Cobalt (Co)	2016/11/08		97	%	80 - 120
			Dissolved Copper (Cu)	2016/11/08		94	%	80 - 120
			Dissolved Iron (Fe)	2016/11/08		98	%	80 - 120
			Dissolved Lead (Pb)	2016/11/08		96	%	80 - 120
			Dissolved Magnesium (Mg)	2016/11/08		100	%	80 - 120
			Dissolved Manganese (Mn)	2016/11/08		100	%	80 - 120
			Dissolved Molybdenum (Mo)	2016/11/08		101	%	80 - 120
			Dissolved Nickel (Ni)	2016/11/08		96	%	80 - 120
			Dissolved Phosphorus (P)	2016/11/08		103	%	80 - 120
			Dissolved Potassium (K)	2016/11/08		100	%	80 - 120
			Dissolved Selenium (Se)	2016/11/08		100	%	80 - 120
			Dissolved Silver (Ag)	2016/11/08		98	%	80 - 120
			- :	=010/11/00			,,,	00 120

Englobe Corp.
Client Project #: P-0010903-0-00-205
Your P.O. #: A 06392

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			Dissolved Sodium (Na)	2016/11/08		NC	%	80 - 120
			Dissolved Strontium (Sr)	2016/11/08		NC	%	80 - 120
			Dissolved Thallium (TI)	2016/11/08		99	%	80 - 120
			Dissolved Tin (Sn)	2016/11/08		103	%	80 - 120
			Dissolved Titanium (Ti)	2016/11/08		97	%	80 - 120
			Dissolved Uranium (U)	2016/11/08		101	%	80 - 120
			Dissolved Vanadium (V)	2016/11/08		98	%	80 - 120
			Dissolved Zinc (Zn)	2016/11/08		99	%	80 - 120
4738302	MLB	Spiked Blank	Dissolved Aluminum (AI)	2016/11/08		103	%	80 - 120
			Dissolved Antimony (Sb)	2016/11/08		99	%	80 - 120
			Dissolved Arsenic (As)	2016/11/08		98	%	80 - 120
			Dissolved Barium (Ba)	2016/11/08		98	%	80 - 120
			Dissolved Beryllium (Be)	2016/11/08		97	%	80 - 120
			Dissolved Bismuth (Bi)	2016/11/08		101	%	80 - 120
			Dissolved Boron (B)	2016/11/08		97	%	80 - 120
			Dissolved Cadmium (Cd)	2016/11/08		98	%	80 - 120
			Dissolved Calcium (Ca)	2016/11/08		99	%	80 - 120
			Dissolved Chromium (Cr)	2016/11/08		97	%	80 - 120
			Dissolved Cobalt (Co)	2016/11/08		97	%	80 - 120
			Dissolved Copper (Cu)	2016/11/08		96	%	80 - 120
			Dissolved Iron (Fe)	2016/11/08		97	%	80 - 120
			Dissolved Lead (Pb)	2016/11/08		98	%	80 - 120
			Dissolved Magnesium (Mg)	2016/11/08		102	%	80 - 120
			Dissolved Manganese (Mn)	2016/11/08		100	%	80 - 120
			Dissolved Molybdenum (Mo)	2016/11/08		100	%	80 - 120
			Dissolved Nickel (Ni)	2016/11/08		99	%	80 - 120
			Dissolved Phosphorus (P)	2016/11/08		104	%	80 - 120
			Dissolved Potassium (K)	2016/11/08		102	%	80 - 120
			Dissolved Selenium (Se)	2016/11/08		99	%	80 - 120
			Dissolved Silver (Ag)	2016/11/08		98	%	80 - 120
			Dissolved Sodium (Na)	2016/11/08		98	%	80 - 120
			Dissolved Strontium (Sr)	2016/11/08		99	%	80 - 120
			Dissolved Thallium (TI)	2016/11/08		101	%	80 - 120
			Dissolved Tin (Sn)	2016/11/08		100	%	80 - 120
			Dissolved Titanium (Ti)	2016/11/08		101	%	80 - 120
			Dissolved Uranium (U)	2016/11/08		102	%	80 - 120
			Dissolved Vanadium (V)	2016/11/08		98	%	80 - 120
			Dissolved Zinc (Zn)	2016/11/08		100	%	80 - 120
4738302	MLB	Method Blank	Dissolved Aluminum (AI)	2016/11/08	<5.0	200	ug/L	00 120
., 55552	5	memou biann	Dissolved Antimony (Sb)	2016/11/08	<1.0		ug/L	
			Dissolved Arsenic (As)	2016/11/08	<1.0		ug/L	
			Dissolved Barium (Ba)	2016/11/08	<1.0		ug/L	
			Dissolved Beryllium (Be)	2016/11/08	<1.0		ug/L	
			Dissolved Bismuth (Bi)	2016/11/08	<2.0		ug/L	
			Dissolved Boron (B)	2016/11/08	<50		ug/L	
			Dissolved Cadmium (Cd)	2016/11/08	<0.010		ug/L	
			Dissolved Calcium (Ca)	2016/11/08	<100		ug/L	
			Dissolved Chromium (Cr)	2016/11/08	<1.0		ug/L	
			Dissolved Cobalt (Co)	2016/11/08	<0.40		ug/L	
			Dissolved Copper (Cu)	2016/11/08	<2.0		ug/L ug/L	
			Dissolved Copper (Cd) Dissolved Iron (Fe)	2016/11/08	<50		ug/L ug/L	
			Dissolved from (Fe) Dissolved Lead (Pb)	2016/11/08	< 0.50		ug/L	

Englobe Corp.
Client Project #: P-0010903-0-00-205
Your P.O. #: A 06392

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			Dissolved Manganese (Mn)	2016/11/08	<2.0		ug/L	
			Dissolved Molybdenum (Mo)	2016/11/08	<2.0		ug/L	
			Dissolved Nickel (Ni)	2016/11/08	<2.0		ug/L	
			Dissolved Phosphorus (P)	2016/11/08	<100		ug/L	
			Dissolved Potassium (K)	2016/11/08	<100		ug/L	
			Dissolved Selenium (Se)	2016/11/08	<1.0		ug/L	
			Dissolved Silver (Ag)	2016/11/08	< 0.10		ug/L	
			Dissolved Sodium (Na)	2016/11/08	<100		ug/L	
			Dissolved Strontium (Sr)	2016/11/08	<2.0		ug/L	
			Dissolved Thallium (TI)	2016/11/08	< 0.10		ug/L	
			Dissolved Tin (Sn)	2016/11/08	<2.0		ug/L	
			Dissolved Titanium (Ti)	2016/11/08	<2.0		ug/L	
			Dissolved Uranium (U)	2016/11/08	< 0.10		ug/L	
			Dissolved Vanadium (V)	2016/11/08	<2.0		ug/L	
			Dissolved Zinc (Zn)	2016/11/08	<5.0		ug/L	
738302	MLB	RPD - Sample/Sample Dup	Dissolved Aluminum (Al)	2016/11/08	0.44		%	20
			Dissolved Antimony (Sb)	2016/11/08	NC		%	20
			Dissolved Arsenic (As)	2016/11/08	NC		%	20
			Dissolved Barium (Ba)	2016/11/08	1.9		%	20
			Dissolved Beryllium (Be)	2016/11/08	NC		%	20
			Dissolved Bismuth (Bi)	2016/11/08	NC		%	20
			Dissolved Boron (B)	2016/11/08	NC		%	20
			Dissolved Cadmium (Cd)	2016/11/08	1.3		%	20
			Dissolved Calcium (Ca)	2016/11/08	2.1		%	20
			Dissolved Chromium (Cr)	2016/11/08	NC		%	20
			Dissolved Cobalt (Co)	2016/11/08	NC		%	20
			Dissolved Copper (Cu)	2016/11/08	NC		%	20
			Dissolved Iron (Fe)	2016/11/08	NC		%	20
			Dissolved Lead (Pb)	2016/11/08	NC		%	20
			Dissolved Magnesium (Mg)	2016/11/08	0.14		%	20
			Dissolved Manganese (Mn)	2016/11/08	2.0		%	20
			Dissolved Molybdenum (Mo)	2016/11/08	NC		%	20
			Dissolved Nickel (Ni)	2016/11/08	NC		%	20
			Dissolved Phosphorus (P)	2016/11/08	NC		%	20
			Dissolved Potassium (K)	2016/11/08	4.7		%	20
			Dissolved Selenium (Se)	2016/11/08	NC		%	20
			Dissolved Silver (Ag)	2016/11/08	NC		%	20
			Dissolved Sodium (Na)	2016/11/08	0.21		%	20
			Dissolved Strontium (Sr)	2016/11/08	2.4		%	20
			Dissolved Thallium (TI)	2016/11/08	NC		%	20
			Dissolved Tin (Sn)	2016/11/08	NC		%	20
			Dissolved Titanium (Ti)	2016/11/08	NC		%	20
			Dissolved Tranium (T)	2016/11/08	NC		%	20
			Dissolved Vanadium (V)	2016/11/08	NC		%	20
			Dissolved Variation (V)	2016/11/08	NC		%	20
738315	MLB	Matrix Spike	Dissolved Aluminum (Al)	2016/11/08	INC	103	% %	80 - 120
, 20213	IVILD	ινιατι ιλ ομικο	Dissolved Antimony (Sb)	2016/11/08		97	%	80 - 120
			Dissolved Arsenic (As)			97 95	% %	80 - 120
				2016/11/08 2016/11/08				
			Dissolved Barium (Ba)			95 02	% %	80 - 120
			Dissolved Beryllium (Be)	2016/11/08		93	%	80 - 120
			Dissolved Bismuth (Bi)	2016/11/08		98	%	80 - 120
			Dissolved Boron (B)	2016/11/08		94	%	80 - 120
			Dissolved Cadmium (Cd)	2016/11/08		97	%	80 - 120

Englobe Corp.
Client Project #: P-0010903-0-00-205
Your P.O. #: A 06392

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
Batch	11110	QC Type	Dissolved Calcium (Ca)	2016/11/08	Value	NC	%	80 - 120
			Dissolved Chromium (Cr)	2016/11/08		95	%	80 - 120
			Dissolved Cobalt (Co)	2016/11/08		95	%	80 - 120
			Dissolved Copper (Cu)	2016/11/08		93	%	80 - 120
			Dissolved Iron (Fe)	2016/11/08		98	%	80 - 120
			Dissolved Lead (Pb)	2016/11/08		96	%	80 - 120
			Dissolved Magnesium (Mg)	2016/11/08		102	%	80 - 120
			Dissolved Manganese (Mn)	2016/11/08		NC	%	80 - 120
			Dissolved Molybdenum (Mo)	2016/11/08		100	%	80 - 120
			Dissolved Nickel (Ni)	2016/11/08		95	%	80 - 120
			Dissolved Phosphorus (P)	2016/11/08		106	%	80 - 120
			Dissolved Potassium (K)	2016/11/08		103	%	80 - 120
			Dissolved Selenium (Se)	2016/11/08		100	%	80 - 120
			Dissolved Silver (Ag)	2016/11/08		92	%	80 - 120
			Dissolved Sodium (Na)	2016/11/08		98	%	80 - 120
			Dissolved Strontium (Sr)	2016/11/08		NC	%	80 - 120
			Dissolved Thallium (TI)	2016/11/08		100	%	80 - 120
			Dissolved Tin (Sn)	2016/11/08		103	%	80 - 120
			Dissolved Titanium (Ti)	2016/11/08		100	%	80 - 120
			Dissolved Uranium (U)	2016/11/08		101	%	80 - 120
			Dissolved Vanadium (V)	2016/11/08		96	%	80 - 120
			Dissolved Zinc (Zn)	2016/11/08		NC	%	80 - 120
4738315	MLB	Spiked Blank	Dissolved Aluminum (AI)	2016/11/08		107	%	80 - 120
., 55525		op.nea ziain	Dissolved Antimony (Sb)	2016/11/08		97	%	80 - 120
			Dissolved Arsenic (As)	2016/11/08		97	%	80 - 120
			Dissolved Barium (Ba)	2016/11/08		97	%	80 - 120
			Dissolved Beryllium (Be)	2016/11/08		96	%	80 - 120
			Dissolved Bismuth (Bi)	2016/11/08		99	%	80 - 120
			Dissolved Boron (B)	2016/11/08		96	%	80 - 120
			Dissolved Cadmium (Cd)	2016/11/08		100	%	80 - 120
			Dissolved Calcium (Ca)	2016/11/08		103	%	80 - 120
			Dissolved Chromium (Cr)	2016/11/08		98	%	80 - 120
			Dissolved Cobalt (Co)	2016/11/08		98	%	80 - 120
			Dissolved Copper (Cu)	2016/11/08		96	%	80 - 120
			Dissolved Iron (Fe)	2016/11/08		101	%	80 - 120
			Dissolved Lead (Pb)	2016/11/08		98	%	80 - 120
			Dissolved Magnesium (Mg)	2016/11/08		105	%	80 - 120
			Dissolved Manganese (Mn)	2016/11/08		100	%	80 - 120
			Dissolved Molybdenum (Mo)	2016/11/08		99	%	80 - 120
			Dissolved Nickel (Ni)	2016/11/08		99	%	80 - 120
			Dissolved Phosphorus (P)	2016/11/08		105	%	80 - 120
			Dissolved Potassium (K)	2016/11/08		104	%	80 - 120
			Dissolved Selenium (Se)	2016/11/08		98	%	80 - 120
			Dissolved Silver (Ag)	2016/11/08		97	%	80 - 120
			Dissolved Sodium (Na)	2016/11/08		101	%	80 - 120
			Dissolved Strontium (Sr)	2016/11/08		99	%	80 - 120
			Dissolved Thallium (TI)	2016/11/08		100	%	80 - 120
			Dissolved Tin (Sn)	2016/11/08		100	%	80 - 120
			Dissolved Titanium (Ti)	2016/11/08		104	%	80 - 120
			Dissolved Uranium (U)	2016/11/08		101	%	80 - 120
			Dissolved Vanadium (V)	2016/11/08		99	%	80 - 120
			Dissolved Zinc (Zn)	2016/11/08		99	%	80 - 120
4738315	MLB	Method Blank	Dissolved Aluminum (AI)	2016/11/08	<5.0		ug/L	

Englobe Corp.
Client Project #: P-0010903-0-00-205
Your P.O. #: A 06392

QA/QC				Date		%	
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery UNITS	QC Limits
			Dissolved Antimony (Sb)	2016/11/08	<1.0	ug/L	·
			Dissolved Arsenic (As)	2016/11/08	<1.0	ug/L	
			Dissolved Barium (Ba)	2016/11/08	<1.0	ug/L	
			Dissolved Beryllium (Be)	2016/11/08	<1.0	ug/L	
			Dissolved Bismuth (Bi)	2016/11/08	<2.0	ug/L	
			Dissolved Boron (B)	2016/11/08	<50	ug/L	
			Dissolved Cadmium (Cd)	2016/11/08	0.017,	ug/L	
					RDL=0.010	8/ -	
			Dissolved Calcium (Ca)	2016/11/08	<100	ug/L	
			Dissolved Chromium (Cr)	2016/11/08	<1.0	ug/L	
			Dissolved Cobalt (Co)	2016/11/08	<0.40	ug/L	
			Dissolved Copper (Cu)	2016/11/08	<2.0	ug/L	
			Dissolved Iron (Fe)	2016/11/08	<50	ug/L	
			Dissolved Lead (Pb)	2016/11/08	<0.50	ug/L	
			Dissolved Magnesium (Mg)	2016/11/08	<100		
			0 , 0,			ug/L	
			Dissolved Manganese (Mn)	2016/11/08	<2.0	ug/L	
			Dissolved Molybdenum (Mo)	2016/11/08	<2.0	ug/L	
			Dissolved Nickel (Ni)	2016/11/08	<2.0	ug/L	
			Dissolved Phosphorus (P)	2016/11/08	<100	ug/L	
			Dissolved Potassium (K)	2016/11/08	<100	ug/L	
			Dissolved Selenium (Se)	2016/11/08	<1.0	ug/L	
			Dissolved Silver (Ag)	2016/11/08	<0.10	ug/L	
			Dissolved Sodium (Na)	2016/11/08	<100	ug/L	
			Dissolved Strontium (Sr)	2016/11/08	<2.0	ug/L	
			Dissolved Thallium (TI)	2016/11/08	<0.10	ug/L	
			Dissolved Tin (Sn)	2016/11/08	<2.0	ug/L	
			Dissolved Titanium (Ti)	2016/11/08	<2.0	ug/L	
			Dissolved Uranium (U)	2016/11/08	<0.10	ug/L	
			Dissolved Vanadium (V)	2016/11/08	<2.0	ug/L	
			Dissolved Zinc (Zn)	2016/11/08	<5.0	ug/L	
738315	MLB	RPD - Sample/Sample Dup	Dissolved Aluminum (AI)	2016/11/08	0.31	%	20
			Dissolved Antimony (Sb)	2016/11/08	NC	%	20
			Dissolved Arsenic (As)	2016/11/08	NC	%	20
			Dissolved Barium (Ba)	2016/11/08	NC	%	20
			Dissolved Beryllium (Be)	2016/11/08	NC	%	20
			Dissolved Bismuth (Bi)	2016/11/08	NC	%	20
			Dissolved Boron (B)	2016/11/08	NC	%	20
			Dissolved Cadmium (Cd)	2016/11/08	0.49	%	20
			Dissolved Calcium (Ca)	2016/11/08	1.3	%	20
			Dissolved Chromium (Cr)	2016/11/08	NC	%	20
			Dissolved Cobalt (Co)	2016/11/08	NC	%	20
			Dissolved Copper (Cu)	2016/11/08	NC	%	20
			Dissolved Iron (Fe)	2016/11/08	NC	%	20
			Dissolved Lead (Pb)	2016/11/08	NC	%	20
			Dissolved Magnesium (Mg)	2016/11/08	1.1	%	20
			Dissolved Manganese (Mn)	2016/11/08	3.7	%	20
			Dissolved Molybdenum (Mo)	2016/11/08	NC	%	20
			Dissolved Nickel (Ni)	2016/11/08	NC	%	20
			Dissolved Phosphorus (P)	2016/11/08	NC	%	20
			Dissolved Potassium (K)	2016/11/08	2.6	%	20
			Dissolved Selenium (Se)	2016/11/08	NC	%	20
			• •	2016/11/08	NC	%	
			Dissolved Silver (Ag)	/() I h / I I / l i ×		9/2	20

Englobe Corp.
Client Project #: P-0010903-0-00-205
Your P.O. #: A 06392

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			Dissolved Strontium (Sr)	2016/11/08	2.6		%	20
			Dissolved Thallium (TI)	2016/11/08	NC		%	20
			Dissolved Tin (Sn)	2016/11/08	NC		%	20
			Dissolved Titanium (Ti)	2016/11/08	NC		%	20
			Dissolved Uranium (U)	2016/11/08	2.4		%	20
			Dissolved Vanadium (V)	2016/11/08	NC		%	20
			Dissolved Zinc (Zn)	2016/11/08	1.5		%	20
4738356	BAN	Matrix Spike	Total Aluminum (AI)	2016/11/08		106	%	80 - 120
			Total Antimony (Sb)	2016/11/08		102	%	80 - 120
			Total Arsenic (As)	2016/11/08		97	%	80 - 120
			Total Barium (Ba)	2016/11/08		99	%	80 - 120
			Total Beryllium (Be)	2016/11/08		97	%	80 - 120
			Total Bismuth (Bi)	2016/11/08		103	%	80 - 120
			Total Boron (B)	2016/11/08		100	%	80 - 120
			Total Cadmium (Cd)	2016/11/08		97	%	80 - 120
			Total Calcium (Ca)	2016/11/08		104	%	80 - 120
			Total Chromium (Cr)	2016/11/08		97	%	80 - 120
			Total Cobalt (Co)	2016/11/08		97	%	80 - 120
			Total Copper (Cu)	2016/11/08		94	%	80 - 120
			Total Iron (Fe)	2016/11/08		104	%	80 - 120
			Total Lead (Pb)	2016/11/08		98	%	80 - 120
			Total Magnesium (Mg)	2016/11/08		107	%	80 - 120
			Total Manganese (Mn)	2016/11/08		100	%	80 - 120
			Total Molybdenum (Mo)	2016/11/08		103	%	80 - 120
			Total Nickel (Ni)	2016/11/08		97	%	80 - 120
			Total Phosphorus (P)	2016/11/08		104	%	80 - 120
			Total Potassium (K)	2016/11/08		106	%	80 - 120
			Total Selenium (Se)	2016/11/08		98	%	80 - 120
			Total Silver (Ag)	2016/11/08		98	%	80 - 120
			Total Sodium (Na)	2016/11/08		101	%	80 - 120
			Total Strontium (Sr)	2016/11/08		100	%	80 - 120
			Total Thallium (Tl)	2016/11/08		103	%	80 - 120
			Total Tin (Sn)	2016/11/08		105	%	80 - 120
			Total Titanium (Ti)	2016/11/08		101	%	80 - 120
			Total Uranium (U)	2016/11/08		104	%	80 - 120
			Total Vanadium (V)	2016/11/08		98	%	80 - 120
			Total Zinc (Zn)	2016/11/08		96	%	80 - 120
4738356	RΔN	Spiked Blank	Total Aluminum (Al)	2016/11/08		106	%	80 - 120
+730330	D/ (14	эрікса віатік	Total Antimony (Sb)	2016/11/08		102	%	80 - 120
			Total Arsenic (As)	2016/11/08		97	%	80 - 120
			Total Barium (Ba)	2016/11/08		97	%	80 - 120
			Total Baridin (Ba)	2016/11/08		98	%	80 - 120
			Total Bismuth (Bi)	2016/11/08		104	%	80 - 120
			Total Bismuth (Bi)	2016/11/08		99	% %	80 - 120
			Total Bolon (B) Total Cadmium (Cd)	2016/11/08		98	% %	80 - 120
			Total Cadmum (Cd) Total Calcium (Ca)	2016/11/08		98 102	% %	80 - 120
			Total Calcium (Ca) Total Chromium (Cr)			99	%	80 - 120
			Total Chromium (Cr) Total Cobalt (Co)	2016/11/08		99	% %	80 - 120 80 - 120
				2016/11/08				
			Total Iron (Fo)	2016/11/08		97 100	%	80 - 120
			Total Load (Ph)	2016/11/08		100	%	80 - 120
			Total Magnesium (Mg)	2016/11/08		101	%	80 - 120
			Total Magnesium (Mg)	2016/11/08		105	%	80 - 120
			Total Manganese (Mn)	2016/11/08		103	%	80 - 120

Englobe Corp.
Client Project #: P-0010903-0-00-205
Your P.O. #: A 06392

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			Total Molybdenum (Mo)	2016/11/08		100	%	80 - 120
			Total Nickel (Ni)	2016/11/08		98	%	80 - 120
			Total Phosphorus (P)	2016/11/08		103	%	80 - 120
			Total Potassium (K)	2016/11/08		102	%	80 - 120
			Total Selenium (Se)	2016/11/08		99	%	80 - 120
			Total Silver (Ag)	2016/11/08		99	%	80 - 120
			Total Sodium (Na)	2016/11/08		100	%	80 - 120
			Total Strontium (Sr)	2016/11/08		104	%	80 - 120
			Total Thallium (TI)	2016/11/08		102	%	80 - 120
			Total Tin (Sn)	2016/11/08		105	%	80 - 120
			Total Titanium (Ti)	2016/11/08		104	%	80 - 120
			Total Uranium (U)	2016/11/08		106	%	80 - 120
			Total Vanadium (V)	2016/11/08		100	%	80 - 120
			Total Zinc (Zn)	2016/11/08		98	%	80 - 120
4738356	BAN	Method Blank	Total Aluminum (Al)	2016/11/08	6.4,		ug/L	
					RDL=5.0		-	
			Total Antimony (Sb)	2016/11/08	<1.0		ug/L	
			Total Arsenic (As)	2016/11/08	<1.0		ug/L	
			Total Barium (Ba)	2016/11/08	<1.0		ug/L	
			Total Beryllium (Be)	2016/11/08	<1.0		ug/L	
			Total Bismuth (Bi)	2016/11/08	<2.0		ug/L	
			Total Boron (B)	2016/11/08	<50		ug/L	
			Total Cadmium (Cd)	2016/11/08	<0.010		ug/L	
			Total Calcium (Ca)	2016/11/08	<100		ug/L	
			Total Chromium (Cr)	2016/11/08	<1.0		ug/L	
			Total Cobalt (Co)	2016/11/08	< 0.40		ug/L	
			Total Copper (Cu)	2016/11/08	<2.0		ug/L	
			Total Iron (Fe)	2016/11/08	<50		ug/L	
			Total Lead (Pb)	2016/11/08	<0.50		ug/L	
			Total Magnesium (Mg)	2016/11/08	<100		ug/L	
			Total Manganese (Mn)	2016/11/08	<2.0		ug/L	
			Total Molybdenum (Mo)	2016/11/08	<2.0		ug/L	
			Total Nickel (Ni)	2016/11/08	<2.0		ug/L	
			Total Phosphorus (P)	2016/11/08	<100		ug/L	
			Total Potassium (K)	2016/11/08	<100		ug/L	
			Total Selenium (Se)	2016/11/08	<1.0		ug/L	
			Total Silver (Ag)	2016/11/08	<0.10		ug/L	
			Total Sodium (Na)	2016/11/08	<100		ug/L	
			Total Strontium (Sr)	2016/11/08	<2.0		ug/L	
			Total Thallium (TI)	2016/11/08	<0.10		ug/L	
			Total Tin (Sn)	2016/11/08	<2.0		ug/L	
			Total Titanium (Ti)	2016/11/08	<2.0		ug/L	
			Total Uranium (U)	2016/11/08	<0.10		ug/L	
			Total Vanadium (V)	2016/11/08	<2.0		ug/L	
			Total Zinc (Zn)	2016/11/08	<5.0		ug/L	
4738356	BAN	RPD - Sample/Sample Dup		2016/11/08	NC		%	20
	··· ·	2 Campie/Campie Dup	Total Antimony (Sb)	2016/11/08	NC		%	20
			Total Arsenic (As)	2016/11/08	NC		%	20
			Total Barium (Ba)	2016/11/08	NC		%	20
			Total Beryllium (Be)	2016/11/08	NC		%	20
			Total Bismuth (Bi)	2016/11/08	NC		%	20
			Total Boron (B)	2016/11/08	NC		%	20
			Total Cadmium (Cd)	2016/11/08	NC		%	20

Englobe Corp.
Client Project #: P-0010903-0-00-205
Your P.O. #: A 06392

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			Total Calcium (Ca)	2016/11/08	2.3		%	20
			Total Chromium (Cr)	2016/11/08	NC		%	20
			Total Cobalt (Co)	2016/11/08	NC		%	20
			Total Copper (Cu)	2016/11/08	1.9		%	20
			Total Iron (Fe)	2016/11/08	NC		%	20
			Total Lead (Pb)	2016/11/08	NC		%	20
			Total Magnesium (Mg)	2016/11/08	1.0		%	20
			Total Manganese (Mn)	2016/11/08	NC		%	20
			Total Molybdenum (Mo)	2016/11/08	NC		%	20
			Total Nickel (Ni)	2016/11/08	NC		%	20
			Total Phosphorus (P)	2016/11/08	NC		%	20
			Total Potassium (K)	2016/11/08	2.4		%	20
			Total Selenium (Se)	2016/11/08	NC		%	20
			Total Silver (Ag)	2016/11/08	NC		%	20
			Total Sodium (Na)	2016/11/08	1.9		%	20
			Total Strontium (Sr)	2016/11/08	1.4		%	20
			Total Thallium (TI)	2016/11/08	NC		%	20
			Total Tin (Sn)	2016/11/08	NC		%	20
			Total Titanium (Ti)	2016/11/08	NC		%	20
			Total Uranium (U)	2016/11/08	1.4		%	20
			Total Vanadium (V)	2016/11/08	NC		%	20
			Total Zinc (Zn)	2016/11/08	1.3		%	20
4738394	MLB	Matrix Spike	Total Aluminum (AI)	2016/11/09		NC	%	80 - 120
			Total Antimony (Sb)	2016/11/09		107	%	80 - 120
			Total Arsenic (As)	2016/11/09		104	%	80 - 120
			Total Barium (Ba)	2016/11/09		NC	%	80 - 120
			Total Beryllium (Be)	2016/11/09		103	%	80 - 120
			Total Bismuth (Bi)	2016/11/09		102	%	80 - 120
			Total Boron (B)	2016/11/09		102	%	80 - 120
			Total Cadmium (Cd)	2016/11/09		103	%	80 - 120
			Total Calcium (Ca)	2016/11/09		NC	%	80 - 120
			Total Chromium (Cr)	2016/11/09		104	%	80 - 120
			Total Cobalt (Co)	2016/11/09		99	%	80 - 120
			Total Copper (Cu)	2016/11/09		97	%	80 - 120
			Total Iron (Fe)	2016/11/09		NC	%	80 - 120
			Total Lead (Pb)	2016/11/09		102	%	80 - 120
			Total Magnesium (Mg)	2016/11/09		NC	%	80 - 120
			Total Manganese (Mn)	2016/11/09		NC	%	80 - 120
			Total Molybdenum (Mo)	2016/11/09		107	%	80 - 120
			Total Nickel (Ni)	2016/11/09		99	%	80 - 120
			Total Phosphorus (P)	2016/11/09		106	%	80 - 120
			Total Potassium (K)	2016/11/09		NC	%	80 - 120
			Total Selenium (Se)	2016/11/09		105	%	80 - 120
			Total Silver (Ag)	2016/11/09		104	%	80 - 120
			Total Sodium (Na)	2016/11/09		NC	%	80 - 120
			Total Strontium (Sr)	2016/11/09		NC	%	80 - 120
			Total Thallium (TI)	2016/11/09		103	%	80 - 120
			Total Tin (Sn)	2016/11/09		110	%	80 - 120
			Total Titanium (Ti)	2016/11/09		110	%	80 - 120
			Total Uranium (U)	2016/11/09		112	%	80 - 120
			Total Vanadium (V)	2016/11/09		106	%	80 - 120
			Total Zinc (Zn)	2016/11/09		98	%	80 - 120
4738394	MLB	Spiked Blank	Total Aluminum (AI)	2016/11/08		108	%	80 - 120

Englobe Corp.
Client Project #: P-0010903-0-00-205
Your P.O. #: A 06392

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			Total Antimony (Sb)	2016/11/08		105	%	80 - 120
			Total Arsenic (As)	2016/11/08		98	%	80 - 120
			Total Barium (Ba)	2016/11/08		99	%	80 - 120
			Total Beryllium (Be)	2016/11/08		100	%	80 - 120
			Total Bismuth (Bi)	2016/11/08		104	%	80 - 120
			Total Boron (B)	2016/11/08		102	%	80 - 120
			Total Cadmium (Cd)	2016/11/08		100	%	80 - 120
			Total Calcium (Ca)	2016/11/08		104	%	80 - 120
			Total Chromium (Cr)	2016/11/08		98	%	80 - 120
			Total Cobalt (Co)	2016/11/08		99	%	80 - 120
			Total Copper (Cu)	2016/11/08		97	%	80 - 120
			Total Iron (Fe)	2016/11/08		102	%	80 - 120
			Total Lead (Pb)	2016/11/08		101	%	80 - 120
			Total Magnesium (Mg)	2016/11/08		106	%	80 - 120
			Total Manganese (Mn)	2016/11/08		103	%	80 - 120
			Total Molybdenum (Mo)	2016/11/08		102	%	80 - 120
			Total Nickel (Ni)	2016/11/08		99	%	80 - 120
			Total Phosphorus (P)	2016/11/08		105	%	80 - 120
			Total Potassium (K)	2016/11/08		106	%	80 - 120
			Total Selenium (Se)	2016/11/08		101	%	80 - 120
			Total Silver (Ag)	2016/11/08		100	%	80 - 120
			Total Sodium (Na)	2016/11/08		102	%	80 - 120
			Total Strontium (Sr)	2016/11/08		102	%	80 - 120
			Total Thallium (TI)	2016/11/08		104	%	80 - 120
			Total Tin (Sn)	2016/11/08		106	%	80 - 120
			Total Titanium (Ti)	2016/11/08		101	%	80 - 120
			Total Uranium (U)	2016/11/08		107	%	80 - 120
			Total Vanadium (V)	2016/11/08		101	%	80 - 120
			Total Zinc (Zn)	2016/11/08		99	%	80 - 120
4738394	MLB	Method Blank	Total Aluminum (AI)	2016/11/08	6.1,		ug/L	
					RDL=5.0			
			Total Antimony (Sb)	2016/11/08	<1.0		ug/L	
			Total Arsenic (As)	2016/11/08	<1.0		ug/L	
			Total Barium (Ba)	2016/11/08	<1.0		ug/L	
			Total Beryllium (Be)	2016/11/08	<1.0		ug/L	
			Total Bismuth (Bi)	2016/11/08	<2.0		ug/L	
			Total Boron (B)	2016/11/08	<50		ug/L	
			Total Cadmium (Cd)	2016/11/08	< 0.010		ug/L	
			Total Calcium (Ca)	2016/11/08	<100		ug/L	
			Total Chromium (Cr)	2016/11/08	<1.0		ug/L	
			Total Cobalt (Co)	2016/11/08	< 0.40		ug/L	
			Total Copper (Cu)	2016/11/08	<2.0		ug/L	
			Total Iron (Fe)	2016/11/08	<50		ug/L	
			Total Lead (Pb)	2016/11/08	<0.50		ug/L	
			Total Magnesium (Mg)	2016/11/08	<100		ug/L	
			Total Manganese (Mn)	2016/11/08	<2.0		ug/L	
			Total Molybdenum (Mo)	2016/11/08	<2.0		ug/L	
			Total Nickel (Ni)	2016/11/08	<2.0		ug/L	
			Total Phosphorus (P)	2016/11/08	<100		ug/L	
			Total Potassium (K)	2016/11/08	<100		ug/L	
			Total Selenium (Se)	2016/11/08	<1.0		ug/L	
			Total Silver (Ag)	2016/11/08	< 0.10		ug/L	
			Total Sodium (Na)	2016/11/08	<100		ug/L	

Englobe Corp.
Client Project #: P-0010903-0-00-205
Your P.O. #: A 06392

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			Total Strontium (Sr)	2016/11/08	<2.0		ug/L	
			Total Thallium (TI)	2016/11/08	< 0.10		ug/L	
			Total Tin (Sn)	2016/11/08	<2.0		ug/L	
			Total Titanium (Ti)	2016/11/08	<2.0		ug/L	
			Total Uranium (U)	2016/11/08	< 0.10		ug/L	
			Total Vanadium (V)	2016/11/08	<2.0		ug/L	
			Total Zinc (Zn)	2016/11/08	<5.0		ug/L	
4738394	MLB	RPD - Sample/Sample Dup	Total Lead (Pb)	2016/11/09	NC		%	20
4739997	BAN	Matrix Spike	Total Aluminum (Al)	2016/11/10		NC	%	80 - 120
		·	Total Antimony (Sb)	2016/11/10		101	%	80 - 120
			Total Arsenic (As)	2016/11/10		99	%	80 - 120
			Total Barium (Ba)	2016/11/10		95	%	80 - 120
			Total Beryllium (Be)	2016/11/10		96	%	80 - 120
			Total Bismuth (Bi)	2016/11/10		101	%	80 - 120
			Total Boron (B)	2016/11/10		102	%	80 - 120
			Total Cadmium (Cd)	2016/11/10		99	%	80 - 120
			Total Calcium (Ca)	2016/11/10		100	%	80 - 120
			Total Chromium (Cr)	2016/11/10		98	%	80 - 120
			Total Cobalt (Co)	2016/11/10		100	%	80 - 120
			Total Copper (Cu)	2016/11/10		97	%	80 - 120
			Total Iron (Fe)	2016/11/10		NC	%	80 - 120
			Total Lead (Pb)	2016/11/10		97	%	80 - 120
			Total Magnesium (Mg)	2016/11/10		102	%	80 - 120
			Total Manganese (Mn)	2016/11/10		NC	%	80 - 120
			Total Molybdenum (Mo)	2016/11/10		100	%	80 - 120
			Total Nickel (Ni)	2016/11/10		100	%	80 - 120
			Total Phosphorus (P)	2016/11/10		97	%	80 - 120
			Total Potassium (K)	2016/11/10		98	%	80 - 120
			Total Selenium (Se)	2016/11/10		99	%	80 - 120
			Total Silver (Ag)	2016/11/10		99	%	80 - 120
			Total Sodium (Na)	2016/11/10		103	%	80 - 120
			Total Strontium (Sr)	2016/11/10		100	%	80 - 120
			Total Thallium (TI)	2016/11/10		100	%	80 - 120
			Total Tin (Sn)	2016/11/10		102	%	80 - 120
			Total Titanium (Ti)	2016/11/10		103	%	80 - 120
			Total Uranium (U)	2016/11/10		104	%	80 - 120
			Total Vanadium (V)	2016/11/10		99	%	80 - 120
			Total Zinc (Zn)	2016/11/10		99	%	80 - 120
4739997	BVN	Spiked Blank	Total Aluminum (AI)	2016/11/10		92	%	80 - 120
4/3333/	DAIN	эрікей віатік	Total Antimony (Sb)	2016/11/10		99	% %	80 - 120
			Total Arsenic (As)	2016/11/10		92	%	80 - 120
			Total Barium (Ba)	2016/11/10		91	% %	
			Total Beryllium (Be)	2016/11/10			%	80 - 120 80 - 120
						91		80 - 120
			Total Bismuth (Bi)	2016/11/10		102	%	
			Total Boron (B) Total Cadmium (Cd)	2016/11/10 2016/11/10		103 92	% %	80 - 120 80 - 120
			Total Calcium (Ca)					
				2016/11/10		90	%	80 - 120
			Total Chromium (Cr)	2016/11/10		92	%	80 - 120
			Total Copper (Cu)	2016/11/10		93	%	80 - 120
			Total Copper (Cu)	2016/11/10		91	%	80 - 120
			Total Iron (Fe)	2016/11/10		90	%	80 - 120
			Total Magnesium (Ma)	2016/11/10		92	%	80 - 120
			Total Magnesium (Mg)	2016/11/10		91	%	80 - 120

Englobe Corp.
Client Project #: P-0010903-0-00-205
Your P.O. #: A 06392

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
	-	. //	Total Manganese (Mn)	2016/11/10		94	%	80 - 120
			Total Molybdenum (Mo)	2016/11/10		100	%	80 - 120
			Total Nickel (Ni)	2016/11/10		94	%	80 - 120
			Total Phosphorus (P)	2016/11/10		89	%	80 - 120
			Total Potassium (K)	2016/11/10		90	%	80 - 120
			Total Selenium (Se)	2016/11/10		92	%	80 - 120
			Total Silver (Ag)	2016/11/10		91	%	80 - 120
			Total Sodium (Na)	2016/11/10		92	%	80 - 120
			Total Strontium (Sr)	2016/11/10		93	%	80 - 120
			Total Thallium (TI)	2016/11/10		101	%	80 - 120
			Total Tin (Sn)	2016/11/10		103	%	80 - 120
			Total Titanium (Ti)	2016/11/10		94	%	80 - 120
			Total Uranium (U)	2016/11/10		98	%	80 - 120
			Total Vanadium (V)	2016/11/10		93	%	80 - 120
			Total Zinc (Zn)	2016/11/10		97	%	80 - 120
4739997	BAN	Method Blank	Total Aluminum (Al)	2016/11/10	5.0,		ug/L	
			(,	,,	RDL=5.0		6/ =	
			Total Antimony (Sb)	2016/11/10	<1.0		ug/L	
			Total Arsenic (As)	2016/11/10	<1.0		ug/L	
			Total Barium (Ba)	2016/11/10	<1.0		ug/L	
			Total Beryllium (Be)	2016/11/10	<1.0		ug/L	
			Total Bismuth (Bi)	2016/11/10	<2.0		ug/L	
			Total Boron (B)	2016/11/10	<50		ug/L	
			Total Cadmium (Cd)	2016/11/10	< 0.010		ug/L	
			Total Calcium (Ca)	2016/11/10	<100		ug/L	
			Total Chromium (Cr)	2016/11/10	<1.0		ug/L	
			Total Cobalt (Co)	2016/11/10	< 0.40		ug/L	
			Total Copper (Cu)	2016/11/10	<2.0		ug/L	
			Total Iron (Fe)	2016/11/10	<50		ug/L	
			Total Lead (Pb)	2016/11/10	<0.50		ug/L	
			Total Magnesium (Mg)	2016/11/10	<100		ug/L	
			Total Manganese (Mn)	2016/11/10	<2.0		ug/L	
			Total Molybdenum (Mo)	2016/11/10	<2.0		ug/L	
			Total Nickel (Ni)	2016/11/10	<2.0		ug/L	
			Total Phosphorus (P)	2016/11/10	<100		ug/L	
			Total Potassium (K)	2016/11/10	<100		ug/L	
			Total Selenium (Se)	2016/11/10	<1.0		ug/L	
			Total Silver (Ag)	2016/11/10	<0.10		ug/L	
			Total Sodium (Na)	2016/11/10	<100		ug/L	
			Total Strontium (Sr)	2016/11/10	<2.0		ug/L	
			Total Thallium (TI)	2016/11/10	<0.10		ug/L	
			Total Tin (Sn)	2016/11/10	<2.0		ug/L	
			Total Titanium (Ti)	2016/11/10	<2.0		ug/L	
			Total Uranium (U)	2016/11/10	<0.10		ug/L	
			Total Vanadium (V)	2016/11/10	<2.0		ug/L ug/L	
			Total Zinc (Zn)	2016/11/10	<5.0		ug/L ug/L	
4739997	BAN	RPD - Sample/Sample Dup	• •	2016/11/10	2.4		ug/L %	20
7/3333/	DAIN	m b - Jampie/Jampie Dup	Total Antimony (Sb)	2016/11/10	NC		%	20
			Total Arsenic (As)	2016/11/10	NC		%	20
			Total Barium (Ba)	2016/11/10	4.2		% %	20
1			Total Beryllium (Be)	2016/11/10	NC		% %	20
			Total Bismuth (Bi)	2016/11/10	NC NC		% %	
								20 20
			Total Boron (B)	2016/11/10	NC		%	20

Englobe Corp.
Client Project #: P-0010903-0-00-205
Your P.O. #: A 06392

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			Total Cadmium (Cd)	2016/11/10	NC	<i>'</i>	%	20
			Total Calcium (Ca)	2016/11/10	3.4		%	20
			Total Chromium (Cr)	2016/11/10	NC		%	20
			Total Cobalt (Co)	2016/11/10	NC		%	20
			Total Copper (Cu)	2016/11/10	NC		%	20
			Total Iron (Fe)	2016/11/10	NC		%	20
			Total Lead (Pb)	2016/11/10	NC		%	20
			Total Magnesium (Mg)	2016/11/10	3.3		%	20
			Total Manganese (Mn)	2016/11/10	NC		%	20
			Total Molybdenum (Mo)	2016/11/10	NC		%	20
			Total Nickel (Ni)	2016/11/10	NC		%	20
			Total Phosphorus (P)	2016/11/10	NC		%	20
			Total Potassium (K)	2016/11/10	1.5		%	20
			Total Selenium (Se)	2016/11/10	NC		%	20
			Total Silver (Ag)	2016/11/10	NC		%	20
			Total Sodium (Na)	2016/11/10	2.1		%	20
			Total Strontium (Sr)	2016/11/10	1.1		%	20
			Total Thallium (TI)	2016/11/10	NC		%	20
			Total Tin (Sn)	2016/11/10	NC		%	20
			Total Titanium (Ti)	2016/11/10	NC		%	20
			Total Uranium (U)	2016/11/10	NC		%	20
			Total Vanadium (V)	2016/11/10	NC		%	20
			Total Zinc (Zn)	2016/11/10	NC		%	20
4740037	SMT	Matrix Spike	Total Organic Carbon (C)	2016/11/09		97	%	80 - 120
4740037	SMT	Spiked Blank	Total Organic Carbon (C)	2016/11/09		98	%	80 - 120
4740037	SMT	Method Blank	Total Organic Carbon (C)	2016/11/09	< 0.50		mg/L	
4740037	SMT	RPD - Sample/Sample Dup	Total Organic Carbon (C)	2016/11/09	2.3		%	20
4740054	BAN	Matrix Spike	Dissolved Aluminum (Al)	2016/11/10		103	%	80 - 120
			Dissolved Antimony (Sb)	2016/11/10		102	%	80 - 120
			Dissolved Arsenic (As)	2016/11/10		97	%	80 - 120
			Dissolved Barium (Ba)	2016/11/10		96	%	80 - 120
			Dissolved Beryllium (Be)	2016/11/10		100	%	80 - 120
			Dissolved Bismuth (Bi)	2016/11/10		100	%	80 - 120
			Dissolved Boron (B)	2016/11/10		102	%	80 - 120
			Dissolved Cadmium (Cd)	2016/11/10		99	%	80 - 120
			Dissolved Calcium (Ca)	2016/11/10		103	%	80 - 120
			Dissolved Chromium (Cr)	2016/11/10		97	%	80 - 120
			Dissolved Cobalt (Co)	2016/11/10		98	%	80 - 120
			Dissolved Copper (Cu)	2016/11/10		95	%	80 - 120
			Dissolved Iron (Fe)	2016/11/10		99	%	80 - 120
			Dissolved Lead (Pb)	2016/11/10		98	%	80 - 120
			Dissolved Magnesium (Mg)	2016/11/10		102	%	80 - 120
			Dissolved Manganese (Mn)	2016/11/10		100	%	80 - 120
			Dissolved Molybdenum (Mo)	2016/11/10		102	%	80 - 120
			Dissolved Nickel (Ni)	2016/11/10		97	%	80 - 120
			Dissolved Phosphorus (P)	2016/11/10		104	%	80 - 120
			Dissolved Potassium (K)	2016/11/10		102	%	80 - 120
			Dissolved Selenium (Se)	2016/11/10		100	%	80 - 120
			Dissolved Silver (Ag)	2016/11/10		98	%	80 - 120
			Dissolved Sodium (Na)	2016/11/10		99	%	80 - 120
			Dissolved Strontium (Sr)	2016/11/10		101	%	80 - 120
			Dissolved Thallium (TI)	2016/11/10		101	%	80 - 120
			Dissolved Tin (Sn)	2016/11/10		103	<u>%</u>	80 - 120

Englobe Corp.
Client Project #: P-0010903-0-00-205
Your P.O. #: A 06392

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limit
			Dissolved Titanium (Ti)	2016/11/10		103	%	80 - 120
			Dissolved Uranium (U)	2016/11/10		101	%	80 - 120
			Dissolved Vanadium (V)	2016/11/10		100	%	80 - 120
			Dissolved Zinc (Zn)	2016/11/10		99	%	80 - 120
4740054	BAN	Spiked Blank	Dissolved Aluminum (Al)	2016/11/09		105	%	80 - 120
			Dissolved Antimony (Sb)	2016/11/09		97	%	80 - 120
			Dissolved Arsenic (As)	2016/11/09		96	%	80 - 120
			Dissolved Barium (Ba)	2016/11/09		100	%	80 - 120
			Dissolved Beryllium (Be)	2016/11/09		103	%	80 - 120
			Dissolved Bismuth (Bi)	2016/11/09		103	%	80 - 120
			Dissolved Boron (B)	2016/11/09		101	%	80 - 120
			Dissolved Cadmium (Cd)	2016/11/09		97	%	80 - 120
			Dissolved Calcium (Ca)	2016/11/09		101	%	80 - 120
			Dissolved Chromium (Cr)	2016/11/09		97	%	80 - 120
			Dissolved Cobalt (Co)	2016/11/09		97	%	80 - 120
			Dissolved Copper (Cu)	2016/11/09		94	%	80 - 120
			Dissolved Iron (Fe)	2016/11/09		99	%	80 - 120
			Dissolved Lead (Pb)	2016/11/09		100	%	80 - 120
			Dissolved Magnesium (Mg)	2016/11/09		100	%	80 - 120
			Dissolved Manganese (Mn)	2016/11/09		98	%	80 - 120
			Dissolved Molybdenum (Mo)	2016/11/09		98	%	80 - 120
			Dissolved Nickel (Ni)	2016/11/09		96	%	80 - 120
			Dissolved Phosphorus (P)	2016/11/09		106	%	80 - 12
			Dissolved Potassium (K)	2016/11/09		106	%	80 - 12
		Dissolved Selenium (Se)	2016/11/09		96	%	80 - 12	
			Dissolved Silver (Ag)	2016/11/09		93	%	80 - 12
			Dissolved Sodium (Na)	2016/11/09		97	%	80 - 12
			Dissolved Strontium (Sr)	2016/11/09		100	%	80 - 12
			Dissolved Thallium (TI)	2016/11/09		103	%	80 - 12
			Dissolved Tin (Sn)	2016/11/09		102	%	80 - 12
			Dissolved Titanium (Ti)	2016/11/09		100	%	80 - 12
			Dissolved Uranium (U)	2016/11/09		103	%	80 - 12
			Dissolved Vanadium (V)	2016/11/09		96	%	80 - 12
			Dissolved Zinc (Zn)	2016/11/09		97	%	80 - 12
740054	BAN	Method Blank	Dissolved Aluminum (Al)	2016/11/09	<5.0		ug/L	
	5,	memou biani	Dissolved Antimony (Sb)	2016/11/09	<1.0		ug/L	
			Dissolved Arsenic (As)	2016/11/09	<1.0		ug/L	
			Dissolved Barium (Ba)	2016/11/09	<1.0		ug/L	
			Dissolved Beryllium (Be)	2016/11/09	<1.0		ug/L	
			Dissolved Bismuth (Bi)	2016/11/09	<2.0		ug/L	
			Dissolved Boron (B)	2016/11/09	<50		ug/L	
			Dissolved Cadmium (Cd)	2016/11/09	<0.010		ug/L	
			Dissolved Calcium (Ca)	2016/11/09	<100		ug/L	
			Dissolved Chromium (Cr)	2016/11/09	<1.0		ug/L	
			Dissolved Cobalt (Co)	2016/11/09	< 0.40		ug/L	
			Dissolved Copper (Cu)	2016/11/09	<2.0		ug/L	
			Dissolved Iron (Fe)	2016/11/09	<50		ug/L	
			Dissolved Holf (Fe)	2016/11/09	< 0.50		ug/L	
			Dissolved Lead (1 b) Dissolved Magnesium (Mg)	2016/11/09	<100		ug/L	
			Dissolved Manganese (Mn)	2016/11/09	<2.0		ug/L ug/L	
				ZU1U/11/UJ	\ U		us/L	
			Dissolved Molybdenum (Mo) Dissolved Nickel (Ni)	2016/11/09 2016/11/09	<2.0 <2.0		ug/L ug/L	

Englobe Corp.
Client Project #: P-0010903-0-00-205
Your P.O. #: A 06392

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			Dissolved Potassium (K)	2016/11/09	<100		ug/L	
			Dissolved Selenium (Se)	2016/11/09	<1.0		ug/L	
			Dissolved Silver (Ag)	2016/11/09	< 0.10		ug/L	
			Dissolved Sodium (Na)	2016/11/09	<100		ug/L	
			Dissolved Strontium (Sr)	2016/11/09	<2.0		ug/L	
			Dissolved Thallium (TI)	2016/11/09	< 0.10		ug/L	
			Dissolved Tin (Sn)	2016/11/09	<2.0		ug/L	
			Dissolved Titanium (Ti)	2016/11/09	<2.0		ug/L	
			Dissolved Uranium (U)	2016/11/09	< 0.10		ug/L	
			Dissolved Vanadium (V)	2016/11/09	<2.0		ug/L	
			Dissolved Zinc (Zn)	2016/11/09	<5.0		ug/L	
4740054	BAN	RPD - Sample/Sample Dup	Dissolved Aluminum (Al)	2016/11/10	NC		%	20
			Dissolved Antimony (Sb)	2016/11/10	NC		%	20
			Dissolved Arsenic (As)	2016/11/10	NC		%	20
			Dissolved Barium (Ba)	2016/11/10	NC		%	20
			Dissolved Beryllium (Be)	2016/11/10	NC		%	20
			Dissolved Boron (B)	2016/11/10	NC		%	20
			Dissolved Cadmium (Cd)	2016/11/10	NC		%	20
			Dissolved Chromium (Cr)	2016/11/10	NC		%	20
			Dissolved Cobalt (Co)	2016/11/10	NC		%	20
			Dissolved Copper (Cu)	2016/11/10	NC		%	20
			Dissolved Iron (Fe)	2016/11/10	NC		%	20
			Dissolved Lead (Pb)	2016/11/10	NC		%	20
			Dissolved Manganese (Mn)	2016/11/10	NC		%	20
			Dissolved Molybdenum (Mo)	2016/11/10	NC		%	20
			Dissolved Nickel (Ni)	2016/11/10	NC		%	20
			Dissolved Selenium (Se)	2016/11/10	NC		%	20
			Dissolved Silver (Ag)	2016/11/10	NC		%	20
			Dissolved Strontium (Sr)	2016/11/10	NC		%	20
			Dissolved Thallium (TI)	2016/11/10	NC		%	20
			Dissolved Tin (Sn)	2016/11/10	NC		%	20
			Dissolved Uranium (U)	2016/11/10	NC		%	20
			Dissolved Vanadium (V)	2016/11/10	NC		%	20
			Dissolved Zinc (Zn)	2016/11/10	NC		%	20
4740256	SMT	Matrix Spike	Total Organic Carbon (C)	2016/11/09		88	%	80 - 120
4740256	SMT	Spiked Blank	Total Organic Carbon (C)	2016/11/09		99	%	80 - 120
4740256	SMT	Method Blank	Total Organic Carbon (C)	2016/11/09	< 0.50		mg/L	

Englobe Corp. Client Project #: P-0010903-0-00-205 Your P.O. #: A 06392

QUALITY ASSURANCE REPORT(CONT'D)

QA/C	QC				Date		%		
Batc	h	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
47402	256	SMT	RPD - Sample/Sample Dup	Total Organic Carbon (C)	2016/11/09	2.3		%	20

N/A = Not Applicable

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than 2x that of the native sample concentration).

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

(1) Poor Matrix Spike recovery due to sample matrix, recovery confirmed with repeat analysis.

Englobe Corp.
Client Project #: P-0010903-0-00-205
Your P.O. #: A 06392

VALIDATION SIGNATURE PAGE

Kevin MacDonald, Inorganics Supervisor	Kevin B. Mix Donald		
	Kevin MacDonald, Inorganics Supervisor		

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your P.O. #: A 06392

Your Project #: P-0010903-0-00-205

Site#: LAKE GEORGE Your C.O.C. #: 583333-01-01

Attention:Aven Cole

Englobe Corp.
97 Troop Ave
Dartmouth, NS
CANADA B3B 2A7

Report Date: 2016/11/14

Report #: R4246335 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B6N8782 Received: 2016/11/02, 15:45

Sample Matrix: Water # Samples Received: 18

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Carbonate, Bicarbonate and Hydroxide	7	N/A	2016/11/04	N/A	SM 22 4500-CO2 D
Carbonate, Bicarbonate and Hydroxide	11	N/A	2016/11/08	N/A	SM 22 4500-CO2 D
Alkalinity	18	N/A	2016/11/08	ATL SOP 00013	EPA 310.2 R1974 m
Chloride	18	N/A	2016/11/08	ATL SOP 00014	SM 22 4500-Cl- E m
Colour	18	N/A	2016/11/08	ATL SOP 00020	SM 22 2120C m
Conductance - water	17	N/A	2016/11/08	ATL SOP 00004	SM 22 2510B m
Conductance - water	1	N/A	2016/11/09	ATL SOP 00004	SM 22 2510B m
Hardness (calculated as CaCO3)	17	N/A	2016/11/09	ATL SOP 00048	SM 22 2340 B
Hardness (calculated as CaCO3)	1	N/A	2016/11/10	ATL SOP 00048	SM 22 2340 B
Mercury - Total (CVAA,LL)	18	2016/11/07	2016/11/08	ATL SOP 00026	EPA 245.1 R3 m
Metals Water Diss. MS (1)	12	N/A	2016/11/08	ATL SOP 00058	EPA 6020A R1 m
Metals Water Diss. MS (as rec'd)	4	N/A	2016/11/08	ATL SOP 00058	EPA 6020A R1 m
Metals Water Diss. MS (as rec'd)	2	N/A	2016/11/09	ATL SOP 00058	EPA 6020A R1 m
Metals Water Total MS	1	2016/11/08	2016/11/08	ATL SOP 00058	EPA 6020A R1 m
Metals Water Total MS	6	2016/11/08	2016/11/09	ATL SOP 00058	EPA 6020A R1 m
Metals Water Total MS	10	2016/11/09	2016/11/10	ATL SOP 00058	EPA 6020A R1 m
Metals Water Total MS	1	2016/11/09	2016/11/11	ATL SOP 00058	EPA 6020A R1 m
Ion Balance (% Difference)	17	N/A	2016/11/09	N/A	Auto Calc.
Ion Balance (% Difference)	1	N/A	2016/11/10	N/A	Auto Calc.
Anion and Cation Sum	17	N/A	2016/11/09	N/A	Auto Calc.
Anion and Cation Sum	1	N/A	2016/11/10	N/A	Auto Calc.
Nitrogen Ammonia - water	7	N/A	2016/11/08	ATL SOP 00015	EPA 350.1 R2 m
Nitrogen Ammonia - water	11	N/A	2016/11/09	ATL SOP 00015	EPA 350.1 R2 m
Nitrogen - Nitrate + Nitrite	18	N/A	2016/11/09	ATL SOP 00016	USGS SOPINCF0452.2 m
Nitrogen - Nitrite	18	N/A	2016/11/09	ATL SOP 00017	SM 22 4500-NO2- B m
Nitrogen - Nitrate (as N)	18	N/A	2016/11/09	ATL SOP 00018	ASTM D3867-16
pH (2)	17	N/A	2016/11/08	ATL SOP 00003	SM 22 4500-H+ B m
pH (2)	1	N/A	2016/11/09	ATL SOP 00003	SM 22 4500-H+ B m
Phosphorus - ortho	18	N/A	2016/11/08	ATL SOP 00021	EPA 365.2 m
Sat. pH and Langelier Index (@ 20C)	16	N/A	2016/11/09	ATL SOP 00049	Auto Calc.

Your P.O. #: A 06392

Your Project #: P-0010903-0-00-205

Site#: LAKE GEORGE Your C.O.C. #: 583333-01-01

Attention:Aven Cole

Englobe Corp.
97 Troop Ave
Dartmouth, NS
CANADA B3B 2A7

Report Date: 2016/11/14

Report #: R4246335 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B6N8782 Received: 2016/11/02, 15:45

Sample Matrix: Water # Samples Received: 18

	Date	Date	
Analyses	Quantity Extracted	Analyzed Laboratory Method	Reference
Sat. pH and Langelier Index (@ 20C)	2 N/A	2016/11/10 ATL SOP 00049	Auto Calc.
Sat. pH and Langelier Index (@ 4C)	16 N/A	2016/11/09 ATL SOP 00049	Auto Calc.
Sat. pH and Langelier Index (@ 4C)	2 N/A	2016/11/10 ATL SOP 00049	Auto Calc.
Reactive Silica	18 N/A	2016/11/08 ATL SOP 00022	EPA 366.0 m
Sulphate	18 N/A	2016/11/08 ATL SOP 00023	ASTMD516-11 m
Total Dissolved Solids (TDS calc)	17 N/A	2016/11/09 N/A	Auto Calc.
Total Dissolved Solids (TDS calc)	1 N/A	2016/11/10 N/A	Auto Calc.
Organic carbon - Total (TOC) (3)	18 N/A	2016/11/09 ATL SOP 00037	SM 22 5310C m
Turbidity	18 N/A	2016/11/08 ATL SOP 00011	EPA 180.1 R2 m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported: unless indicated otherwise, associated sample data are not blank corrected.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods. Results relate to samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) Sample filtered in laboratory prior to analysis for dissolved metals.
- (2) The APHA Standard Method require pH to be analyzed within 15 minutes of sampling and therefore field analysis is required for compliance. All Laboratory pH analyses in this report are reported past the APHA Standard Method holding time.
- (3) TOC / DOC present in the sample should be considered as non-purgeable TOC / DOC.

Your P.O. #: A 06392

Your Project #: P-0010903-0-00-205 Site#: LAKE GEORGE

Your C.O.C. #: 583333-01-01

Attention:Aven Cole

Englobe Corp.
97 Troop Ave
Dartmouth, NS
CANADA B3B 2A7

Report Date: 2016/11/14

Report #: R4246335 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B6N8782 Received: 2016/11/02, 15:45

Encryption Key

Maxxam 14 Nov 2016 16:15:16

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Avery Withrow, Project Manager Email: AWithrow@maxxam.ca Phone# (902)420-0203 Ext:233

This report has been generated and distributed using a secure automated process.

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Englobe Corp.

Client Project #: P-0010903-0-00-205

Your P.O. #: A 06392 Sampler Initials: AS

ATL. RCAP-MS DISSOLVED (LABFILT) IN W

Maxxam ID		DJO099			DJO101	DJO101			
Sampling Date		2016/11/01			2016/11/01	2016/11/01			
Sampling Date		12:00			11:40	11:40			
COC Number		583333-01-01			583333-01-01	583333-01-01			
	UNITS	MW1S	RDL	QC Batch	MW2S	MW2S Lab-Dup	RDL	QC Batch	MDL
Calculated Parameters									
Anion Sum	me/L	5.86	N/A	4731145	3.48		N/A	4731145	N/A
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	270	1.0	4731142	99		1.0	4731142	0.20
Calculated TDS	mg/L	310	1.0	4731150	200		1.0	4731150	0.20
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	4731142	<1.0		1.0	4731142	0.20
Cation Sum	me/L	4.77	N/A	4731145	3.14		N/A	4731145	N/A
Hardness (CaCO3)	mg/L	210	1.0	4731970	120		1.0	4731970	1.0
Ion Balance (% Difference)	%	10.3	N/A	4731144	5.14		N/A	4731144	N/A
Langelier Index (@ 20C)	N/A	-0.859		4731148	-1.04			4731148	
Langelier Index (@ 4C)	N/A	-1.11		4731149	-1.29			4731149	
Nitrate (N)	mg/L	<0.050	0.050	4731895	2.9		0.050	4731895	N/A
Saturation pH (@ 20C)	N/A	7.29		4731148	7.82			4731148	
Saturation pH (@ 4C)	N/A	7.53		4731149	8.07			4731149	
Inorganics	•				•		•		•
Total Alkalinity (Total as CaCO3)	mg/L	270	25	4738067	99	98	5.0	4738067	N/A
Dissolved Chloride (CI)	mg/L	13	1.0	4738070	32	34	1.0	4738070	N/A
Colour	TCU	15	5.0	4738074	8.3	6.9	5.0	4738074	N/A
Nitrate + Nitrite (N)	mg/L	<0.050	0.050	4738078	2.9	2.9	0.050	4738078	N/A
Nitrite (N)	mg/L	<0.010	0.010	4738077	<0.010	<0.010	0.010	4738077	N/A
Nitrogen (Ammonia Nitrogen)	mg/L	0.96	0.050	4736492	0.11		0.050	4736496	N/A
Total Organic Carbon (C)	mg/L	63 (1)	50	4740256	<250 (1)		250	4740256	N/A
Orthophosphate (P)	mg/L	0.024	0.010	4738076	0.014	0.014	0.010	4738076	N/A
рН	рН	6.43	N/A	4738012	6.79		N/A	4740002	N/A
Reactive Silica (SiO2)	mg/L	28	1.0	4738072	7.8	7.7	0.50	4738072	N/A
Dissolved Sulphate (SO4)	mg/L	<2.0	2.0	4738071	18	17	2.0	4738071	N/A
Turbidity	NTU	>1000	1.0	4738100	>1000		1.0	4738093	0.10
Conductivity	uS/cm	500	1.0	4738013	340		1.0	4740003	N/A
Metals									
Dissolved Aluminum (Al)	ug/L	14	5.0	4738302	14		5.0	4738302	N/A
Dissolved Antimony (Sb)	ug/L	<1.0	1.0	4738302	<1.0		1.0	4738302	N/A
Dissolved Arsenic (As)	ug/L	1.4	1.0	4738302	<1.0		1.0	4738302	N/A
Dissolved Barium (Ba)	ug/L	43	1.0	4738302	28		1.0	4738302	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

(1) Reporting limit was increased due to turbidity.

Englobe Corp.

Client Project #: P-0010903-0-00-205

Your P.O. #: A 06392 Sampler Initials: AS

ATL. RCAP-MS DISSOLVED (LABFILT) IN W

Maxxam ID		DJO099			DJO101	DJO101			
Sampling Date		2016/11/01			2016/11/01	2016/11/01			
Jamping Date		12:00			11:40	11:40			
COC Number		583333-01-01			583333-01-01	583333-01-01			
	UNITS	MW1S	RDL	QC Batch	MW2S	MW2S Lab-Dup	RDL	QC Batch	MDL
Dissolved Beryllium (Be)	ug/L	<1.0	1.0	4738302	<1.0		1.0	4738302	N/A
Dissolved Bismuth (Bi)	ug/L	<2.0	2.0	4738302	<2.0		2.0	4738302	N/A
Dissolved Boron (B)	ug/L	<50	50	4738302	350		50	4738302	N/A
Dissolved Cadmium (Cd)	ug/L	0.20	0.010	4738302	0.056		0.010	4738302	N/A
Dissolved Calcium (Ca)	ug/L	50000	100	4738302	37000		100	4738302	N/A
Dissolved Chromium (Cr)	ug/L	<1.0	1.0	4738302	<1.0		1.0	4738302	N/A
Dissolved Cobalt (Co)	ug/L	25	0.40	4738302	2.4		0.40	4738302	N/A
Dissolved Copper (Cu)	ug/L	23	2.0	4738302	5.4		2.0	4738302	N/A
Dissolved Iron (Fe)	ug/L	68	50	4738302	<50		50	4738302	N/A
Dissolved Lead (Pb)	ug/L	<0.50	0.50	4738302	<0.50		0.50	4738302	N/A
Dissolved Magnesium (Mg)	ug/L	21000	100	4738302	6200		100	4738302	N/A
Dissolved Manganese (Mn)	ug/L	14000	2.0	4738302	1100		2.0	4738302	N/A
Dissolved Molybdenum (Mo)	ug/L	<2.0	2.0	4738302	<2.0		2.0	4738302	N/A
Dissolved Nickel (Ni)	ug/L	14	2.0	4738302	3.5		2.0	4738302	N/A
Dissolved Phosphorus (P)	ug/L	<100	100	4738302	<100		100	4738302	N/A
Dissolved Potassium (K)	ug/L	5200	100	4738302	9800		100	4738302	N/A
Dissolved Selenium (Se)	ug/L	<1.0	1.0	4738302	<1.0		1.0	4738302	N/A
Dissolved Silver (Ag)	ug/L	<0.10	0.10	4738302	<0.10		0.10	4738302	N/A
Dissolved Sodium (Na)	ug/L	7600	100	4738302	12000		100	4738302	N/A
Dissolved Strontium (Sr)	ug/L	390	2.0	4738302	150		2.0	4738302	N/A
Dissolved Thallium (Tl)	ug/L	<0.10	0.10	4738302	<0.10		0.10	4738302	N/A
Dissolved Tin (Sn)	ug/L	<2.0	2.0	4738302	<2.0		2.0	4738302	N/A
Dissolved Titanium (Ti)	ug/L	<2.0	2.0	4738302	<2.0		2.0	4738302	N/A
Dissolved Uranium (U)	ug/L	0.91	0.10	4738302	0.12		0.10	4738302	N/A
Dissolved Vanadium (V)	ug/L	<2.0	2.0	4738302	<2.0		2.0	4738302	N/A
Dissolved Zinc (Zn)	ug/L	<5.0	5.0	4738302	<5.0		5.0	4738302	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Englobe Corp.

Client Project #: P-0010903-0-00-205

Your P.O. #: A 06392 Sampler Initials: AS

ATL. RCAP-MS DISSOLVED (LABFILT) IN W

Maxxam ID		DJO103			DJO105			DJO107			
Sampling Date		2016/11/01 10:30			2016/11/01 12:35			2016/11/01 12:05			
COC Number		583333-01-01			583333-01-01			583333-01-01			
	UNITS	MW3S	RDL	QC Batch	MW4S	RDL	QC Batch	MW5S	RDL	QC Batch	MDL
Calculated Parameters											
Anion Sum	me/L	7.80	N/A	4731145	0.880	N/A	4731145	3.08	N/A	4732173	N/A
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	370	1.0	4731142	14	1.0	4731142	120	1.0	4732171	0.20
Calculated TDS	mg/L	380	1.0	4731150	62	1.0	4731150	210	1.0	4732181	0.20
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	4731142	<1.0	1.0	4731142	<1.0	1.0	4732171	0.20
Cation Sum	me/L	6.35	N/A	4731145	0.760	N/A	4731145	3.91	N/A	4732173	N/A
Hardness (CaCO3)	mg/L	290	1.0	4731970	25	1.0	4731970	110	1.0	4731970	1.0
Ion Balance (% Difference)	%	10.3	N/A	4731144	7.32	N/A	4731144	11.9	N/A	4732172	N/A
Langelier Index (@ 20C)	N/A	-0.117		4731148	-3.60		4731148	-1.70		4732179	
Langelier Index (@ 4C)	N/A	-0.366		4731149	-3.85		4731149	-1.95		4732180	
Nitrate (N)	mg/L	<0.050	0.050	4731895	0.31	0.050	4731895	<0.050	0.050	4731895	N/A
Saturation pH (@ 20C)	N/A	7.08		4731148	9.37		4731148	7.82		4732179	
Saturation pH (@ 4C)	N/A	7.33		4731149	9.62		4731149	8.07		4732180	
Inorganics											
Total Alkalinity (Total as CaCO3)	mg/L	370	25	4738067	14	5.0	4738082	120	25	4738082	N/A
Dissolved Chloride (CI)	mg/L	14	1.0	4738070	13	1.0	4738083	22	1.0	4738083	N/A
Colour	TCU	6.9	5.0	4738074	<5.0	5.0	4738087	590	150	4738087	N/A
Nitrate + Nitrite (N)	mg/L	<0.050	0.050	4738078	0.31	0.050	4738090	<0.050	0.050	4738090	N/A
Nitrite (N)	mg/L	<0.010	0.010	4738077	<0.010	0.010	4738091	<0.010	0.010	4738091	N/A
Nitrogen (Ammonia Nitrogen)	mg/L	0.099	0.050	4736496	0.17	0.050	4736496	2.8	0.25	4736496	N/A
Total Organic Carbon (C)	mg/L	<50 (1)	50	4740256	<250 (1)	250	4740256	57 (1)	5.0	4740256	N/A
Orthophosphate (P)	mg/L	0.026	0.010	4738076	0.015	0.010	4738088	0.095	0.010	4738088	N/A
рН	рН	6.96	N/A	4738016	5.77	N/A	4738014	6.12	N/A	4738014	N/A
Reactive Silica (SiO2)	mg/L	20	0.50	4738072	12	0.50	4738086	30	1.0	4738086	N/A
Dissolved Sulphate (SO4)	mg/L	3.7	2.0	4738071	10	2.0	4738085	<2.0	2.0	4738085	N/A
Turbidity	NTU	>1000	1.0	4738107	>1000	1.0	4738100	430	1.0	4738100	0.10
Conductivity	uS/cm	620	1.0	4738017	99	1.0	4738015	320	1.0	4738015	N/A
Metals											
Dissolved Aluminum (Al)	ug/L	6.4	5.0	4738302	28	5.0	4738302	440	5.0	4738302	N/A
Dissolved Antimony (Sb)	ug/L	<1.0	1.0	4738302	<1.0	1.0	4738302	<1.0	1.0	4738302	N/A
Dissolved Arsenic (As)	ug/L	<1.0	1.0	4738302	<1.0	1.0	4738302	13	1.0	4738302	N/A
Dissolved Barium (Ba)	ug/L	17	1.0	4738302	13	1.0	4738302	78	1.0	4738302	N/A
Dissolved Beryllium (Be)	ug/L	<1.0	1.0	4738302	<1.0	1.0	4738302	<1.0	1.0	4738302	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

(1) Reporting limit was increased due to turbidity.

Englobe Corp.
Client Project #: P-0010903-0-00-205
Your P.O. #: A 06392
Sampler Initials: AS

ATL. RCAP-MS DISSOLVED (LABFILT) IN W

Maxxam ID		DJO103			DJO105			DJO107			
		2016/11/01			2016/11/01			2016/11/01			
Sampling Date		10:30			12:35			12:05			
COC Number		583333-01-01			583333-01-01			583333-01-01			
	UNITS	MW3S	RDL	QC Batch	MW4S	RDL	QC Batch	MW5S	RDL	QC Batch	MDL
Dissolved Bismuth (Bi)	ug/L	<2.0	2.0	4738302	<2.0	2.0	4738302	<2.0	2.0	4738302	N/A
Dissolved Boron (B)	ug/L	<50	50	4738302	<50	50	4738302	<50	50	4738302	N/A
Dissolved Cadmium (Cd)	ug/L	0.25	0.010	4738302	0.065	0.010	4738302	0.060	0.010	4738302	N/A
Dissolved Calcium (Ca)	ug/L	62000	100	4738302	6500	100	4738302	31000	100	4738302	N/A
Dissolved Chromium (Cr)	ug/L	<1.0	1.0	4738302	<1.0	1.0	4738302	2.0	1.0	4738302	N/A
Dissolved Cobalt (Co)	ug/L	5.3	0.40	4738302	6.4	0.40	4738302	8.0	0.40	4738302	N/A
Dissolved Copper (Cu)	ug/L	5.4	2.0	4738302	<2.0	2.0	4738302	7.1	2.0	4738302	N/A
Dissolved Iron (Fe)	ug/L	<50	50	4738302	<50	50	4738302	17000	50	4738302	N/A
Dissolved Lead (Pb)	ug/L	<0.50	0.50	4738302	<0.50	0.50	4738302	1.9	0.50	4738302	N/A
Dissolved Magnesium (Mg)	ug/L	32000	100	4738302	2200	100	4738302	7500	100	4738302	N/A
Dissolved Manganese (Mn)	ug/L	8700	2.0	4738302	1800	2.0	4738302	1400	2.0	4738302	N/A
Dissolved Molybdenum (Mo)	ug/L	<2.0	2.0	4738302	<2.0	2.0	4738302	<2.0	2.0	4738302	N/A
Dissolved Nickel (Ni)	ug/L	8.0	2.0	4738302	4.4	2.0	4738302	9.5	2.0	4738302	N/A
Dissolved Phosphorus (P)	ug/L	<100	100	4738302	<100	100	4738302	130	100	4738302	N/A
Dissolved Potassium (K)	ug/L	3600	100	4738302	1800	100	4738302	13000	100	4738302	N/A
Dissolved Selenium (Se)	ug/L	<1.0	1.0	4738302	<1.0	1.0	4738302	<1.0	1.0	4738302	N/A
Dissolved Silver (Ag)	ug/L	<0.10	0.10	4738302	<0.10	0.10	4738302	<0.10	0.10	4738302	N/A
Dissolved Sodium (Na)	ug/L	12000	100	4738302	4400	100	4738302	14000	100	4738302	N/A
Dissolved Strontium (Sr)	ug/L	390	2.0	4738302	38	2.0	4738302	140	2.0	4738302	N/A
Dissolved Thallium (TI)	ug/L	<0.10	0.10	4738302	<0.10	0.10	4738302	<0.10	0.10	4738302	N/A
Dissolved Tin (Sn)	ug/L	<2.0	2.0	4738302	<2.0	2.0	4738302	<2.0	2.0	4738302	N/A
Dissolved Titanium (Ti)	ug/L	<2.0	2.0	4738302	<2.0	2.0	4738302	7.2	2.0	4738302	N/A
Dissolved Uranium (U)	ug/L	0.89	0.10	4738302	<0.10	0.10	4738302	0.18	0.10	4738302	N/A
Dissolved Vanadium (V)	ug/L	<2.0	2.0	4738302	<2.0	2.0	4738302	2.6	2.0	4738302	N/A
Dissolved Zinc (Zn)	ug/L	<5.0	5.0	4738302	<5.0	5.0	4738302	59	5.0	4738302	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Englobe Corp.

Client Project #: P-0010903-0-00-205

Your P.O. #: A 06392 Sampler Initials: AS

ATL. RCAP-MS DISSOLVED (LABFILT) IN W

		_	_		_	_	_	_	
Maxxam ID		DJO108	DJO108			DJO109			
Sampling Date		2016/11/01	2016/11/01			2016/11/01			
Sampling Date		11:10	11:10			11:15			
COC Number		583333-01-01	583333-01-01			583333-01-01			
	UNITS	MW6S	MW6S Lab-Dup	RDL	QC Batch	MW6D	RDL	QC Batch	MDL
Calculated Parameters									
Anion Sum	me/L	15.2		N/A	4732173	1.92	N/A	4732173	N/A
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	680		1.0	4732171	63	1.0	4732171	0.20
Calculated TDS	mg/L	740		1.0	4732181	120	1.0	4732181	0.20
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0		1.0	4732171	<1.0	1.0	4732171	0.20
Cation Sum	me/L	13.7		N/A	4732173	1.67	N/A	4732173	N/A
Hardness (CaCO3)	mg/L	600		1.0	4731970	28	1.0	4731970	1.0
Ion Balance (% Difference)	%	5.23		N/A	4732172	6.96	N/A	4732172	N/A
Langelier Index (@ 20C)	N/A	0.489			4732179	-1.25		4732179	
Langelier Index (@ 4C)	N/A	0.242			4732180	-1.50		4732180	
Nitrate (N)	mg/L	<0.050		0.050	4731895	<0.050	0.050	4731895	N/A
Saturation pH (@ 20C)	N/A	6.51			4732179	8.67		4732179	
Saturation pH (@ 4C)	N/A	6.76			4732180	8.92		4732180	
Inorganics	•				•				
Total Alkalinity (Total as CaCO3)	mg/L	690	670	75	4738082	63	5.0	4738082	N/A
Dissolved Chloride (Cl)	mg/L	44	42	1.0	4738083	15	1.0	4738083	N/A
Colour	TCU	11	10	5.0	4738087	<5.0	5.0	4738087	N/A
Nitrate + Nitrite (N)	mg/L	<0.050	<0.050	0.050	4738090	<0.050	0.050	4738090	N/A
Nitrite (N)	mg/L	<0.010	<0.010	0.010	4738091	<0.010	0.010	4738091	N/A
Nitrogen (Ammonia Nitrogen)	mg/L	1.5		0.050	4736494	0.20	0.050	4736496	N/A
Total Organic Carbon (C)	mg/L	42 (1)		2.5	4740256	<25 (2)	25	4740256	N/A
Orthophosphate (P)	mg/L	0.031	0.036	0.010	4738088	0.019	0.010	4738088	N/A
рН	рН	7.00		N/A	4738016	7.42	N/A	4738012	N/A
Reactive Silica (SiO2)	mg/L	29	29	1.0	4738086	21	0.50	4738086	N/A
Dissolved Sulphate (SO4)	mg/L	13	12	2.0	4738085	11	2.0	4738085	N/A
Turbidity	NTU	>1000		1.0	4738100	>1000	1.0	4738100	0.10
Conductivity	uS/cm	1200		1.0	4738017	180	1.0	4738013	N/A
Metals	•								•
5	1	1		- 0	4738302	5.6	5.0	4738302	N/A
Dissolved Aluminum (AI)	ug/L	8.6		5.0	4/30302	5.0	5.0	4/30302	, , .
Dissolved Antimony (Sb)	ug/L ug/L	8.6 <1.0		1.0	4738302	<1.0	1.0	4738302	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

(1) Analysis performed on decanted sample due to sediment content.

(2) Reporting limit was increased due to turbidity.

Englobe Corp.

Client Project #: P-0010903-0-00-205

Your P.O. #: A 06392 Sampler Initials: AS

ATL. RCAP-MS DISSOLVED (LABFILT) IN W

Maxxam ID		DJO108	DJO108			DJO109			
Samuling Date		2016/11/01	2016/11/01			2016/11/01			
Sampling Date		11:10	11:10			11:15			
COC Number		583333-01-01	583333-01-01			583333-01-01			
	UNITS	MW6S	MW6S Lab-Dup	RDL	QC Batch	MW6D	RDL	QC Batch	MDL
Dissolved Barium (Ba)	ug/L	53		1.0	4738302	2.1	1.0	4738302	N/A
Dissolved Beryllium (Be)	ug/L	<1.0		1.0	4738302	<1.0	1.0	4738302	N/A
Dissolved Bismuth (Bi)	ug/L	<2.0		2.0	4738302	<2.0	2.0	4738302	N/A
Dissolved Boron (B)	ug/L	<50		50	4738302	<50	50	4738302	N/A
Dissolved Cadmium (Cd)	ug/L	0.061		0.010	4738302	0.032	0.010	4738302	N/A
Dissolved Calcium (Ca)	ug/L	150000		100	4738302	7700	100	4738302	N/A
Dissolved Chromium (Cr)	ug/L	<1.0		1.0	4738302	<1.0	1.0	4738302	N/A
Dissolved Cobalt (Co)	ug/L	2.7		0.40	4738302	<0.40	0.40	4738302	N/A
Dissolved Copper (Cu)	ug/L	<2.0		2.0	4738302	<2.0	2.0	4738302	N/A
Dissolved Iron (Fe)	ug/L	77		50	4738302	<50	50	4738302	N/A
Dissolved Lead (Pb)	ug/L	<0.50		0.50	4738302	<0.50	0.50	4738302	N/A
Dissolved Magnesium (Mg)	ug/L	57000		100	4738302	2100	100	4738302	N/A
Dissolved Manganese (Mn)	ug/L	2900		2.0	4738302	32	2.0	4738302	N/A
Dissolved Molybdenum (Mo)	ug/L	<2.0		2.0	4738302	2.9	2.0	4738302	N/A
Dissolved Nickel (Ni)	ug/L	4.1		2.0	4738302	<2.0	2.0	4738302	N/A
Dissolved Phosphorus (P)	ug/L	<100		100	4738302	<100	100	4738302	N/A
Dissolved Potassium (K)	ug/L	5600		100	4738302	370	100	4738302	N/A
Dissolved Selenium (Se)	ug/L	<1.0		1.0	4738302	<1.0	1.0	4738302	N/A
Dissolved Silver (Ag)	ug/L	<0.10		0.10	4738302	<0.10	0.10	4738302	N/A
Dissolved Sodium (Na)	ug/L	33000		100	4738302	25000	100	4738302	N/A
Dissolved Strontium (Sr)	ug/L	470		2.0	4738302	34	2.0	4738302	N/A
Dissolved Thallium (TI)	ug/L	<0.10		0.10	4738302	<0.10	0.10	4738302	N/A
Dissolved Tin (Sn)	ug/L	<2.0		2.0	4738302	<2.0	2.0	4738302	N/A
Dissolved Titanium (Ti)	ug/L	<2.0		2.0	4738302	<2.0	2.0	4738302	N/A
Dissolved Uranium (U)	ug/L	8.3		0.10	4738302	0.25	0.10	4738302	N/A
Dissolved Vanadium (V)	ug/L	<2.0		2.0	4738302	<2.0	2.0	4738302	N/A
Dissolved Zinc (Zn)	ug/L	<5.0		5.0	4738302	<5.0	5.0	4738302	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

Englobe Corp.
Client Project #: P-0010903-0-00-205
Your P.O. #: A 06392
Sampler Initials: AS

ATL. RCAP-MS DISSOLVED (LABFILT) IN W

Maxxam ID		DJO110		DJO111			DJO113			
Sampling Date		2016/11/01 11:15		2016/11/01 10:00			2016/11/01 12:10			
COC Number		583333-01-01		583333-01-01			583333-01-01			
	UNITS	MW7	QC Batch	MW8	RDL	QC Batch	MW10	RDL	QC Batch	MDL
Calculated Parameters										
Anion Sum	me/L	2.87	4732173	3.96	N/A	4732173	6.21	N/A	4732173	N/A
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	120	4732171	160	1.0	4732171	96	1.0	4732171	0.20
Calculated TDS	mg/L	160	4732181	220	1.0	4732181	400	1.0	4732181	0.20
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	4732171	<1.0	1.0	4732171	<1.0	1.0	4732171	0.20
Cation Sum	me/L	2.69	4732173	3.65	N/A	4732173	6.06	N/A	4732173	N/A
Hardness (CaCO3)	mg/L	100	4731970	140	1.0	4731970	120	1.0	4731970	1.0
Ion Balance (% Difference)	%	3.24	4732172	4.07	N/A	4732172	1.22	N/A	4732172	N/A
Langelier Index (@ 20C)	N/A	-0.218	4732179	-0.651		4732179	-1.18		4732179	
Langelier Index (@ 4C)	N/A	-0.468	4732180	-0.901		4732180	-1.43		4732180	
Nitrate (N)	mg/L	0.091	4731895	<0.050	0.050	4731895	0.39	0.050	4731895	N/A
Saturation pH (@ 20C)	N/A	7.85	4732179	7.57		4732179	7.87		4732179	
Saturation pH (@ 4C)	N/A	8.10	4732180	7.82		4732180	8.12		4732180	
Inorganics	•		•		•			•		•
Total Alkalinity (Total as CaCO3)	mg/L	120	4738082	160	25	4738082	96	10	4738082	N/A
Dissolved Chloride (CI)	mg/L	13	4738083	22	1.0	4738083	90	1.0	4738083	N/A
Colour	TCU	<5.0	4738087	<5.0	5.0	4738087	210	25	4738087	N/A
Nitrate + Nitrite (N)	mg/L	0.091	4738090	<0.050	0.050	4738090	0.39	0.050	4738090	N/A
Nitrite (N)	mg/L	<0.010	4738091	<0.010	0.010	4738091	<0.010	0.010	4738091	N/A
Nitrogen (Ammonia Nitrogen)	mg/L	0.16	4736496	0.086	0.050	4736494	0.59	0.050	4736497	N/A
Total Organic Carbon (C)	mg/L	<50 (1)	4740256	<50 (1)	50	4740256	32 (1)	5.0	4740256	N/A
Orthophosphate (P)	mg/L	0.058	4738088	0.034	0.010	4738088	0.030	0.010	4738088	N/A
рН	рН	7.64	4738016	6.92	N/A	4738014	6.69	N/A	4738016	N/A
Reactive Silica (SiO2)	mg/L	21	4738086	25	0.50	4738086	13	0.50	4738086	N/A
Dissolved Sulphate (SO4)	mg/L	8.0	4738085	5.5	2.0	4738085	84	10	4738085	N/A
Turbidity	NTU	>1000	4738092	>1000	1.0	4738100	>1000	1.0	4738100	0.10
Conductivity	uS/cm	270	4738017	360	1.0	4738015	670	1.0	4738017	N/A
Metals										
Dissolved Aluminum (AI)	ug/L	5.8	4738302	<5.0	5.0	4738302	300	5.0	4738302	N/A
Dissolved Antimony (Sb)	ug/L	<1.0	4738302	<1.0	1.0	4738302	<1.0	1.0	4738302	N/A
Dissolved Arsenic (As)	ug/L	2.4	4738302	<1.0	1.0	4738302	4.6	1.0	4738302	N/A
Dissolved Barium (Ba)	ug/L	12	4738302	24	1.0	4738302	110	1.0	4738302	N/A
Dissolved Beryllium (Be)	ug/L	<1.0	4738302	<1.0	1.0	4738302	<1.0	1.0	4738302	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

(1) Reporting limit was increased due to turbidity.

Englobe Corp.
Client Project #: P-0010903-0-00-205
Your P.O. #: A 06392
Sampler Initials: AS

ATL. RCAP-MS DISSOLVED (LABFILT) IN W

Maxxam ID		DJO110		DJO111			DJO113			
Sampling Date		2016/11/01 11:15		2016/11/01 10:00			2016/11/01 12:10			
COC Number		583333-01-01		583333-01-01			583333-01-01			
	UNITS	MW7	QC Batch	MW8	RDL	QC Batch	MW10	RDL	QC Batch	MDL
Dissolved Bismuth (Bi)	ug/L	<2.0	4738302	<2.0	2.0	4738302	<2.0	2.0	4738302	N/A
Dissolved Boron (B)	ug/L	<50	4738302	<50	50	4738302	130	50	4738302	N/A
Dissolved Cadmium (Cd)	ug/L	0.015	4738302	0.066	0.010	4738302	0.18	0.010	4738302	N/A
Dissolved Calcium (Ca)	ug/L	29000	4738302	41000	100	4738302	39000	100	4738302	N/A
Dissolved Chromium (Cr)	ug/L	<1.0	4738302	<1.0	1.0	4738302	1.7	1.0	4738302	N/A
Dissolved Cobalt (Co)	ug/L	<0.40	4738302	3.8	0.40	4738302	14	0.40	4738302	N/A
Dissolved Copper (Cu)	ug/L	<2.0	4738302	<2.0	2.0	4738302	42	2.0	4738302	N/A
Dissolved Iron (Fe)	ug/L	<50	4738302	<50	50	4738302	1300	50	4738302	N/A
Dissolved Lead (Pb)	ug/L	<0.50	4738302	<0.50	0.50	4738302	1.1	0.50	4738302	N/A
Dissolved Magnesium (Mg)	ug/L	7900	4738302	8800	100	4738302	6100	100	4738302	N/A
Dissolved Manganese (Mn)	ug/L	170	4738302	1000	2.0	4738302	4300	2.0	4738302	N/A
Dissolved Molybdenum (Mo)	ug/L	<2.0	4738302	<2.0	2.0	4738302	<2.0	2.0	4738302	N/A
Dissolved Nickel (Ni)	ug/L	<2.0	4738302	3.5	2.0	4738302	7.7	2.0	4738302	N/A
Dissolved Phosphorus (P)	ug/L	<100	4738302	<100	100	4738302	<100	100	4738302	N/A
Dissolved Potassium (K)	ug/L	3400	4738302	2500	100	4738302	41000	100	4738302	N/A
Dissolved Selenium (Se)	ug/L	<1.0	4738302	<1.0	1.0	4738302	<1.0	1.0	4738302	N/A
Dissolved Silver (Ag)	ug/L	<0.10	4738302	<0.10	0.10	4738302	<0.10	0.10	4738302	N/A
Dissolved Sodium (Na)	ug/L	12000	4738302	18000	100	4738302	57000	100	4738302	N/A
Dissolved Strontium (Sr)	ug/L	96	4738302	160	2.0	4738302	160	2.0	4738302	N/A
Dissolved Thallium (TI)	ug/L	<0.10	4738302	<0.10	0.10	4738302	0.12	0.10	4738302	N/A
Dissolved Tin (Sn)	ug/L	<2.0	4738302	<2.0	2.0	4738302	<2.0	2.0	4738302	N/A
Dissolved Titanium (Ti)	ug/L	<2.0	4738302	<2.0	2.0	4738302	7.7	2.0	4738302	N/A
Dissolved Uranium (U)	ug/L	0.69	4738302	0.22	0.10	4738302	0.60	0.10	4738302	N/A
Dissolved Vanadium (V)	ug/L	<2.0	4738302	<2.0	2.0	4738302	<2.0	2.0	4738302	N/A
Dissolved Zinc (Zn)	ug/L	<5.0	4738302	<5.0	5.0	4738302	47	5.0	4738302	N/A

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

N/A = Not Applicable

Englobe Corp.
Client Project #: P-0010903-0-00-205

Your P.O. #: A 06392 Sampler Initials: AS

ATL. RCAP-MS DISSOLVED (LABFILT) IN W

Maxxam ID		DJO113			DJO114			DJO115				
Sampling Date		2016/11/01			2016/11/01			2016/11/01				
		12:10			12:15			11:25			<u> </u>	
COC Number		583333-01-01			583333-01-01			583333-01-01			<u> </u>	
	UNITS	MW10 Lab-Dup	RDL	QC Batch	MW11	RDL	QC Batch	MW12	RDL	QC Batch	MDL	
alculated Parameters												
Anion Sum	me/L		N/A	4732173	1.15	N/A	4732173	1.18	N/A	4732173	N/A	
Bicarb. Alkalinity (calc. as CaCO3)	mg/L		1.0	4732171	30	1.0	4732171	7.5	1.0	4732171	0.20	
Calculated TDS	mg/L		1.0	4732181	81	1.0	4732181	85	1.0	4732181	0.20	
Carb. Alkalinity (calc. as CaCO3)	mg/L		1.0	4732171	<1.0	1.0	4732171	<1.0	1.0	4732171	0.20	
Cation Sum	me/L		N/A	4732173	1.05	N/A	4732173	1.14	N/A	4732173	N/A	
Hardness (CaCO3)	mg/L		1.0	4731970	27	1.0	4731970	21	1.0	4731970	1.0	
Ion Balance (% Difference)	%		N/A	4732172	4.55	N/A	4732172	1.72	N/A	4732172	N/A	
Langelier Index (@ 20C)	N/A			4732179	-3.00		4732179	-4.47		4732179		
Langelier Index (@ 4C)	N/A			4732180	-3.26		4732180	-4.72		4732180		
Nitrate (N)	mg/L		0.050	4731895	0.36	0.050	4731895	<0.050	0.050	4731895	N/A	
Saturation pH (@ 20C)	N/A			4732179	9.08		4732179	9.73		4732179		
Saturation pH (@ 4C)	N/A			4732180	9.33		4732180	9.98		4732180		
Inorganics	•		•			•			•			
Total Alkalinity (Total as CaCO3)	mg/L		10	4738082	30	5.0	4738082	7.5	5.0	4738082	N/A	
Dissolved Chloride (CI)	mg/L		1.0	4738083	8.0	1.0	4738083	34	1.0	4738083	N/A	
Colour	TCU		25	4738087	<5.0	5.0	4738087	5.3	5.0	4738087	N/A	
Nitrate + Nitrite (N)	mg/L		0.050	4738090	0.36	0.050	4738090	<0.050	0.050	4738090	N/A	
Nitrite (N)	mg/L		0.010	4738091	<0.010	0.010	4738091	<0.010	0.010	4738091	N/A	
Nitrogen (Ammonia Nitrogen)	mg/L		0.050	4736497	<0.050	0.050	4736494	2.7	0.25	4736497	N/A	
Total Organic Carbon (C)	mg/L		5.0	4740256	<50 (1)	50	4740256	<50 (1)	50	4740256	N/A	
Orthophosphate (P)	mg/L		0.010	4738088	0.027	0.010	4738088	0.016	0.010	4738088	N/A	
рН	рН		N/A	4738016	6.08	N/A	4738016	5.26	N/A	4738016	N/A	
Reactive Silica (SiO2)	mg/L		0.50	4738086	17	0.50	4738086	17	0.50	4738086	N/A	
Dissolved Sulphate (SO4)	mg/L		10	4738085	14	2.0	4738085	2.9	2.0	4738085	N/A	
Turbidity	NTU	>1000	1.0	4738100	>1000	1.0	4738092	>1000	1.0	4738092	0.10	
Conductivity	uS/cm		1.0	4738017	120	1.0	4738017	160	1.0	4738017	N/A	
Metals												
Dissolved Aluminum (Al)	ug/L		5.0	4738302	30	5.0	4738302	74	5.0	4738302	N/A	
Dissolved Antimony (Sb)	ug/L		1.0	4738302	<1.0	1.0	4738302	<1.0	1.0	4738302	N/A	
Dissolved Arsenic (As)	ug/L		1.0	4738302	<1.0	1.0	4738302	1.2	1.0	4738302	N/A	
Dissolved Barium (Ba)	ug/L		1.0	4738302	7.7	1.0	4738302	49	1.0	4738302	N/A	

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

(1) Reporting limit was increased due to turbidity.

Englobe Corp.
Client Project #: P-0010903-0-00-205
Your P.O. #: A 06392
Sampler Initials: AS

ATL. RCAP-MS DISSOLVED (LABFILT) IN W

Maxxam ID		DJO113			DJO114			DJO115			
Sampling Date		2016/11/01 12:10			2016/11/01 12:15			2016/11/01 11:25			
COC Number		583333-01-01			583333-01-01			583333-01-01			
	UNITS	MW10 Lab-Dup	RDL	QC Batch	MW11	RDL	QC Batch	MW12	RDL	QC Batch	MDL
Dissolved Beryllium (Be)	ug/L		1.0	4738302	<1.0	1.0	4738302	<1.0	1.0	4738302	N/A
Dissolved Bismuth (Bi)	ug/L		2.0	4738302	<2.0	2.0	4738302	<2.0	2.0	4738302	N/A
Dissolved Boron (B)	ug/L		50	4738302	<50	50	4738302	<50	50	4738302	N/A
Dissolved Cadmium (Cd)	ug/L		0.010	4738302	0.050	0.010	4738302	0.24	0.010	4738302	N/A
Dissolved Calcium (Ca)	ug/L		100	4738302	5900	100	4738302	5400	100	4738302	N/A
Dissolved Chromium (Cr)	ug/L		1.0	4738302	<1.0	1.0	4738302	<1.0	1.0	4738302	N/A
Dissolved Cobalt (Co)	ug/L		0.40	4738302	0.93	0.40	4738302	31	0.40	4738302	N/A
Dissolved Copper (Cu)	ug/L		2.0	4738302	<2.0	2.0	4738302	33	2.0	4738302	N/A
Dissolved Iron (Fe)	ug/L		50	4738302	<50	50	4738302	82	50	4738302	N/A
Dissolved Lead (Pb)	ug/L		0.50	4738302	<0.50	0.50	4738302	<0.50	0.50	4738302	N/A
Dissolved Magnesium (Mg)	ug/L		100	4738302	3100	100	4738302	1800	100	4738302	N/A
Dissolved Manganese (Mn)	ug/L		2.0	4738302	970	2.0	4738302	1300	2.0	4738302	N/A
Dissolved Molybdenum (Mo)	ug/L		2.0	4738302	<2.0	2.0	4738302	<2.0	2.0	4738302	N/A
Dissolved Nickel (Ni)	ug/L		2.0	4738302	<2.0	2.0	4738302	15	2.0	4738302	N/A
Dissolved Phosphorus (P)	ug/L		100	4738302	<100	100	4738302	<100	100	4738302	N/A
Dissolved Potassium (K)	ug/L		100	4738302	810	100	4738302	4500	100	4738302	N/A
Dissolved Selenium (Se)	ug/L		1.0	4738302	<1.0	1.0	4738302	<1.0	1.0	4738302	N/A
Dissolved Silver (Ag)	ug/L		0.10	4738302	<0.10	0.10	4738302	<0.10	0.10	4738302	N/A
Dissolved Sodium (Na)	ug/L		100	4738302	11000	100	4738302	9400	100	4738302	N/A
Dissolved Strontium (Sr)	ug/L		2.0	4738302	45	2.0	4738302	50	2.0	4738302	N/A
Dissolved Thallium (TI)	ug/L		0.10	4738302	<0.10	0.10	4738302	<0.10	0.10	4738302	N/A
Dissolved Tin (Sn)	ug/L		2.0	4738302	<2.0	2.0	4738302	<2.0	2.0	4738302	N/A
Dissolved Titanium (Ti)	ug/L		2.0	4738302	<2.0	2.0	4738302	<2.0	2.0	4738302	N/A
Dissolved Uranium (U)	ug/L		0.10	4738302	<0.10	0.10	4738302	0.30	0.10	4738302	N/A
Dissolved Vanadium (V)	ug/L		2.0	4738302	<2.0	2.0	4738302	<2.0	2.0	4738302	N/A
Dissolved Zinc (Zn)	ug/L		5.0	4738302	<5.0	5.0	4738302	110	5.0	4738302	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

Englobe Corp.

Client Project #: P-0010903-0-00-205

Your P.O. #: A 06392 Sampler Initials: AS

AT. RCAP-MS DISSOLVED (FIELDFILT) IN W

Maxxam ID		DJO100	DJO100			DJO102			
Sampling Date		2016/11/01	2016/11/01			2016/11/01			
Sampling Date		12:00	12:00			11:35			
COC Number		583333-01-01	583333-01-01			583333-01-01			
	UNITS	MW1D	MW1D Lab-Dup	RDL	QC Batch	MW2D	RDL	QC Batch	MDL
Calculated Parameters									
Anion Sum	me/L	12.4		N/A	4731145	2.96	N/A	4731145	N/A
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	600		1.0	4731142	120	1.0	4731142	0.20
Calculated TDS	mg/L	620		1.0	4731150	170	1.0	4731150	0.20
Carb. Alkalinity (calc. as CaCO3)	mg/L	1.2		1.0	4731142	<1.0	1.0	4731142	0.20
Cation Sum	me/L	11.7		N/A	4731145	2.80	N/A	4731145	N/A
Hardness (CaCO3)	mg/L	500		1.0	4731970	110	1.0	4731970	1.0
Ion Balance (% Difference)	%	3.19		N/A	4731144	2.78	N/A	4731144	N/A
Langelier Index (@ 20C)	N/A	0.706			4731148	-0.166		4731148	
Langelier Index (@ 4C)	N/A	0.458			4731149	-0.416		4731149	
Nitrate (N)	mg/L	<0.050		0.050	4731895	<0.050	0.050	4731895	N/A
Saturation pH (@ 20C)	N/A	6.63			4731148	7.89		4731148	
Saturation pH (@ 4C)	N/A	6.88			4731149	8.14		4731149	
Inorganics	•	•	•	•	•		•		
Total Alkalinity (Total as CaCO3)	mg/L	600		50	4738067	120	25	4738067	N/A
Dissolved Chloride (CI)	mg/L	13		1.0	4738070	11	1.0	4738070	N/A
Colour	TCU	<5.0		5.0	4738074	7.0	5.0	4738074	N/A
Nitrate + Nitrite (N)	mg/L	<0.050		0.050	4738078	<0.050	0.050	4738078	N/A
Nitrite (N)	mg/L	<0.010		0.010	4738077	0.013	0.010	4738077	N/A
Nitrogen (Ammonia Nitrogen)	mg/L	0.062		0.050	4736494	<0.050	0.050	4736493	N/A
Total Organic Carbon (C)	mg/L	2.8	2.8	0.50	4740256	<5.0 (1)	5.0	4740256	N/A
Orthophosphate (P)	mg/L	0.028		0.010	4738076	0.041	0.010	4738076	N/A
рН	рН	7.34		N/A	4738012	7.73	N/A	4738012	N/A
Reactive Silica (SiO2)	mg/L	28		1.0	4738072	19	0.50	4738072	N/A
Dissolved Sulphate (SO4)	mg/L	6.2		2.0	4738071	13	2.0	4738071	N/A
Turbidity	NTU	27		0.10	4738100	>1000	1.0	4738096	0.10
Conductivity	uS/cm	970		1.0	4738013	260	1.0	4738013	N/A
Metals									
Dissolved Aluminum (Al)	ug/L	<5.0		5.0	4738315	5.1	5.0	4738315	N/A
Dissolved Antimony (Sb)	ug/L	<1.0		1.0	4738315	<1.0	1.0	4738315	N/A
Dissolved Arsenic (As)	ug/L	7.6		1.0	4738315	6.9	1.0	4738315	N/A
Dissolved Barium (Ba)	ug/L	290		1.0	4738315	31	1.0	4738315	N/A
	_								

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

(1) Reporting limit was increased due to turbidity.

Englobe Corp.

Client Project #: P-0010903-0-00-205

Your P.O. #: A 06392 Sampler Initials: AS

AT. RCAP-MS DISSOLVED (FIELDFILT) IN W

							_		
Maxxam ID		DJO100	DJO100			DJO102			
Sampling Date		2016/11/01	2016/11/01			2016/11/01			
Sumpling Date		12:00	12:00			11:35			
COC Number		583333-01-01	583333-01-01			583333-01-01			
	UNITS	MW1D	MW1D Lab-Dup	RDL	QC Batch	MW2D	RDL	QC Batch	MDL
Dissolved Beryllium (Be)	ug/L	<1.0		1.0	4738315	<1.0	1.0	4738315	N/A
Dissolved Bismuth (Bi)	ug/L	<2.0		2.0	4738315	<2.0	2.0	4738315	N/A
Dissolved Boron (B)	ug/L	<50		50	4738315	1100	50	4738315	N/A
Dissolved Cadmium (Cd)	ug/L	<0.010		0.010	4738315	<0.010	0.010	4738315	N/A
Dissolved Calcium (Ca)	ug/L	120000		100	4738315	26000	100	4738315	N/A
Dissolved Chromium (Cr)	ug/L	<1.0		1.0	4738315	<1.0	1.0	4738315	N/A
Dissolved Cobalt (Co)	ug/L	0.75		0.40	4738315	<0.40	0.40	4738315	N/A
Dissolved Copper (Cu)	ug/L	<2.0		2.0	4738315	<2.0	2.0	4738315	N/A
Dissolved Iron (Fe)	ug/L	720		50	4738315	<50	50	4738315	N/A
Dissolved Lead (Pb)	ug/L	<0.50		0.50	4738315	<0.50	0.50	4738315	N/A
Dissolved Magnesium (Mg)	ug/L	47000		100	4738315	11000	100	4738315	N/A
Dissolved Manganese (Mn)	ug/L	750		2.0	4738315	61	2.0	4738315	N/A
Dissolved Molybdenum (Mo)	ug/L	<2.0		2.0	4738315	<2.0	2.0	4738315	N/A
Dissolved Nickel (Ni)	ug/L	2.7		2.0	4738315	3.7	2.0	4738315	N/A
Dissolved Phosphorus (P)	ug/L	<100		100	4738315	<100	100	4738315	N/A
Dissolved Potassium (K)	ug/L	11000		100	4738315	3000	100	4738315	N/A
Dissolved Selenium (Se)	ug/L	<1.0		1.0	4738315	<1.0	1.0	4738315	N/A
Dissolved Silver (Ag)	ug/L	<0.10		0.10	4738315	<0.10	0.10	4738315	N/A
Dissolved Sodium (Na)	ug/L	33000		100	4738315	12000	100	4738315	N/A
Dissolved Strontium (Sr)	ug/L	470		2.0	4738315	160	2.0	4738315	N/A
Dissolved Thallium (TI)	ug/L	<0.10		0.10	4738315	<0.10	0.10	4738315	N/A
Dissolved Tin (Sn)	ug/L	<2.0		2.0	4738315	<2.0	2.0	4738315	N/A
Dissolved Titanium (Ti)	ug/L	<2.0		2.0	4738315	<2.0	2.0	4738315	N/A
Dissolved Uranium (U)	ug/L	4.1		0.10	4738315	0.78	0.10	4738315	N/A
Dissolved Vanadium (V)	ug/L	<2.0		2.0	4738315	<2.0	2.0	4738315	N/A
Dissolved Zinc (Zn)	ug/L	6.8		5.0	4738315	<5.0	5.0	4738315	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

Englobe Corp.
Client Project #: P-0010903-0-00-205

Your P.O. #: A 06392 Sampler Initials: AS

AT. RCAP-MS DISSOLVED (FIELDFILT) IN W

Maxxam ID		DJO104			DJO106		DJO112				
Sampling Date		2016/11/01			2016/11/01		2016/11/01				
Janiping Date		10:45			12:30		10:15				
COC Number		583333-01-01			583333-01-01		583333-01-01				
	UNITS	MW3D	RDL	QC Batch	MW4D	QC Batch	MW9	RDL	QC Batch	MDL	
alculated Parameters											
Anion Sum	me/L	4.74	N/A	4731145	0.900	4732173	1.81	N/A	4732173	N/A	
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	200	1.0	4731142	17	4732171	34	1.0	4732171	0.20	
Calculated TDS	mg/L	260	1.0	4731150	65	4732181	110	1.0	4732181	0.20	
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	4731142	<1.0	4732171	<1.0	1.0	4732171	0.20	
Cation Sum	me/L	4.49	N/A	4731145	0.780	4732173	1.66	N/A	4732173	N/A	
Hardness (CaCO3)	mg/L	170	1.0	4731970	20	4731970	53	1.0	4731970	1.0	
Ion Balance (% Difference)	%	2.71	N/A	4731144	7.14	4732172	4.32	N/A	4732172	N/A	
Langelier Index (@ 20C)	N/A	-0.589		4731148	-3.24	4732179	-2.54		4732179		
Langelier Index (@ 4C)	N/A	-0.839		4731149	-3.49	4732180	-2.79		4732180		
Nitrate (N)	mg/L	<0.050	0.050	4731895	0.078	4731895	<0.050	0.050	4731895	N/A	
Saturation pH (@ 20C)	N/A	7.46		4731148	9.41	4732179	8.74		4732179		
Saturation pH (@ 4C)	N/A	7.71		4731149	9.66	4732180	8.99		4732180		
Inorganics	•			•		•		•			
Total Alkalinity (Total as CaCO3)	mg/L	200	25	4738082	17	4738082	34	5.0	4738082	N/A	
Dissolved Chloride (CI)	mg/L	18	1.0	4738083	8.1	4738083	25	1.0	4738083	N/A	
Colour	TCU	28	5.0	4738087	8.7	4738087	<5.0	5.0	4738087	N/A	
Nitrate + Nitrite (N)	mg/L	<0.050	0.050	4738090	0.078	4738090	<0.050	0.050	4738090	N/A	
Nitrite (N)	mg/L	<0.010	0.010	4738091	<0.010	4738091	<0.010	0.010	4738091	N/A	
Nitrogen (Ammonia Nitrogen)	mg/L	0.11	0.050	4736496	<0.050	4736496	<0.050	0.050	4736496	N/A	
Total Organic Carbon (C)	mg/L	<5.0 (1)	5.0	4740256	0.70	4740256	2.6	0.50	4740256	N/A	
Orthophosphate (P)	mg/L	0.021	0.010	4738088	0.014	4738088	0.016	0.010	4738088	N/A	
рН	рН	6.87	N/A	4738010	6.18	4738016	6.20	N/A	4738014	N/A	
Reactive Silica (SiO2)	mg/L	26	1.0	4738086	14	4738086	13	0.50	4738086	N/A	
Dissolved Sulphate (SO4)	mg/L	7.1	2.0	4738085	16	4738085	20	2.0	4738085	N/A	
Turbidity	NTU	200	1.0	4738096	140	4738093	630	1.0	4738100	0.10	
Conductivity	uS/cm	420	1.0	4738011	90	4738017	190	1.0	4738015	N/A	
Metals											
Dissolved Aluminum (AI)	ug/L	6.0	5.0	4740054	33	4740054	23	5.0	4738315	N/A	
Dissolved Antimony (Sb)	ug/L	<1.0	1.0	4740054	<1.0	4740054	<1.0	1.0	4738315	N/A	
Dissolved Arsenic (As)	ug/L	9.4	1.0	4740054	1.5	4740054	<1.0	1.0	4738315	N/A	
Dissolved Barium (Ba)	ug/L	23	1.0	4740054	10	4740054	21	1.0	4738315	N/A	
Dissolved Beryllium (Be)	ug/L	<1.0	1.0	4740054	<1.0	4740054	<1.0	1.0	4738315	N/A	

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

(1) Reporting limit was increased due to turbidity.

Englobe Corp.
Client Project #: P-0010903-0-00-205
Your P.O. #: A 06392
Sampler Initials: AS

AT. RCAP-MS DISSOLVED (FIELDFILT) IN W

Maxxam ID		DJO104			DJO106		DJO112			
Sampling Date		2016/11/01 10:45			2016/11/01 12:30		2016/11/01 10:15			
COC Number		583333-01-01			583333-01-01		583333-01-01			
	UNITS	MW3D	RDL	QC Batch	MW4D	QC Batch	MW9	RDL	QC Batch	MDL
Dissolved Bismuth (Bi)	ug/L	<2.0	2.0	4740054	<2.0	4740054	<2.0	2.0	4738315	N/A
Dissolved Boron (B)	ug/L	<50	50	4740054	<50	4740054	<50	50	4738315	N/A
Dissolved Cadmium (Cd)	ug/L	<0.010	0.010	4740054	0.043	4740054	0.14	0.010	4738315	N/A
Dissolved Calcium (Ca)	ug/L	43000	100	4740054	4900	4740054	12000	100	4738315	N/A
Dissolved Chromium (Cr)	ug/L	<1.0	1.0	4740054	<1.0	4740054	<1.0	1.0	4738315	N/A
Dissolved Cobalt (Co)	ug/L	5.5	0.40	4740054	3.9	4740054	11	0.40	4738315	N/A
Dissolved Copper (Cu)	ug/L	<2.0	2.0	4740054	<2.0	4740054	<2.0	2.0	4738315	N/A
Dissolved Iron (Fe)	ug/L	1100	50	4740054	450	4740054	<50	50	4738315	N/A
Dissolved Lead (Pb)	ug/L	<0.50	0.50	4740054	<0.50	4740054	<0.50	0.50	4738315	N/A
Dissolved Magnesium (Mg)	ug/L	15000	100	4740054	1900	4740054	5500	100	4738315	N/A
Dissolved Manganese (Mn)	ug/L	520	2.0	4740054	390	4740054	1700	2.0	4738315	N/A
Dissolved Molybdenum (Mo)	ug/L	<2.0	2.0	4740054	<2.0	4740054	<2.0	2.0	4738315	N/A
Dissolved Nickel (Ni)	ug/L	8.7	2.0	4740054	3.6	4740054	6.6	2.0	4738315	N/A
Dissolved Phosphorus (P)	ug/L	<100	100	4740054	<100	4740054	<100	100	4738315	N/A
Dissolved Potassium (K)	ug/L	4000	100	4740054	910	4740054	1100	100	4738315	N/A
Dissolved Selenium (Se)	ug/L	<1.0	1.0	4740054	<1.0	4740054	<1.0	1.0	4738315	N/A
Dissolved Silver (Ag)	ug/L	<0.10	0.10	4740054	<0.10	4740054	<0.10	0.10	4738315	N/A
Dissolved Sodium (Na)	ug/L	21000	100	4740054	7800	4740054	13000	100	4738315	N/A
Dissolved Strontium (Sr)	ug/L	220	2.0	4740054	37	4740054	70	2.0	4738315	N/A
Dissolved Thallium (TI)	ug/L	<0.10	0.10	4740054	<0.10	4740054	<0.10	0.10	4738315	N/A
Dissolved Tin (Sn)	ug/L	<2.0	2.0	4740054	<2.0	4740054	<2.0	2.0	4738315	N/A
Dissolved Titanium (Ti)	ug/L	<2.0	2.0	4740054	<2.0	4740054	<2.0	2.0	4738315	N/A
Dissolved Uranium (U)	ug/L	0.42	0.10	4740054	<0.10	4740054	<0.10	0.10	4738315	N/A
Dissolved Vanadium (V)	ug/L	<2.0	2.0	4740054	<2.0	4740054	<2.0	2.0	4738315	N/A
Dissolved Zinc (Zn)	ug/L	9.6	5.0	4740054	5.9	4740054	5.3	5.0	4738315	N/A

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

N/A = Not Applicable

Englobe Corp.
Client Project #: P-0010903-0-00-205
Your P.O. #: A 06392
Sampler Initials: AS

AT. RCAP-MS DISSOLVED (FIELDFILT) IN W

Maxxam ID		DJO116	DJO116			
Sampling Date		2016/11/01	2016/11/01			
COC Number		583333-01-01	583333-01-01			
	UNITS	MW-DUP	MW-DUP Lab-Dup	RDL	QC Batch	MDI
Calculated Parameters						
Anion Sum	me/L	2.86		N/A	4732173	N/A
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	110		1.0	4732171	0.20
Calculated TDS	mg/L	160		1.0	4732181	0.20
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0		1.0	4732171	0.20
Cation Sum	me/L	2.81		N/A	4732173	N/A
Hardness (CaCO3)	mg/L	110		1.0	4731970	1.0
Ion Balance (% Difference)	%	0.880		N/A	4732172	N/A
Langelier Index (@ 20C)	N/A	-0.0380			4732179	
Langelier Index (@ 4C)	N/A	-0.288			4732180	
Nitrate (N)	mg/L	<0.050		0.050	4731895	N/A
Saturation pH (@ 20C)	N/A	7.90			4732179	
Saturation pH (@ 4C)	N/A	8.15			4732180	
Inorganics						
Total Alkalinity (Total as CaCO3)	mg/L	110		25	4738082	N/A
Dissolved Chloride (Cl)	mg/L	10		1.0	4738083	N/A
Colour	TCU	<5.0		5.0	4738087	N/A
Nitrate + Nitrite (N)	mg/L	<0.050		0.050	4738090	N/A
Nitrite (N)	mg/L	<0.010		0.010	4738091	N/A
Nitrogen (Ammonia Nitrogen)	mg/L	0.097		0.050	4736496	N/A
Total Organic Carbon (C)	mg/L	<25 (1)		25	4740256	N/A
Orthophosphate (P)	mg/L	0.039		0.010	4738088	N/A
рН	рН	7.86		N/A	4738012	N/A
Reactive Silica (SiO2)	mg/L	19		0.50	4738086	N/A
Dissolved Sulphate (SO4)	mg/L	13		2.0	4738085	N/A
Turbidity	NTU	>1000	>1000	1.0	4738093	0.10
Conductivity	uS/cm	270		1.0	4738013	N/A
Metals						
Dissolved Aluminum (Al)	ug/L	5.4		5.0	4738315	N/A
Dissolved Antimony (Sb)	ug/L	<1.0		1.0	4738315	N/A
Dissolved Arsenic (As)	ug/L	6.6		1.0	4738315	N/A
Dissolved Barium (Ba)	ug/L	31		1.0	4738315	N/A
Dissolved Beryllium (Be)	ug/L	<1.0		1.0	4738315	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

(1) Reporting limit was increased due to turbidity.

Englobe Corp.
Client Project #: P-0010903-0-00-205
Your P.O. #: A 06392
Sampler Initials: AS

AT. RCAP-MS DISSOLVED (FIELDFILT) IN W

Maxxam ID		DJO116	DJO116			
Sampling Date		2016/11/01	2016/11/01			
COC Number		583333-01-01	583333-01-01			
	UNITS	MW-DUP	MW-DUP Lab-Dup	RDL	QC Batch	MDL
Dissolved Bismuth (Bi)	ug/L	<2.0		2.0	4738315	N/A
Dissolved Boron (B)	ug/L	1100		50	4738315	N/A
Dissolved Cadmium (Cd)	ug/L	<0.010		0.010	4738315	N/A
Dissolved Calcium (Ca)	ug/L	26000		100	4738315	N/A
Dissolved Chromium (Cr)	ug/L	<1.0		1.0	4738315	N/A
Dissolved Cobalt (Co)	ug/L	<0.40		0.40	4738315	N/A
Dissolved Copper (Cu)	ug/L	<2.0		2.0	4738315	N/A
Dissolved Iron (Fe)	ug/L	<50		50	4738315	N/A
Dissolved Lead (Pb)	ug/L	<0.50		0.50	4738315	N/A
Dissolved Magnesium (Mg)	ug/L	11000		100	4738315	N/A
Dissolved Manganese (Mn)	ug/L	61		2.0	4738315	N/A
Dissolved Molybdenum (Mo)	ug/L	<2.0		2.0	4738315	N/A
Dissolved Nickel (Ni)	ug/L	3.5		2.0	4738315	N/A
Dissolved Phosphorus (P)	ug/L	<100		100	4738315	N/A
Dissolved Potassium (K)	ug/L	3000		100	4738315	N/A
Dissolved Selenium (Se)	ug/L	<1.0		1.0	4738315	N/A
Dissolved Silver (Ag)	ug/L	<0.10		0.10	4738315	N/A
Dissolved Sodium (Na)	ug/L	12000		100	4738315	N/A
Dissolved Strontium (Sr)	ug/L	160		2.0	4738315	N/A
Dissolved Thallium (TI)	ug/L	<0.10		0.10	4738315	N/A
Dissolved Tin (Sn)	ug/L	<2.0		2.0	4738315	N/A
Dissolved Titanium (Ti)	ug/L	<2.0		2.0	4738315	N/A
Dissolved Uranium (U)	ug/L	0.80		0.10	4738315	N/A
Dissolved Vanadium (V)	ug/L	<2.0		2.0	4738315	N/A
Dissolved Zinc (Zn)	ug/L	<5.0		5.0	4738315	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Englobe Corp.

Client Project #: P-0010903-0-00-205

Your P.O. #: A 06392 Sampler Initials: AS

MERCURY BY COLD VAPOUR AA (WATER)

Maxxam ID		DJO099	DJO100	DJO100	DJO101	DJO102	DJO103			
Sampling Date		2016/11/01 12:00	2016/11/01 12:00	2016/11/01 12:00	2016/11/01 11:40	2016/11/01 11:35	2016/11/01 10:30			
COC Number		583333-01-01	583333-01-01	583333-01-01	583333-01-01	583333-01-01	583333-01-01			
	UNITS	MW1S	MW1D	MW1D Lab-Dup	MW2S	MW2D	MW3S	RDL	QC Batch	MDL
		•								
Metals										

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

Maxxam ID		DJO104	DJO105	DJO106	DJO107	DJO108	DJO109			
Sampling Date		2016/11/01	2016/11/01	2016/11/01	2016/11/01	2016/11/01	2016/11/01			
Sampling Date		10:45	12:35	12:30	12:05	11:10	11:15			
COC Number		583333-01-01	583333-01-01	583333-01-01	583333-01-01	583333-01-01	583333-01-01			
	UNITS	MW3D	MW4S	MW4D	MW5S	MW6S	MW6D	RDL	QC Batch	MDL
Metals										
Total Mercury (Hg)	ug/L	< 0.013	0.065	< 0.013	< 0.013	0.077	< 0.013	0.013	4736738	NI/A

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

N/A = Not Applicable

Maxxam ID		DJO110	DJO111	DJO112	DJO113	DJO114	DJO115			
Sampling Date		2016/11/01 11:15	2016/11/01 10:00	2016/11/01 10:15	2016/11/01 12:10	2016/11/01 12:15	2016/11/01 11:25			
COC Number		583333-01-01	583333-01-01	583333-01-01	583333-01-01	583333-01-01	583333-01-01			
	UNITS	MW7	MW8	MW9	MW10	MW11	MW12	RDL	QC Batch	MDL
Metals										
Total Mercury (Hg)	ug/L	0.028	0.042	<0.013	<0.013	0.83	0.020	0.013	4736738	N/A

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

N/A = Not Applicable

Maxxam ID		DJO116			
Sampling Date		2016/11/01			
COC Number		583333-01-01			
	UNITS	MW-DUP	RDL	QC Batch	MDL
Metals		•	•	·	
Total Mercury (Hg)	ug/L	< 0.013	0.013	4736738	N/A
	_				

QC Batch = Quality Control Batch

N/A = Not Applicable

Englobe Corp.

Client Project #: P-0010903-0-00-205

Your P.O. #: A 06392 Sampler Initials: AS

ELEMENTS BY ICP/MS (WATER)

Maxxam ID		DJO099	DJO100	DJO100		DJO101		DJO102			
Sampling Date		2016/11/01 12:00	2016/11/01 12:00	2016/11/01 12:00		2016/11/01 11:40		2016/11/01 11:35			
COC Number		583333-01-01	583333-01-01	583333-01-01		583333-01-01		583333-01-01			
	UNITS	MW1S	MW1D	MW1D Lab-Dup	RDL	MW2S	RDL	MW2D	RDL	QC Batch	MDL
Metals											

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

Maxxam ID		DJO103	DJO104		DJO105			DJO106			
Sampling Date		2016/11/01	2016/11/01		2016/11/01			2016/11/01			
Sampling Date		10:30	10:45		12:35			12:30			
COC Number		583333-01-01	583333-01-01		583333-01-01			583333-01-01			
	UNITS	MW3S	MW3D	RDL	MW4S	RDL	QC Batch	MW4D	RDL	QC Batch	MDL
Metals											
						_					
Total Lead (Pb)	ug/L	73	2.4	0.50	290	5.0	4738394	0.50	0.50	4739997	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Maxxam ID		DJO107		DJO108		DJO109		DJO110	DJO111			
Sampling Date		2016/11/01 12:05		2016/11/01 11:10		2016/11/01 11:15		2016/11/01 11:15	2016/11/01 10:00			
COC Number		583333-01-01		583333-01-01		583333-01-01		583333-01-01	583333-01-01			
	UNITS	MW5S	RDL	MW6S	RDL	MW6D	RDL	MW7	MW8	RDL	QC Batch	MDL
Metals												
Total Lead (Pb)	ug/L	2.5	0.50	97	5.0	39	0.50	220	120	5.0	4739997	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Maxxam ID		DJO112	DJO113		DJO114		DJO115			
Sampling Date		2016/11/01	2016/11/01		2016/11/01		2016/11/01			
Sampling Date		10:15	12:10		12:15		11:25			
COC Number		583333-01-01	583333-01-01		583333-01-01		583333-01-01			
	UNITS	MW9	MW10	QC Batch	MW11	QC Batch	MW12	RDL	QC Batch	MDL
Metals										
Total Lead (Pb)	ug/L	<0.50	23	4739997	100	4742388	38	0.50	4739997	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Englobe Corp.
Client Project #: P-0010903-0-00-205
Your P.O. #: A 06392
Sampler Initials: AS

ELEMENTS BY ICP/MS (WATER)

Maxxam ID		DJO116								
Sampling Date		2016/11/01								
COC Number		583333-01-01								
	UNITS	MW-DUP	RDL	QC Batch	MDL					
Metals										
Total Lead (Pb)	ug/L	3.5	0.50	4739997	N/A					
RDL = Reportable Detection L	imit									
QC Batch = Quality Control Batch										
N/A = Not Applicable										

Englobe Corp.

Client Project #: P-0010903-0-00-205

Your P.O. #: A 06392 Sampler Initials: AS

TEST SUMMARY

Maxxam ID: DJO099 Sample ID: MW1S Matrix: Water

Collected:

2016/11/01

Shipped:

Received: 2016/11/02

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4731142	N/A	2016/11/04	Automated Statchk
Alkalinity	KONE	4738067	N/A	2016/11/08	Nancy Rogers
Chloride	KONE	4738070	N/A	2016/11/08	Nancy Rogers
Colour	KONE	4738074	N/A	2016/11/08	Nancy Rogers
Conductance - water	AT	4738013	N/A	2016/11/08	Julia McGovern
Hardness (calculated as CaCO3)		4731970	N/A	2016/11/09	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4736738	2016/11/07	2016/11/08	Arlene Rossiter
Metals Water Diss. MS	CICP/MS	4738302	N/A	2016/11/08	Mike Leblanc
Metals Water Total MS	CICP/MS	4738394	2016/11/08	2016/11/08	Mike Leblanc
Ion Balance (% Difference)	CALC	4731144	N/A	2016/11/09	Automated Statchk
Anion and Cation Sum	CALC	4731145	N/A	2016/11/09	Automated Statchk
Nitrogen Ammonia - water	KONE	4736492	N/A	2016/11/08	Mary Clancey
Nitrogen - Nitrate + Nitrite	KONE	4738078	N/A	2016/11/09	Nancy Rogers
Nitrogen - Nitrite	KONE	4738077	N/A	2016/11/09	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4731895	N/A	2016/11/09	Automated Statchk
рН	AT	4738012	N/A	2016/11/08	Julia McGovern
Phosphorus - ortho	KONE	4738076	N/A	2016/11/08	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4731148	N/A	2016/11/09	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4731149	N/A	2016/11/09	Automated Statchk
Reactive Silica	KONE	4738072	N/A	2016/11/08	Nancy Rogers
Sulphate	KONE	4738071	N/A	2016/11/08	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4731150	N/A	2016/11/09	Automated Statchk
Organic carbon - Total (TOC)	TECH	4740256	N/A	2016/11/09	Soraya Merchant
Turbidity	TURB	4738100	N/A	2016/11/08	Julia McGovern

Maxxam ID: DJO100 Sample ID: MW1D

Matrix: Water

Collected:

2016/11/01

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4731142	N/A	2016/11/04	Automated Statchk
Alkalinity	KONE	4738067	N/A	2016/11/08	Nancy Rogers
Chloride	KONE	4738070	N/A	2016/11/08	Nancy Rogers
Colour	KONE	4738074	N/A	2016/11/08	Nancy Rogers
Conductance - water	AT	4738013	N/A	2016/11/08	Julia McGovern
Hardness (calculated as CaCO3)		4731970	N/A	2016/11/09	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4736738	2016/11/07	2016/11/08	Arlene Rossiter
Metals Water Diss. MS (as rec'd)	CICP/MS	4738315	N/A	2016/11/08	Mike Leblanc
Metals Water Total MS	CICP/MS	4738394	2016/11/08	2016/11/09	Mike Leblanc
Ion Balance (% Difference)	CALC	4731144	N/A	2016/11/09	Automated Statchk
Anion and Cation Sum	CALC	4731145	N/A	2016/11/09	Automated Statchk
Nitrogen Ammonia - water	KONE	4736494	N/A	2016/11/08	Mary Clancey
Nitrogen - Nitrate + Nitrite	KONE	4738078	N/A	2016/11/09	Nancy Rogers
Nitrogen - Nitrite	KONE	4738077	N/A	2016/11/09	Nancy Rogers

Englobe Corp.

Client Project #: P-0010903-0-00-205

Your P.O. #: A 06392 Sampler Initials: AS

TEST SUMMARY

Maxxam ID: DJO100 Sample ID: MW1D Matrix: Water

Collected: Shipped:

2016/11/01

Received: 2016/11/02

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Nitrogen - Nitrate (as N)	CALC	4731895	N/A	2016/11/09	Automated Statchk
рН	AT	4738012	N/A	2016/11/08	Julia McGovern
Phosphorus - ortho	KONE	4738076	N/A	2016/11/08	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4731148	N/A	2016/11/09	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4731149	N/A	2016/11/09	Automated Statchk
Reactive Silica	KONE	4738072	N/A	2016/11/08	Nancy Rogers
Sulphate	KONE	4738071	N/A	2016/11/08	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4731150	N/A	2016/11/09	Automated Statchk
Organic carbon - Total (TOC)	TECH	4740256	N/A	2016/11/09	Soraya Merchant
Turbidity	TURB	4738100	N/A	2016/11/08	Julia McGovern

Maxxam ID: DJO100 Dup Sample ID: MW1D . Matrix: Water

Collected: 2016/11/01

Shipped:

2016/11/02 Received:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Mercury - Total (CVAA,LL)	CV/AA	4736738	2016/11/07	2016/11/08	Arlene Rossiter
Metals Water Total MS	CICP/MS	4738394	2016/11/08	2016/11/09	Mike Leblanc
Organic carbon - Total (TOC)	TECH	4740256	N/A	2016/11/09	Sorava Merchant

Maxxam ID: DJO101 Sample ID: MW2S

Water

Matrix:

Collected: 2016/11/01

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4731142	N/A	2016/11/04	Automated Statchk
Alkalinity	KONE	4738067	N/A	2016/11/08	Nancy Rogers
Chloride	KONE	4738070	N/A	2016/11/08	Nancy Rogers
Colour	KONE	4738074	N/A	2016/11/08	Nancy Rogers
Conductance - water	AT	4740003	N/A	2016/11/09	Julia McGovern
Hardness (calculated as CaCO3)		4731970	N/A	2016/11/09	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4736738	2016/11/07	2016/11/08	Arlene Rossiter
Metals Water Diss. MS	CICP/MS	4738302	N/A	2016/11/08	Mike Leblanc
Metals Water Total MS	CICP/MS	4738394	2016/11/08	2016/11/09	Mike Leblanc
Ion Balance (% Difference)	CALC	4731144	N/A	2016/11/09	Automated Statchk
Anion and Cation Sum	CALC	4731145	N/A	2016/11/09	Automated Statchk
Nitrogen Ammonia - water	KONE	4736496	N/A	2016/11/09	Mary Clancey
Nitrogen - Nitrate + Nitrite	KONE	4738078	N/A	2016/11/09	Nancy Rogers
Nitrogen - Nitrite	KONE	4738077	N/A	2016/11/09	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4731895	N/A	2016/11/09	Automated Statchk
рН	AT	4740002	N/A	2016/11/09	Julia McGovern
Phosphorus - ortho	KONE	4738076	N/A	2016/11/08	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4731148	N/A	2016/11/09	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4731149	N/A	2016/11/09	Automated Statchk

Englobe Corp.

Client Project #: P-0010903-0-00-205

Your P.O. #: A 06392 Sampler Initials: AS

TEST SUMMARY

Maxxam ID: DJO101 Sample ID: MW2S Matrix: Water

Collected: 2016/11/01

Shipped:

Received: 2016/11/02

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Reactive Silica	KONE	4738072	N/A	2016/11/08	Nancy Rogers
Sulphate	KONE	4738071	N/A	2016/11/08	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4731150	N/A	2016/11/09	Automated Statchk
Organic carbon - Total (TOC)	TECH	4740256	N/A	2016/11/09	Soraya Merchant
Turbidity	TURB	4738093	N/A	2016/11/08	Julia McGovern

Maxxam ID: DJO101 Dup Sample ID: MW2S Matrix: Water

Collected: 2016/11/01

Shipped:

Received: 2016/11/02

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	KONE	4738067	N/A	2016/11/08	Nancy Rogers
Chloride	KONE	4738070	N/A	2016/11/08	Nancy Rogers
Colour	KONE	4738074	N/A	2016/11/08	Nancy Rogers
Nitrogen - Nitrate + Nitrite	KONE	4738078	N/A	2016/11/09	Nancy Rogers
Nitrogen - Nitrite	KONE	4738077	N/A	2016/11/09	Nancy Rogers
Phosphorus - ortho	KONE	4738076	N/A	2016/11/08	Nancy Rogers
Reactive Silica	KONE	4738072	N/A	2016/11/08	Nancy Rogers
Sulphate	KONE	4738071	N/A	2016/11/08	Nancy Rogers

Maxxam ID: DJO102 Sample ID: MW2D

Water

Matrix:

Collected: 2016/11/01 Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4731142	N/A	2016/11/04	Automated Statchk
Alkalinity	KONE	4738067	N/A	2016/11/08	Nancy Rogers
Chloride	KONE	4738070	N/A	2016/11/08	Nancy Rogers
Colour	KONE	4738074	N/A	2016/11/08	Nancy Rogers
Conductance - water	AT	4738013	N/A	2016/11/08	Julia McGovern
Hardness (calculated as CaCO3)		4731970	N/A	2016/11/09	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4736738	2016/11/07	2016/11/08	Arlene Rossiter
Metals Water Diss. MS (as rec'd)	CICP/MS	4738315	N/A	2016/11/08	Mike Leblanc
Metals Water Total MS	CICP/MS	4738394	2016/11/08	2016/11/09	Mike Leblanc
Ion Balance (% Difference)	CALC	4731144	N/A	2016/11/09	Automated Statchk
Anion and Cation Sum	CALC	4731145	N/A	2016/11/09	Automated Statchk
Nitrogen Ammonia - water	KONE	4736493	N/A	2016/11/08	Mary Clancey
Nitrogen - Nitrate + Nitrite	KONE	4738078	N/A	2016/11/09	Nancy Rogers
Nitrogen - Nitrite	KONE	4738077	N/A	2016/11/09	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4731895	N/A	2016/11/09	Automated Statchk
рН	AT	4738012	N/A	2016/11/08	Julia McGovern
Phosphorus - ortho	KONE	4738076	N/A	2016/11/08	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4731148	N/A	2016/11/09	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4731149	N/A	2016/11/09	Automated Statchk

Englobe Corp.

Client Project #: P-0010903-0-00-205

Your P.O. #: A 06392 Sampler Initials: AS

TEST SUMMARY

Maxxam ID: DJO102 Sample ID: MW2D Matrix: Water **Collected:** 2016/11/01

Shipped:

Received: 2016/11/02

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Reactive Silica	KONE	4738072	N/A	2016/11/08	Nancy Rogers
Sulphate	KONE	4738071	N/A	2016/11/08	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4731150	N/A	2016/11/09	Automated Statchk
Organic carbon - Total (TOC)	TECH	4740256	N/A	2016/11/09	Soraya Merchant
Turbidity	TURB	4738096	N/A	2016/11/08	Julia McGovern

Maxxam ID: DJO103 Sample ID: MW3S Matrix: Water **Collected:** 2016/11/01

Shipped:

Received: 2016/11/02

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4731142	N/A	2016/11/04	Automated Statchk
Alkalinity	KONE	4738067	N/A	2016/11/08	Nancy Rogers
Chloride	KONE	4738070	N/A	2016/11/08	Nancy Rogers
Colour	KONE	4738074	N/A	2016/11/08	Nancy Rogers
Conductance - water	AT	4738017	N/A	2016/11/08	Julia McGovern
Hardness (calculated as CaCO3)		4731970	N/A	2016/11/09	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4736738	2016/11/07	2016/11/08	Arlene Rossiter
Metals Water Diss. MS	CICP/MS	4738302	N/A	2016/11/08	Mike Leblanc
Metals Water Total MS	CICP/MS	4738394	2016/11/08	2016/11/09	Mike Leblanc
Ion Balance (% Difference)	CALC	4731144	N/A	2016/11/09	Automated Statchk
Anion and Cation Sum	CALC	4731145	N/A	2016/11/09	Automated Statchk
Nitrogen Ammonia - water	KONE	4736496	N/A	2016/11/09	Mary Clancey
Nitrogen - Nitrate + Nitrite	KONE	4738078	N/A	2016/11/09	Nancy Rogers
Nitrogen - Nitrite	KONE	4738077	N/A	2016/11/09	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4731895	N/A	2016/11/09	Automated Statchk
рН	AT	4738016	N/A	2016/11/08	Julia McGovern
Phosphorus - ortho	KONE	4738076	N/A	2016/11/08	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4731148	N/A	2016/11/09	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4731149	N/A	2016/11/09	Automated Statchk
Reactive Silica	KONE	4738072	N/A	2016/11/08	Nancy Rogers
Sulphate	KONE	4738071	N/A	2016/11/08	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4731150	N/A	2016/11/09	Automated Statchk
Organic carbon - Total (TOC)	TECH	4740256	N/A	2016/11/09	Soraya Merchant
Turbidity	TURB	4738107	N/A	2016/11/08	Julia McGovern

Maxxam ID: DJO104 Sample ID: MW3D Matrix: Water Collected: 2016/11/01 Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4731142	N/A	2016/11/04	Automated Statchk
Alkalinity	KONE	4738082	N/A	2016/11/08	Nancy Rogers
Chloride	KONE	4738083	N/A	2016/11/08	Nancy Rogers

Englobe Corp.

Client Project #: P-0010903-0-00-205

Your P.O. #: A 06392 Sampler Initials: AS

TEST SUMMARY

Maxxam ID: DJO104 Sample ID: MW3D Matrix: Water **Collected:** 2016/11/01

Shipped:

Received: 2016/11/02

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Colour	KONE	4738087	N/A	2016/11/08	Nancy Rogers
Conductance - water	AT	4738011	N/A	2016/11/08	Julia McGovern
Hardness (calculated as CaCO3)		4731970	N/A	2016/11/09	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4736738	2016/11/07	2016/11/08	Arlene Rossiter
Metals Water Diss. MS (as rec'd)	CICP/MS	4740054	N/A	2016/11/09	Bryon Angevine
Metals Water Total MS	CICP/MS	4738394	2016/11/08	2016/11/09	Mike Leblanc
Ion Balance (% Difference)	CALC	4731144	N/A	2016/11/09	Automated Statchk
Anion and Cation Sum	CALC	4731145	N/A	2016/11/09	Automated Statchk
Nitrogen Ammonia - water	KONE	4736496	N/A	2016/11/09	Mary Clancey
Nitrogen - Nitrate + Nitrite	KONE	4738090	N/A	2016/11/09	Nancy Rogers
Nitrogen - Nitrite	KONE	4738091	N/A	2016/11/09	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4731895	N/A	2016/11/09	Automated Statchk
рН	AT	4738010	N/A	2016/11/08	Julia McGovern
Phosphorus - ortho	KONE	4738088	N/A	2016/11/08	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4731148	N/A	2016/11/10	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4731149	N/A	2016/11/10	Automated Statchk
Reactive Silica	KONE	4738086	N/A	2016/11/08	Nancy Rogers
Sulphate	KONE	4738085	N/A	2016/11/08	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4731150	N/A	2016/11/09	Automated Statchk
Organic carbon - Total (TOC)	TECH	4740256	N/A	2016/11/09	Soraya Merchant
Turbidity	TURB	4738096	N/A	2016/11/08	Julia McGovern

Maxxam ID: DJO105 Sample ID: MW4S Matrix: Water

Collected: 2016/11/01

Shipped: Received:

pped:

2016/11/02

Test Description Instrumentation **Batch Extracted Date Analyzed** Analyst Carbonate, Bicarbonate and Hydroxide CALC 4731142 N/A 2016/11/04 Automated Statchk Alkalinity KONE N/A 2016/11/08 4738082 **Nancy Rogers** Chloride KONE 4738083 N/A 2016/11/08 Nancy Rogers KONE 4738087 N/A 2016/11/08 Colour Nancy Rogers ΑТ 4738015 N/A 2016/11/08 Julia McGovern Conductance - water 4731970 N/A 2016/11/09 Hardness (calculated as CaCO3) Automated Statchk 2016/11/07 Mercury - Total (CVAA,LL) CV/AA 4736738 2016/11/08 Arlene Rossiter Metals Water Diss. MS CICP/MS 4738302 N/A 2016/11/08 Mike Leblanc Metals Water Total MS CICP/MS 4738394 2016/11/08 2016/11/09 Mike Leblanc Ion Balance (% Difference) CALC 4731144 N/A 2016/11/09 Automated Statchk Anion and Cation Sum CALC 4731145 N/A 2016/11/09 Automated Statchk Nitrogen Ammonia - water KONE 4736496 N/A 2016/11/09 Mary Clancey N/A Nitrogen - Nitrate + Nitrite **KONE** 4738090 2016/11/09 Nancy Rogers Nitrogen - Nitrite KONE 4738091 N/A 2016/11/09 **Nancy Rogers** Nitrogen - Nitrate (as N) CALC 4731895 N/A 2016/11/09 Automated Statchk ΑТ 4738014 N/A 2016/11/08 Julia McGovern рН Phosphorus - ortho KONE 4738088 N/A 2016/11/08 **Nancy Rogers**

Englobe Corp.

Client Project #: P-0010903-0-00-205

Your P.O. #: A 06392 Sampler Initials: AS

TEST SUMMARY

Maxxam ID: DJO105 Sample ID: MW4S Matrix: Water

Collected:

2016/11/01

Shipped:

Received: 2016/11/02

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Sat. pH and Langelier Index (@ 20C)	CALC	4731148	N/A	2016/11/09	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4731149	N/A	2016/11/09	Automated Statchk
Reactive Silica	KONE	4738086	N/A	2016/11/08	Nancy Rogers
Sulphate	KONE	4738085	N/A	2016/11/08	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4731150	N/A	2016/11/09	Automated Statchk
Organic carbon - Total (TOC)	TECH	4740256	N/A	2016/11/09	Soraya Merchant
Turbidity	TURB	4738100	N/A	2016/11/08	Julia McGovern

Maxxam ID: DJO106 Sample ID: MW4D

Water

Matrix:

Collected:

2016/11/01

Shipped:

2016/11/02 Received:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4732171	N/A	2016/11/08	Automated Statchk
Alkalinity	KONE	4738082	N/A	2016/11/08	Nancy Rogers
Chloride	KONE	4738083	N/A	2016/11/08	Nancy Rogers
Colour	KONE	4738087	N/A	2016/11/08	Nancy Rogers
Conductance - water	AT	4738017	N/A	2016/11/08	Julia McGovern
Hardness (calculated as CaCO3)		4731970	N/A	2016/11/10	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4736738	2016/11/07	2016/11/08	Arlene Rossiter
Metals Water Diss. MS (as rec'd)	CICP/MS	4740054	N/A	2016/11/09	Bryon Angevine
Metals Water Total MS	CICP/MS	4739997	2016/11/09	2016/11/10	Bryon Angevine
Ion Balance (% Difference)	CALC	4732172	N/A	2016/11/10	Automated Statchk
Anion and Cation Sum	CALC	4732173	N/A	2016/11/10	Automated Statchk
Nitrogen Ammonia - water	KONE	4736496	N/A	2016/11/09	Mary Clancey
Nitrogen - Nitrate + Nitrite	KONE	4738090	N/A	2016/11/09	Nancy Rogers
Nitrogen - Nitrite	KONE	4738091	N/A	2016/11/09	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4731895	N/A	2016/11/09	Automated Statchk
рН	AT	4738016	N/A	2016/11/08	Julia McGovern
Phosphorus - ortho	KONE	4738088	N/A	2016/11/08	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4732179	N/A	2016/11/10	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4732180	N/A	2016/11/10	Automated Statchk
Reactive Silica	KONE	4738086	N/A	2016/11/08	Nancy Rogers
Sulphate	KONE	4738085	N/A	2016/11/08	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4732181	N/A	2016/11/10	Automated Statchk
Organic carbon - Total (TOC)	TECH	4740256	N/A	2016/11/09	Soraya Merchant
Turbidity	TURB	4738093	N/A	2016/11/08	Julia McGovern

Maxxam ID: DJO107 Sample ID: MW5S

Shipped:

Collected: 2016/11/01

2016/11/02 Matrix: Water Received:

lest Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4732171	N/A	2016/11/08	Automated Statchk

Englobe Corp.

Client Project #: P-0010903-0-00-205

Your P.O. #: A 06392 Sampler Initials: AS

TEST SUMMARY

Maxxam ID: DJO107 Sample ID: MW5S Matrix: Water **Collected:** 2016/11/01

Shipped:

Received: 2016/11/02

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	KONE	4738082	N/A	2016/11/08	Nancy Rogers
Chloride	KONE	4738083	N/A	2016/11/08	Nancy Rogers
Colour	KONE	4738087	N/A	2016/11/08	Nancy Rogers
Conductance - water	AT	4738015	N/A	2016/11/08	Julia McGovern
Hardness (calculated as CaCO3)		4731970	N/A	2016/11/09	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4736738	2016/11/07	2016/11/08	Arlene Rossiter
Metals Water Diss. MS	CICP/MS	4738302	N/A	2016/11/08	Mike Leblanc
Metals Water Total MS	CICP/MS	4739997	2016/11/09	2016/11/10	Bryon Angevine
Ion Balance (% Difference)	CALC	4732172	N/A	2016/11/09	Automated Statchk
Anion and Cation Sum	CALC	4732173	N/A	2016/11/09	Automated Statchk
Nitrogen Ammonia - water	KONE	4736496	N/A	2016/11/09	Mary Clancey
Nitrogen - Nitrate + Nitrite	KONE	4738090	N/A	2016/11/09	Nancy Rogers
Nitrogen - Nitrite	KONE	4738091	N/A	2016/11/09	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4731895	N/A	2016/11/09	Automated Statchk
рН	AT	4738014	N/A	2016/11/08	Julia McGovern
Phosphorus - ortho	KONE	4738088	N/A	2016/11/08	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4732179	N/A	2016/11/09	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4732180	N/A	2016/11/09	Automated Statchk
Reactive Silica	KONE	4738086	N/A	2016/11/08	Nancy Rogers
Sulphate	KONE	4738085	N/A	2016/11/08	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4732181	N/A	2016/11/09	Automated Statchk
Organic carbon - Total (TOC)	TECH	4740256	N/A	2016/11/09	Soraya Merchant
Turbidity	TURB	4738100	N/A	2016/11/08	Julia McGovern

Maxxam ID: DJO108 Sample ID: MW6S Matrix: Water **Collected:** 2016/11/01

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4732171	N/A	2016/11/08	Automated Statchk
Alkalinity	KONE	4738082	N/A	2016/11/08	Nancy Rogers
Chloride	KONE	4738083	N/A	2016/11/08	Nancy Rogers
Colour	KONE	4738087	N/A	2016/11/08	Nancy Rogers
Conductance - water	AT	4738017	N/A	2016/11/08	Julia McGovern
Hardness (calculated as CaCO3)		4731970	N/A	2016/11/09	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4736738	2016/11/07	2016/11/08	Arlene Rossiter
Metals Water Diss. MS	CICP/MS	4738302	N/A	2016/11/08	Mike Leblanc
Metals Water Total MS	CICP/MS	4739997	2016/11/09	2016/11/10	Bryon Angevine
Ion Balance (% Difference)	CALC	4732172	N/A	2016/11/09	Automated Statchk
Anion and Cation Sum	CALC	4732173	N/A	2016/11/09	Automated Statchk
Nitrogen Ammonia - water	KONE	4736494	N/A	2016/11/08	Mary Clancey
Nitrogen - Nitrate + Nitrite	KONE	4738090	N/A	2016/11/09	Nancy Rogers
Nitrogen - Nitrite	KONE	4738091	N/A	2016/11/09	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4731895	N/A	2016/11/09	Automated Statchk

Englobe Corp.

Client Project #: P-0010903-0-00-205

Your P.O. #: A 06392 Sampler Initials: AS

TEST SUMMARY

Maxxam ID: DJO108 Sample ID: MW6S Matrix: Water

Collected: 2016/11/01

Shipped:

Received: 2016/11/02

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
рН	AT	4738016	N/A	2016/11/08	Julia McGovern
Phosphorus - ortho	KONE	4738088	N/A	2016/11/08	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4732179	N/A	2016/11/09	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4732180	N/A	2016/11/09	Automated Statchk
Reactive Silica	KONE	4738086	N/A	2016/11/08	Nancy Rogers
Sulphate	KONE	4738085	N/A	2016/11/08	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4732181	N/A	2016/11/09	Automated Statchk
Organic carbon - Total (TOC)	TECH	4740256	N/A	2016/11/09	Soraya Merchant
Turbidity	TURB	4738100	N/A	2016/11/08	Julia McGovern

Maxxam ID: DJO108 Dup Sample ID: MW6S Matrix: Water

Collected: 2016/11/01

Shipped:

Received: 2016/11/02

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	KONE	4738082	N/A	2016/11/08	Nancy Rogers
Chloride	KONE	4738083	N/A	2016/11/08	Nancy Rogers
Colour	KONE	4738087	N/A	2016/11/08	Nancy Rogers
Nitrogen - Nitrate + Nitrite	KONE	4738090	N/A	2016/11/09	Nancy Rogers
Nitrogen - Nitrite	KONE	4738091	N/A	2016/11/09	Nancy Rogers
Phosphorus - ortho	KONE	4738088	N/A	2016/11/08	Nancy Rogers
Reactive Silica	KONE	4738086	N/A	2016/11/08	Nancy Rogers
Sulphate	KONE	4738085	N/A	2016/11/08	Nancy Rogers

Maxxam ID: DJO109 Sample ID: MW6D Matrix: Water

Collected: 2016/11/01

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4732171	N/A	2016/11/08	Automated Statchk
Alkalinity	KONE	4738082	N/A	2016/11/08	Nancy Rogers
Chloride	KONE	4738083	N/A	2016/11/08	Nancy Rogers
Colour	KONE	4738087	N/A	2016/11/08	Nancy Rogers
Conductance - water	AT	4738013	N/A	2016/11/08	Julia McGovern
Hardness (calculated as CaCO3)		4731970	N/A	2016/11/09	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4736738	2016/11/07	2016/11/08	Arlene Rossiter
Metals Water Diss. MS	CICP/MS	4738302	N/A	2016/11/08	Mike Leblanc
Metals Water Total MS	CICP/MS	4739997	2016/11/09	2016/11/10	Bryon Angevine
Ion Balance (% Difference)	CALC	4732172	N/A	2016/11/09	Automated Statchk
Anion and Cation Sum	CALC	4732173	N/A	2016/11/09	Automated Statchk
Nitrogen Ammonia - water	KONE	4736496	N/A	2016/11/09	Mary Clancey
Nitrogen - Nitrate + Nitrite	KONE	4738090	N/A	2016/11/09	Nancy Rogers
Nitrogen - Nitrite	KONE	4738091	N/A	2016/11/09	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4731895	N/A	2016/11/09	Automated Statchk

Englobe Corp.

Client Project #: P-0010903-0-00-205

Your P.O. #: A 06392 Sampler Initials: AS

TEST SUMMARY

Maxxam ID: DJO109 Sample ID: MW6D Matrix: Water **Collected:** 2016/11/01

i. 2010/11

Shipped: Received:

Received: 2016/11/02

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
рН	AT	4738012	N/A	2016/11/08	Julia McGovern
Phosphorus - ortho	KONE	4738088	N/A	2016/11/08	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4732179	N/A	2016/11/09	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4732180	N/A	2016/11/09	Automated Statchk
Reactive Silica	KONE	4738086	N/A	2016/11/08	Nancy Rogers
Sulphate	KONE	4738085	N/A	2016/11/08	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4732181	N/A	2016/11/09	Automated Statchk
Organic carbon - Total (TOC)	TECH	4740256	N/A	2016/11/09	Soraya Merchant
Turbidity	TURB	4738100	N/A	2016/11/08	Julia McGovern

Maxxam ID: DJO110 Sample ID: MW7 Matrix: Water **Collected:** 2016/11/01

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4732171	N/A	2016/11/08	Automated Statchk
Alkalinity	KONE	4738082	N/A	2016/11/08	Nancy Rogers
Chloride	KONE	4738083	N/A	2016/11/08	Nancy Rogers
Colour	KONE	4738087	N/A	2016/11/08	Nancy Rogers
Conductance - water	AT	4738017	N/A	2016/11/08	Julia McGovern
Hardness (calculated as CaCO3)		4731970	N/A	2016/11/09	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4736738	2016/11/07	2016/11/08	Arlene Rossiter
Metals Water Diss. MS	CICP/MS	4738302	N/A	2016/11/08	Mike Leblanc
Metals Water Total MS	CICP/MS	4739997	2016/11/09	2016/11/10	Bryon Angevine
Ion Balance (% Difference)	CALC	4732172	N/A	2016/11/09	Automated Statchk
Anion and Cation Sum	CALC	4732173	N/A	2016/11/09	Automated Statchk
Nitrogen Ammonia - water	KONE	4736496	N/A	2016/11/09	Mary Clancey
Nitrogen - Nitrate + Nitrite	KONE	4738090	N/A	2016/11/09	Nancy Rogers
Nitrogen - Nitrite	KONE	4738091	N/A	2016/11/09	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4731895	N/A	2016/11/09	Automated Statchk
рН	AT	4738016	N/A	2016/11/08	Julia McGovern
Phosphorus - ortho	KONE	4738088	N/A	2016/11/08	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4732179	N/A	2016/11/09	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4732180	N/A	2016/11/09	Automated Statchk
Reactive Silica	KONE	4738086	N/A	2016/11/08	Nancy Rogers
Sulphate	KONE	4738085	N/A	2016/11/08	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4732181	N/A	2016/11/09	Automated Statchk
Organic carbon - Total (TOC)	TECH	4740256	N/A	2016/11/09	Soraya Merchant
Turbidity	TURB	4738092	N/A	2016/11/08	Julia McGovern

Englobe Corp.

Client Project #: P-0010903-0-00-205

Your P.O. #: A 06392 Sampler Initials: AS

TEST SUMMARY

Maxxam ID: DJO111 Sample ID: MW8 Matrix: Water

Collected:

2016/11/01

Shipped:

Received: 2016/11/02

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4732171	N/A	2016/11/08	Automated Statchk
Alkalinity	KONE	4738082	N/A	2016/11/08	Nancy Rogers
Chloride	KONE	4738083	N/A	2016/11/08	Nancy Rogers
Colour	KONE	4738087	N/A	2016/11/08	Nancy Rogers
Conductance - water	AT	4738015	N/A	2016/11/08	Julia McGovern
Hardness (calculated as CaCO3)		4731970	N/A	2016/11/09	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4736738	2016/11/07	2016/11/08	Arlene Rossiter
Metals Water Diss. MS	CICP/MS	4738302	N/A	2016/11/08	Mike Leblanc
Metals Water Total MS	CICP/MS	4739997	2016/11/09	2016/11/10	Bryon Angevine
Ion Balance (% Difference)	CALC	4732172	N/A	2016/11/09	Automated Statchk
Anion and Cation Sum	CALC	4732173	N/A	2016/11/09	Automated Statchk
Nitrogen Ammonia - water	KONE	4736494	N/A	2016/11/08	Mary Clancey
Nitrogen - Nitrate + Nitrite	KONE	4738090	N/A	2016/11/09	Nancy Rogers
Nitrogen - Nitrite	KONE	4738091	N/A	2016/11/09	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4731895	N/A	2016/11/09	Automated Statchk
рН	AT	4738014	N/A	2016/11/08	Julia McGovern
Phosphorus - ortho	KONE	4738088	N/A	2016/11/08	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4732179	N/A	2016/11/09	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4732180	N/A	2016/11/09	Automated Statchk
Reactive Silica	KONE	4738086	N/A	2016/11/08	Nancy Rogers
Sulphate	KONE	4738085	N/A	2016/11/08	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4732181	N/A	2016/11/09	Automated Statchk
Organic carbon - Total (TOC)	TECH	4740256	N/A	2016/11/09	Soraya Merchant
Turbidity	TURB	4738100	N/A	2016/11/08	Julia McGovern

Maxxam ID: DJO112 Sample ID: MW9

Matrix: Water

Shipped:

Collected: 2016/11/01

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4732171	N/A	2016/11/08	Automated Statchk
Alkalinity	KONE	4738082	N/A	2016/11/08	Nancy Rogers
Chloride	KONE	4738083	N/A	2016/11/08	Nancy Rogers
Colour	KONE	4738087	N/A	2016/11/08	Nancy Rogers
Conductance - water	AT	4738015	N/A	2016/11/08	Julia McGovern
Hardness (calculated as CaCO3)		4731970	N/A	2016/11/09	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4736738	2016/11/07	2016/11/08	Arlene Rossiter
Metals Water Diss. MS (as rec'd)	CICP/MS	4738315	N/A	2016/11/08	Mike Leblanc
Metals Water Total MS	CICP/MS	4739997	2016/11/09	2016/11/10	Bryon Angevine
Ion Balance (% Difference)	CALC	4732172	N/A	2016/11/09	Automated Statchk
Anion and Cation Sum	CALC	4732173	N/A	2016/11/09	Automated Statchk
Nitrogen Ammonia - water	KONE	4736496	N/A	2016/11/09	Mary Clancey
Nitrogen - Nitrate + Nitrite	KONE	4738090	N/A	2016/11/09	Nancy Rogers
Nitrogen - Nitrite	KONE	4738091	N/A	2016/11/09	Nancy Rogers

Englobe Corp.

Client Project #: P-0010903-0-00-205

Your P.O. #: A 06392 Sampler Initials: AS

TEST SUMMARY

Maxxam ID: DJO112 Sample ID: MW9 Matrix: Water Collected: 2

2016/11/01

Shipped:

Received: 2016/11/02

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Nitrogen - Nitrate (as N)	CALC	4731895	N/A	2016/11/09	Automated Statchk
рН	AT	4738014	N/A	2016/11/08	Julia McGovern
Phosphorus - ortho	KONE	4738088	N/A	2016/11/08	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4732179	N/A	2016/11/09	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4732180	N/A	2016/11/09	Automated Statchk
Reactive Silica	KONE	4738086	N/A	2016/11/08	Nancy Rogers
Sulphate	KONE	4738085	N/A	2016/11/08	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4732181	N/A	2016/11/09	Automated Statchk
Organic carbon - Total (TOC)	TECH	4740256	N/A	2016/11/09	Soraya Merchant
Turbidity	TURB	4738100	N/A	2016/11/08	Julia McGovern

Maxxam ID: DJO113 Sample ID: MW10 Matrix: Water **Collected:** 2016/11/01

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4732171	N/A	2016/11/08	Automated Statchk
Alkalinity	KONE	4738082	N/A	2016/11/08	Nancy Rogers
Chloride	KONE	4738083	N/A	2016/11/08	Nancy Rogers
Colour	KONE	4738087	N/A	2016/11/08	Nancy Rogers
Conductance - water	AT	4738017	N/A	2016/11/08	Julia McGovern
Hardness (calculated as CaCO3)		4731970	N/A	2016/11/09	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4736738	2016/11/07	2016/11/08	Arlene Rossiter
Metals Water Diss. MS	CICP/MS	4738302	N/A	2016/11/08	Mike Leblanc
Metals Water Total MS	CICP/MS	4739997	2016/11/09	2016/11/10	Bryon Angevine
Ion Balance (% Difference)	CALC	4732172	N/A	2016/11/09	Automated Statchk
Anion and Cation Sum	CALC	4732173	N/A	2016/11/09	Automated Statchk
Nitrogen Ammonia - water	KONE	4736497	N/A	2016/11/09	Mary Clancey
Nitrogen - Nitrate + Nitrite	KONE	4738090	N/A	2016/11/09	Nancy Rogers
Nitrogen - Nitrite	KONE	4738091	N/A	2016/11/09	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4731895	N/A	2016/11/09	Automated Statchk
рН	AT	4738016	N/A	2016/11/08	Julia McGovern
Phosphorus - ortho	KONE	4738088	N/A	2016/11/08	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4732179	N/A	2016/11/09	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4732180	N/A	2016/11/09	Automated Statchk
Reactive Silica	KONE	4738086	N/A	2016/11/08	Nancy Rogers
Sulphate	KONE	4738085	N/A	2016/11/08	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4732181	N/A	2016/11/09	Automated Statchk
Organic carbon - Total (TOC)	TECH	4740256	N/A	2016/11/09	Soraya Merchant
Turbidity	TURB	4738100	N/A	2016/11/08	Julia McGovern

Englobe Corp.

Client Project #: P-0010903-0-00-205

Your P.O. #: A 06392 Sampler Initials: AS

TEST SUMMARY

Maxxam ID: DJO113 Dup Sample ID: MW10

Collected: 20

2016/11/01

Matrix: Water

Shipped: Received:

2016/11/02

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Turbidity	TURB	4738100	N/A	2016/11/08	Julia McGovern

Maxxam ID: DJO114 Sample ID: MW11

Water

Matrix:

Collected: 2016/11/01

Shipped:

Received: 2016/11/02

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4732171	N/A	2016/11/08	Automated Statchk
Alkalinity	KONE	4738082	N/A	2016/11/08	Nancy Rogers
Chloride	KONE	4738083	N/A	2016/11/08	Nancy Rogers
Colour	KONE	4738087	N/A	2016/11/08	Nancy Rogers
Conductance - water	AT	4738017	N/A	2016/11/08	Julia McGovern
Hardness (calculated as CaCO3)		4731970	N/A	2016/11/09	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4736738	2016/11/07	2016/11/08	Arlene Rossiter
Metals Water Diss. MS	CICP/MS	4738302	N/A	2016/11/08	Mike Leblanc
Metals Water Total MS	CICP/MS	4742388	2016/11/09	2016/11/11	Bryon Angevine
Ion Balance (% Difference)	CALC	4732172	N/A	2016/11/09	Automated Statchk
Anion and Cation Sum	CALC	4732173	N/A	2016/11/09	Automated Statchk
Nitrogen Ammonia - water	KONE	4736494	N/A	2016/11/08	Mary Clancey
Nitrogen - Nitrate + Nitrite	KONE	4738090	N/A	2016/11/09	Nancy Rogers
Nitrogen - Nitrite	KONE	4738091	N/A	2016/11/09	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4731895	N/A	2016/11/09	Automated Statchk
рН	AT	4738016	N/A	2016/11/08	Julia McGovern
Phosphorus - ortho	KONE	4738088	N/A	2016/11/08	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4732179	N/A	2016/11/09	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4732180	N/A	2016/11/09	Automated Statchk
Reactive Silica	KONE	4738086	N/A	2016/11/08	Nancy Rogers
Sulphate	KONE	4738085	N/A	2016/11/08	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4732181	N/A	2016/11/09	Automated Statchk
Organic carbon - Total (TOC)	TECH	4740256	N/A	2016/11/09	Soraya Merchant
Turbidity	TURB	4738092	N/A	2016/11/08	Julia McGovern

Maxxam ID: DJO115 Sample ID: MW12

Water

Matrix:

Collected: 2016/11/01

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4732171	N/A	2016/11/08	Automated Statchk
Alkalinity	KONE	4738082	N/A	2016/11/08	Nancy Rogers
Chloride	KONE	4738083	N/A	2016/11/08	Nancy Rogers
Colour	KONE	4738087	N/A	2016/11/08	Nancy Rogers
Conductance - water	AT	4738017	N/A	2016/11/08	Julia McGovern
Hardness (calculated as CaCO3)		4731970	N/A	2016/11/09	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4736738	2016/11/07	2016/11/08	Arlene Rossiter

Englobe Corp.

Client Project #: P-0010903-0-00-205

Your P.O. #: A 06392 Sampler Initials: AS

TEST SUMMARY

Maxxam ID: DJO115 Sample ID: MW12 Matrix: Water

Collected:

2016/11/01

Shipped:

Received: 2016/11/02

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Metals Water Diss. MS	CICP/MS	4738302	N/A	2016/11/08	Mike Leblanc
Metals Water Total MS	CICP/MS	4739997	2016/11/09	2016/11/10	Bryon Angevine
Ion Balance (% Difference)	CALC	4732172	N/A	2016/11/09	Automated Statchk
Anion and Cation Sum	CALC	4732173	N/A	2016/11/09	Automated Statchk
Nitrogen Ammonia - water	KONE	4736497	N/A	2016/11/08	Mary Clancey
Nitrogen - Nitrate + Nitrite	KONE	4738090	N/A	2016/11/09	Nancy Rogers
Nitrogen - Nitrite	KONE	4738091	N/A	2016/11/09	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4731895	N/A	2016/11/09	Automated Statchk
рН	AT	4738016	N/A	2016/11/08	Julia McGovern
Phosphorus - ortho	KONE	4738088	N/A	2016/11/08	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4732179	N/A	2016/11/09	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4732180	N/A	2016/11/09	Automated Statchk
Reactive Silica	KONE	4738086	N/A	2016/11/08	Nancy Rogers
Sulphate	KONE	4738085	N/A	2016/11/08	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4732181	N/A	2016/11/09	Automated Statchk
Organic carbon - Total (TOC)	TECH	4740256	N/A	2016/11/09	Soraya Merchant
Turbidity	TURB	4738092	N/A	2016/11/08	Julia McGovern

Maxxam ID: DJO116 Sample ID: MW-DUP Matrix: Water

Shipped:

Collected: 2016/11/01

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4732171	N/A	2016/11/08	Automated Statchk
Alkalinity	KONE	4738082	N/A	2016/11/08	Nancy Rogers
Chloride	KONE	4738083	N/A	2016/11/08	Nancy Rogers
Colour	KONE	4738087	N/A	2016/11/08	Nancy Rogers
Conductance - water	AT	4738013	N/A	2016/11/08	Julia McGovern
Hardness (calculated as CaCO3)		4731970	N/A	2016/11/09	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4736738	2016/11/07	2016/11/08	Arlene Rossiter
Metals Water Diss. MS (as rec'd)	CICP/MS	4738315	N/A	2016/11/08	Mike Leblanc
Metals Water Total MS	CICP/MS	4739997	2016/11/09	2016/11/10	Bryon Angevine
Ion Balance (% Difference)	CALC	4732172	N/A	2016/11/09	Automated Statchk
Anion and Cation Sum	CALC	4732173	N/A	2016/11/09	Automated Statchk
Nitrogen Ammonia - water	KONE	4736496	N/A	2016/11/09	Mary Clancey
Nitrogen - Nitrate + Nitrite	KONE	4738090	N/A	2016/11/09	Nancy Rogers
Nitrogen - Nitrite	KONE	4738091	N/A	2016/11/09	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4731895	N/A	2016/11/09	Automated Statchk
pH	AT	4738012	N/A	2016/11/08	Julia McGovern
Phosphorus - ortho	KONE	4738088	N/A	2016/11/08	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4732179	N/A	2016/11/09	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4732180	N/A	2016/11/09	Automated Statchk
Reactive Silica	KONE	4738086	N/A	2016/11/08	Nancy Rogers
Sulphate	KONE	4738085	N/A	2016/11/08	Nancy Rogers

Englobe Corp.

Client Project #: P-0010903-0-00-205

Your P.O. #: A 06392 Sampler Initials: AS

TEST SUMMARY

Maxxam ID: DJO116 Sample ID: MW-DUP Matrix: Water **Collected:** 2016/11/01

Shipped:

Received: 2016/11/02

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Total Dissolved Solids (TDS calc)	CALC	4732181	N/A	2016/11/09	Automated Statchk
Organic carbon - Total (TOC)	TECH	4740256	N/A	2016/11/09	Soraya Merchant
Turbidity	TURB	4738093	N/A	2016/11/08	Julia McGovern

Maxxam ID: DJO116 Dup Sample ID: MW-DUP Matrix: Water **Collected:** 2016/11/01

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Turbidity	TURB	4738093	N/A	2016/11/08	Julia McGovern

Englobe Corp. Client Project #: P-0010903-0-00-205 Your P.O. #: A 06392 Sampler Initials: AS

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1	4.3°C
Package 2	6.0°C

Sample DJ0099 [MW1S]: Poor RCAp Ion Balance due to sample matrix. Cation sum does not include contribution from manganese.

Sample DJO101 [MW2S] : Elevated reporting limits for trace metals due to sample matrix.

Poor RCAp Ion Balance due to sample matrix. Cation sum does not include contribution from manganese.

Sample DJO103 [MW3S]: Poor RCAp Ion Balance due to sample matrix. Cation sum does not include contribution from manganese.

Sample DJO105 [MW4S] : Elevated reporting limits for trace metals due to sample matrix. RCAp Ion Balance acceptable. Anion/cation agreement within 0.2 meq/L.

Sample DJO106 [MW4D]: RCAp Ion Balance acceptable. Anion/cation agreement within 0.2 meq/L.

Sample DJO107 [MW5S]: Poor RCAp Ion Balance due to sample matrix. Possibly due to fine particulate matter.

Sample DJO108 [MW6S] : Elevated reporting limits for trace metals due to sample matrix.

Poor RCAp Ion Balance due to sample matrix. Cation sum does not include contribution from Mn.

Sample DJO109 [MW6D] : Poor RCAp Ion Balance due to sample matrix.

Sample DJO110 [MW7]: Elevated reporting limits for trace metals due to sample matrix.

Sample DJO111 [MW8] : Elevated reporting limits for trace metals due to sample matrix.

Results relate only to the items tested.

Englobe Corp.

Client Project #: P-0010903-0-00-205

Your P.O. #: A 06392 Sampler Initials: AS

QUALITY ASSURANCE REPORT

QA/QC			·	Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
4736492	MCN	Matrix Spike	Nitrogen (Ammonia Nitrogen)	2016/11/08	value	100	%	80 - 120
4736492		Spiked Blank	Nitrogen (Ammonia Nitrogen)	2016/11/08		103	%	80 - 120
4736492	MCN	Method Blank	Nitrogen (Ammonia Nitrogen)	2016/11/08	< 0.050		mg/L	
4736492	MCN	RPD - Sample/Sample Dup		2016/11/08	NC		%	20
4736493	MCN	Matrix Spike	Nitrogen (Ammonia Nitrogen)	2016/11/08		97	%	80 - 120
4736493	MCN	•	Nitrogen (Ammonia Nitrogen)	2016/11/08		103	%	80 - 120
4736493	MCN	Method Blank	Nitrogen (Ammonia Nitrogen)	2016/11/08	< 0.050		mg/L	
4736493	MCN	RPD - Sample/Sample Dup		2016/11/08	NC		%	20
4736494	MCN	Matrix Spike	Nitrogen (Ammonia Nitrogen)	2016/11/08		NC	%	80 - 120
4736494	MCN	Spiked Blank	Nitrogen (Ammonia Nitrogen)	2016/11/08		104	%	80 - 120
4736494	MCN	Method Blank	Nitrogen (Ammonia Nitrogen)	2016/11/08	< 0.050		mg/L	
4736494	MCN	RPD - Sample/Sample Dup		2016/11/08	0.64		%	20
4736496	MCN	Matrix Spike	Nitrogen (Ammonia Nitrogen)	2016/11/09		104	%	80 - 120
4736496	MCN	Spiked Blank	Nitrogen (Ammonia Nitrogen)	2016/11/08		102	%	80 - 120
4736496	MCN	Method Blank	Nitrogen (Ammonia Nitrogen)	2016/11/08	< 0.050		mg/L	
4736496	MCN	RPD - Sample/Sample Dup	Nitrogen (Ammonia Nitrogen)	2016/11/09	NC		%	20
4736497	MCN	Matrix Spike	Nitrogen (Ammonia Nitrogen)	2016/11/09		104	%	80 - 120
4736497	MCN	Spiked Blank	Nitrogen (Ammonia Nitrogen)	2016/11/09		106	%	80 - 120
4736497	MCN	Method Blank	Nitrogen (Ammonia Nitrogen)	2016/11/09	< 0.050		mg/L	
4736497	MCN	RPD - Sample/Sample Dup	Nitrogen (Ammonia Nitrogen)	2016/11/09	NC		%	20
4736738	ARS	Matrix Spike(DJO104)	Total Mercury (Hg)	2016/11/08		103	%	80 - 120
4736738	ARS	Spiked Blank	Total Mercury (Hg)	2016/11/08		107	%	80 - 120
4736738	ARS	Method Blank	Total Mercury (Hg)	2016/11/08	< 0.013		ug/L	
4736738	ARS	RPD - Sample/Sample Dup	Total Mercury (Hg)	2016/11/08	NC		%	20
4738010	JMV	QC Standard	рН	2016/11/08		100	%	97 - 103
4738010	JMV	RPD - Sample/Sample Dup	рН	2016/11/08	1.0		%	N/A
4738011	JMV	Spiked Blank	Conductivity	2016/11/08		100	%	80 - 120
4738011	JMV	Method Blank	Conductivity	2016/11/08	1.6,		uS/cm	
					RDL=1.0			
4738011	JMV	RPD - Sample/Sample Dup	Conductivity	2016/11/08	0.0018		%	25
4738012	JMV	QC Standard	pH	2016/11/08		100	%	97 - 103
4738012	JMV	RPD - Sample/Sample Dup	pH	2016/11/08	1.6		%	N/A
4738013	JMV	Spiked Blank	Conductivity	2016/11/08		100	%	80 - 120
4738013	JMV	Method Blank	Conductivity	2016/11/08	1.4,		uS/cm	
					RDL=1.0			
4738013	JMV	RPD - Sample/Sample Dup	Conductivity	2016/11/08	0.089		%	25
4738014	JMV	QC Standard	pH	2016/11/08		100	%	97 - 103
4738014	JMV	RPD - Sample/Sample Dup	pH	2016/11/08	1.5		%	N/A
4738015	JMV	Spiked Blank	Conductivity	2016/11/08		100	%	80 - 120
4738015	JMV	Method Blank	Conductivity	2016/11/08	1.7,		uS/cm	
					RDL=1.0			
4738015	JMV	RPD - Sample/Sample Dup	Conductivity	2016/11/08	0.77		%	25
4738016	JMV	QC Standard	рН	2016/11/08		100	%	97 - 103
4738016	JMV	RPD - Sample/Sample Dup	•	2016/11/08	0.36		%	N/A
4738017	JMV	Spiked Blank	Conductivity	2016/11/08		100	%	80 - 120
4738017	JMV	Method Blank	Conductivity	2016/11/08	1.3,		uS/cm	
			•	, ,	RDL=1.0			
4738017	JMV	RPD - Sample/Sample Dup	Conductivity	2016/11/08	0.66		%	25
4738067	NRG	Matrix Spike(DJO101)	Total Alkalinity (Total as CaCO3)	2016/11/08	0.00	NC	%	80 - 120
4738067	NRG	Spiked Blank	Total Alkalinity (Total as CaCO3)	2016/11/08		107	%	80 - 120
4738067	NRG	Method Blank	Total Alkalinity (Total as CaCO3)	2016/11/08	<5.0		mg/L	
4738067	NRG		Total Alkalinity (Total as CaCO3)	2016/11/08	1.5		%	25
1,33007		5 Sample/Sample Bup	. Starring (Total as cacos)	2010/11/00	1.5		/0	-5

Englobe Corp.

Client Project #: P-0010903-0-00-205

Your P.O. #: A 06392 Sampler Initials: AS

			·					-
QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
4738070	NRG	Matrix Spike(DJO101)	Dissolved Chloride (Cl)	2016/11/08		NC	%	80 - 120
4738070	NRG	QC Standard	Dissolved Chloride (CI)	2016/11/08		105	%	80 - 120
4738070	NRG	Spiked Blank	Dissolved Chloride (Cl)	2016/11/08		98	%	80 - 120
4738070	NRG	Method Blank	Dissolved Chloride (CI)	2016/11/08	<1.0		mg/L	
4738070	NRG	RPD - Sample/Sample Dup	Dissolved Chloride (CI)	2016/11/08	6.3		%	25
4738071	NRG	Matrix Spike(DJO101)	Dissolved Sulphate (SO4)	2016/11/08		NC	%	80 - 120
4738071	NRG	Spiked Blank	Dissolved Sulphate (SO4)	2016/11/08		102	%	80 - 120
4738071	NRG	Method Blank	Dissolved Sulphate (SO4)	2016/11/08	<2.0		mg/L	
4738071	NRG		Dissolved Sulphate (SO4)	2016/11/08	5.8		%	25
4738072	NRG	Matrix Spike(DJO101)	Reactive Silica (SiO2)	2016/11/08		NC	%	80 - 120
4738072	NRG	Spiked Blank	Reactive Silica (SiO2)	2016/11/08		100	%	80 - 120
4738072	NRG	Method Blank	Reactive Silica (SiO2)	2016/11/08	< 0.50		mg/L	
4738072	NRG	RPD - Sample/Sample Dup	Reactive Silica (SiO2)	2016/11/08	1.1		%	25
4738074	NRG	Spiked Blank	Colour	2016/11/08		93	%	80 - 120
4738074	NRG	Method Blank	Colour	2016/11/08	<5.0		TCU	
4738074	NRG	RPD - Sample/Sample Dup	Colour	2016/11/08	NC		%	20
4738076	NRG	Matrix Spike(DJO101)	Orthophosphate (P)	2016/11/08		93	%	80 - 120
4738076	NRG	Spiked Blank	Orthophosphate (P)	2016/11/08		100	%	80 - 120
4738076	NRG	Method Blank	Orthophosphate (P)	2016/11/08	< 0.010		mg/L	
4738076	NRG	RPD - Sample/Sample Dup	Orthophosphate (P)	2016/11/08	NC		%	25
4738077	NRG	Matrix Spike(DJO101)	Nitrite (N)	2016/11/09		91	%	80 - 120
4738077	NRG	Spiked Blank	Nitrite (N)	2016/11/09		92	%	80 - 120
4738077	NRG	Method Blank	Nitrite (N)	2016/11/09	< 0.010		mg/L	
4738077	NRG	RPD - Sample/Sample Dup	Nitrite (N)	2016/11/09	NC		%	25
4738078	NRG	Matrix Spike(DJO101)	Nitrate + Nitrite (N)	2016/11/09		NC	%	80 - 120
4738078	NRG	Spiked Blank	Nitrate + Nitrite (N)	2016/11/09		95	%	80 - 120
4738078	NRG	Method Blank	Nitrate + Nitrite (N)	2016/11/09	< 0.050		mg/L	
4738078	NRG	RPD - Sample/Sample Dup	` ,	2016/11/09	0.21		%	25
4738082	NRG	Matrix Spike(DJO108)	Total Alkalinity (Total as CaCO3)	2016/11/08		NC	%	80 - 120
4738082	NRG	Spiked Blank	Total Alkalinity (Total as CaCO3)	2016/11/08		107	%	80 - 120
4738082	NRG	Method Blank	Total Alkalinity (Total as CaCO3)	2016/11/08	<5.0		mg/L	
4738082	NRG	RPD - Sample/Sample Dup		2016/11/08	2.0		%	25
4738083	NRG	Matrix Spike(DJO108)	Dissolved Chloride (CI)	2016/11/08		NC	%	80 - 120
4738083	NRG	QC Standard	Dissolved Chloride (CI)	2016/11/08		105	%	80 - 120
4738083	NRG	Spiked Blank	Dissolved Chloride (CI)	2016/11/08		105	%	80 - 120
4738083	NRG	Method Blank	Dissolved Chloride (CI)	2016/11/08	1.1,		mg/L	
				, ,	RDL=1.0		0,	
4738083	NRG	RPD - Sample/Sample Dup	Dissolved Chloride (Cl)	2016/11/08	2.8		%	25
4738085	NRG	Matrix Spike(DJO108)	Dissolved Sulphate (SO4)	2016/11/08	2.0	NC	%	80 - 120
4738085	NRG	Spiked Blank	Dissolved Sulphate (SO4)	2016/11/08		105	% %	80 - 120
4738085	NRG	Method Blank	Dissolved Sulphate (SO4)	2016/11/08	<2.0	103	mg/L	55 120
4738085	NRG	RPD - Sample/Sample Dup		2016/11/08	7.0		// // // // // // // // // // // // //	25
4738085	NRG	Matrix Spike(DJO108)	Reactive Silica (SiO2)	2016/11/08	7.0	NC	%	80 - 120
4738086	NRG	Spiked Blank	Reactive Silica (SiO2)	2016/11/08		100	%	80 - 120
4738086	NRG	Method Blank	Reactive Silica (SiO2)	2016/11/08	<0.50	100	∞ mg/L	00 - 120
4738086	NRG	RPD - Sample/Sample Dup		2016/11/08	1.7		mg/L %	25
4738086	NRG	Spiked Blank	Colour (SiO2)	2016/11/08	1./	109	% %	25 80 - 120
4738087	NRG	Method Blank	Colour	2016/11/08	<5.0	109	™ TCU	00 - 120
		RPD - Sample/Sample Dup						20
4738087	NRG			2016/11/08	NC	ດາ	%	20
4738088	NRG	Matrix Spike(DJO108)	Orthophosphate (P)	2016/11/08		82	%	80 - 120
4738088	NRG	Spiked Blank	Orthophosphate (P)	2016/11/08	-0.010	97	% ma/l	80 - 120
4738088	NRG	Method Blank	Orthophosphate (P)	2016/11/08	<0.010		mg/L	

Englobe Corp.

Client Project #: P-0010903-0-00-205

Your P.O. #: A 06392 Sampler Initials: AS

0.1/0.0						0/		
QA/QC	116	007	David and a second and	Date	Malara	%	LINUTC	001::
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery		QC Limits
4738088	NRG	RPD - Sample/Sample Dup		2016/11/08	NC	101	%	25
4738090	NRG	Matrix Spike(DJO108)	Nitrate + Nitrite (N)	2016/11/09		101	%	80 - 120
4738090	NRG	Spiked Blank	Nitrate + Nitrite (N)	2016/11/09	40.0E0	102	%	80 - 120
4738090	NRG	Method Blank	Nitrate + Nitrite (N)	2016/11/09	<0.050		mg/L	25
4738090	NRG	RPD - Sample/Sample Dup	Nitrate + Nitrite (N)	2016/11/09	NC	04	%	25
4738091	NRG	Matrix Spike(DJO108)	Nitrite (N)	2016/11/09		91	%	80 - 120
4738091	NRG	Spiked Blank	Nitrite (N)	2016/11/09	10.010	91	%	80 - 120
4738091	NRG	Method Blank	Nitrite (N)	2016/11/09	<0.010		mg/L	25
4738091	NRG	RPD - Sample/Sample Dup	·	2016/11/09	NC	102	%	25
4738092	JMV	QC Standard	Turbidity	2016/11/08		102 94	% %	80 - 120
4738092	JMV	Spiked Blank	Turbidity	2016/11/08	c0 10	94	™ NTU	80 - 120
4738092	JMV	Method Blank	Turbidity	2016/11/08	<0.10			20
4738092	JMV	RPD - Sample/Sample Dup QC Standard	Turbidity	2016/11/08	2.1	101	%	20 80 - 120
4738093	JMV	•	Turbidity	2016/11/08		101	%	
4738093 4738093	JMV	Spiked Blank	Turbidity Turbidity	2016/11/08	c0 10	95	% N T 11	80 - 120
	JMV	Method Blank	,	2016/11/08	<0.10		NTU %	20
4738093	JMV JMV	RPD - Sample/Sample Dup QC Standard		2016/11/08	NC	101		20 80 - 120
4738096 4738096	JMV	Spiked Blank	Turbidity Turbidity	2016/11/08 2016/11/08		101 95	% %	80 - 120 80 - 120
4738096	JMV	Method Blank	Turbidity	2016/11/08	<0.10	95	7₀ NTU	00 - 120
4738096	JMV			2016/11/08	1.3		W10 %	20
4738100	JMV	RPD - Sample/Sample Dup QC Standard	Turbidity Turbidity	2016/11/08	1.5	101	% %	80 - 120
4738100	JMV	Spiked Blank	Turbidity	2016/11/08		95	% %	80 - 120
4738100	JMV	Method Blank	Turbidity	2016/11/08	<0.10	95	7₀ NTU	00 - 120
4738100	JMV	RPD - Sample/Sample Dup	•	2016/11/08	NC		W10 %	20
4738100	JMV	QC Standard	Turbidity	2016/11/08	INC	101	% %	80 - 120
4738107	JMV	Spiked Blank	Turbidity	2016/11/08		94	% %	80 - 120
4738107	JMV	Method Blank	Turbidity	2016/11/08	<0.10	94	7₀ NTU	00 - 120
4738107	JMV	RPD - Sample/Sample Dup	Turbidity	2016/11/08	NC		%	20
4738302	MLB	Matrix Spike	Dissolved Aluminum (AI)	2016/11/08	INC	102	% %	80 - 120
4738302	IVILD	Wattix Spike	Dissolved Antimony (Sb)	2016/11/08		98	%	80 - 120
			Dissolved Antimorry (35) Dissolved Arsenic (As)	2016/11/08		97	%	80 - 120
			Dissolved Barium (Ba)	2016/11/08		97	%	80 - 120
			Dissolved Barryllium (Be)	2016/11/08		95	%	80 - 120
			Dissolved Bismuth (Bi)	2016/11/08		99	%	80 - 120
			Dissolved Bismath (B)	2016/11/08		95	%	80 - 120
			Dissolved Cadmium (Cd)	2016/11/08		96	%	80 - 120
			Dissolved Calcium (Ca)	2016/11/08		99	%	80 - 120
			Dissolved Chromium (Cr)	2016/11/08		96	%	80 - 120
			Dissolved Cobalt (Co)	2016/11/08		97	%	80 - 120
			Dissolved Copper (Cu)	2016/11/08		94	%	80 - 120
			Dissolved Iron (Fe)	2016/11/08		98	%	80 - 120
			Dissolved Lead (Pb)	2016/11/08		96	%	80 - 120
			Dissolved Magnesium (Mg)	2016/11/08		100	%	80 - 120
			Dissolved Manganese (Mn)	2016/11/08		100	%	80 - 120
			Dissolved Molybdenum (Mo)	2016/11/08		101	%	80 - 120
			Dissolved Nickel (Ni)	2016/11/08		96	%	80 - 120
			Dissolved Phosphorus (P)	2016/11/08		103	%	80 - 120
			Dissolved Potassium (K)	2016/11/08		100	%	80 - 120
			Dissolved Selenium (Se)	2016/11/08		100	%	80 - 120
			Dissolved Silver (Ag)	2016/11/08		98	%	80 - 120
			Dissolved Sodium (Na)	2016/11/08		NC	%	80 - 120
			\ -/	, ,		-		

Englobe Corp.

Client Project #: P-0010903-0-00-205

Your P.O. #: A 06392 Sampler Initials: AS

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			Dissolved Strontium (Sr)	2016/11/08		NC	%	80 - 120
			Dissolved Thallium (TI)	2016/11/08		99	%	80 - 120
			Dissolved Tin (Sn)	2016/11/08		103	%	80 - 120
			Dissolved Titanium (Ti)	2016/11/08		97	%	80 - 120
			Dissolved Uranium (U)	2016/11/08		101	%	80 - 120
			Dissolved Vanadium (V)	2016/11/08		98	%	80 - 120
			Dissolved Zinc (Zn)	2016/11/08		99	%	80 - 120
4738302	MLB	Spiked Blank	Dissolved Aluminum (Al)	2016/11/08		103	%	80 - 120
			Dissolved Antimony (Sb)	2016/11/08		99	%	80 - 120
			Dissolved Arsenic (As)	2016/11/08		98	%	80 - 120
			Dissolved Barium (Ba)	2016/11/08		98	%	80 - 120
			Dissolved Beryllium (Be)	2016/11/08		97	%	80 - 120
			Dissolved Bismuth (Bi)	2016/11/08		101	%	80 - 120
			Dissolved Boron (B)	2016/11/08		97	%	80 - 120
			Dissolved Cadmium (Cd)	2016/11/08		98	%	80 - 120
			Dissolved Calcium (Ca)	2016/11/08		99	%	80 - 120
			Dissolved Chromium (Cr)	2016/11/08		97	%	80 - 120
			Dissolved Cobalt (Co)	2016/11/08		97	%	80 - 120
			Dissolved Copper (Cu)	2016/11/08		96	%	80 - 120
			Dissolved Iron (Fe)	2016/11/08		97	%	80 - 120
			Dissolved Lead (Pb)	2016/11/08		98	%	80 - 120
			Dissolved Magnesium (Mg)	2016/11/08		102	%	80 - 120
			Dissolved Manganese (Mn)	2016/11/08		100	%	80 - 120
			Dissolved Molybdenum (Mo)	2016/11/08		100	%	80 - 120
			Dissolved Nickel (Ni)	2016/11/08		99	%	80 - 120
			Dissolved Phosphorus (P)	2016/11/08		104	%	80 - 120
			Dissolved Potassium (K)	2016/11/08		102	%	80 - 120
			Dissolved Selenium (Se)	2016/11/08		99	%	80 - 120
			Dissolved Silver (Ag)	2016/11/08		98	%	80 - 120
			Dissolved Sodium (Na)	2016/11/08		98	%	80 - 120
			Dissolved Strontium (Sr)	2016/11/08		99	%	80 - 120
			Dissolved Thallium (TI)	2016/11/08		101	%	80 - 120
			Dissolved Tin (Sn)	2016/11/08		100	%	80 - 120
			Dissolved Titanium (Ti)	2016/11/08		101	%	80 - 120
			Dissolved Uranium (U)	2016/11/08		102	%	80 - 120
			Dissolved Vanadium (V)	2016/11/08		98	%	80 - 120
			Dissolved Zinc (Zn)	2016/11/08		100	%	80 - 120
4738302	MLB	Method Blank	Dissolved Aluminum (Al)	2016/11/08	<5.0		ug/L	
			Dissolved Antimony (Sb)	2016/11/08	<1.0		ug/L	
			Dissolved Arsenic (As)	2016/11/08	<1.0		ug/L	
			Dissolved Barium (Ba)	2016/11/08	<1.0		ug/L	
			Dissolved Beryllium (Be)	2016/11/08	<1.0		ug/L	
			Dissolved Bismuth (Bi)	2016/11/08	<2.0		ug/L	
			Dissolved Boron (B)	2016/11/08	<50		ug/L	
			Dissolved Cadmium (Cd)	2016/11/08	< 0.010		ug/L	
			Dissolved Calcium (Ca)	2016/11/08	<100		ug/L	
			Dissolved Chromium (Cr)	2016/11/08	<1.0		ug/L	
			Dissolved Cobalt (Co)	2016/11/08	<0.40		ug/L	
			Dissolved Copper (Cu)	2016/11/08	<2.0		ug/L	
			Dissolved copper (cu) Dissolved Iron (Fe)	2016/11/08	<50		ug/L	
			Dissolved from (Fe) Dissolved Lead (Pb)	2016/11/08				
			• •		<0.50		ug/L	
			Dissolved Magnesium (Mg)	2016/11/08	<100		ug/L	

Englobe Corp.

Client Project #: P-0010903-0-00-205

Your P.O. #: A 06392 Sampler Initials: AS

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
		20.7/00	Dissolved Manganese (Mn)	2016/11/08	<2.0		ug/L	
			Dissolved Molybdenum (Mo)	2016/11/08	<2.0		ug/L	
			Dissolved Nickel (Ni)	2016/11/08	<2.0		ug/L	
			Dissolved Phosphorus (P)	2016/11/08	<100		ug/L	
			Dissolved Potassium (K)	2016/11/08	<100		ug/L	
			Dissolved Selenium (Se)	2016/11/08	<1.0		ug/L	
			Dissolved Silver (Ag)	2016/11/08	< 0.10		ug/L	
			Dissolved Sodium (Na)	2016/11/08	<100		ug/L	
			Dissolved Strontium (Sr)	2016/11/08	<2.0		ug/L	
			Dissolved Thallium (TI)	2016/11/08	<0.10		ug/L	
			Dissolved Tin (Sn)	2016/11/08	<2.0		ug/L	
			Dissolved Titanium (Ti)	2016/11/08	<2.0		ug/L	
			Dissolved Uranium (U)	2016/11/08	< 0.10		ug/L	
			Dissolved Vanadium (V)	2016/11/08	<2.0		ug/L	
			Dissolved Zinc (Zn)	2016/11/08	<5.0		ug/L	
4738302	MLB	RPD - Sample/Sample Dup	Dissolved Aluminum (AI)	2016/11/08	0.44		%	20
473030Z	IVILD	THE Sumpley sumple Bup	Dissolved Antimony (Sb)	2016/11/08	NC		%	20
			Dissolved Arsenic (As)	2016/11/08	NC		%	20
			Dissolved Barium (Ba)	2016/11/08	1.9		%	20
			Dissolved Beryllium (Be)	2016/11/08	NC		%	20
			Dissolved Bismuth (Bi)	2016/11/08	NC		%	20
			Dissolved Boron (B)	2016/11/08	NC		%	20
			Dissolved Cadmium (Cd)	2016/11/08	1.3		%	20
			Dissolved Calcium (Ca)	2016/11/08	2.1		%	20
			Dissolved Chromium (Cr)	2016/11/08	NC		%	20
			Dissolved Cobalt (Co)	2016/11/08	NC		%	20
			Dissolved Copper (Cu)	2016/11/08	NC		%	20
			Dissolved Copper (Cu) Dissolved Iron (Fe)	2016/11/08	NC		%	20
			Dissolved Holf (Pc)	2016/11/08	NC		%	20
			Dissolved Magnesium (Mg)	2016/11/08	0.14		%	20
			Dissolved Magnesidin (Mg) Dissolved Manganese (Mn)	2016/11/08	2.0		%	20
			Dissolved Maliganese (Will) Dissolved Molybdenum (Mo)	2016/11/08	NC		%	20
			Dissolved Nickel (Ni)	2016/11/08	NC		%	20
			Dissolved Phosphorus (P)	2016/11/08	NC		%	20
			Dissolved Potassium (K)	2016/11/08	4.7		%	20
			Dissolved Fotassium (K) Dissolved Selenium (Se)	2016/11/08	NC		%	20
			Dissolved Silver (Ag)	2016/11/08	NC		%	20
			Dissolved Sodium (Na)	2016/11/08	0.21		%	20
			Dissolved Strontium (Sr)	2016/11/08	2.4		%	20
			Dissolved Thallium (TI)	2016/11/08	NC		%	20
			Dissolved Tin (Sn)	2016/11/08	NC		%	20
			Dissolved Titanium (Ti)	2016/11/08	NC		%	20
			Dissolved Uranium (U) Dissolved Vanadium (V)	2016/11/08 2016/11/08	NC NC		% %	20 20
			Dissolved Zinc (Zn)	2016/11/08	NC NC		% %	20
4738315	MID	Matrix Sniko	Dissolved Aluminum (Al)	2016/11/08	INC	103	% %	
4/30313	IVILD	Matrix Spike	Dissolved Antimony (Sb)	2016/11/08		97	% %	80 - 120 80 - 120
			Dissolved Antimony (Sb)				% %	
			Dissolved Arsenic (AS) Dissolved Barium (Ba)	2016/11/08 2016/11/08		95 95	% %	80 - 120 80 - 120
			Dissolved Beryllium (Be)	2016/11/08		93	% %	80 - 120 80 - 120
								80 - 120 80 - 120
			Dissolved Bismuth (Bi)	2016/11/08		98	%	80 - 120
			Dissolved Boron (B)	2016/11/08		94	%	80 - 120

Englobe Corp.

Client Project #: P-0010903-0-00-205

Your P.O. #: A 06392 Sampler Initials: AS

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	
			Dissolved Cadmium (Cd)	2016/11/08		97	%	80 - 120
			Dissolved Calcium (Ca)	2016/11/08		NC	%	80 - 120
			Dissolved Chromium (Cr)	2016/11/08		95	%	80 - 120
			Dissolved Cobalt (Co)	2016/11/08		95	%	80 - 120
			Dissolved Copper (Cu)	2016/11/08		93	%	80 - 120
			Dissolved Iron (Fe)	2016/11/08		98	%	80 - 120
			Dissolved Lead (Pb)	2016/11/08		96	%	80 - 120
			Dissolved Magnesium (Mg)	2016/11/08		102	%	80 - 120
			Dissolved Manganese (Mn)	2016/11/08		NC	%	80 - 120
			Dissolved Molybdenum (Mo)	2016/11/08		100	%	80 - 120
			Dissolved Nickel (Ni)	2016/11/08		95	%	80 - 120
			Dissolved Phosphorus (P)	2016/11/08		106	%	80 - 120
			Dissolved Potassium (K)	2016/11/08		103	%	80 - 120
			Dissolved Selenium (Se)	2016/11/08		100	%	80 - 120
			Dissolved Silver (Ag)	2016/11/08		92	%	80 - 120
			Dissolved Sodium (Na)	2016/11/08		98	%	80 - 120
			Dissolved Strontium (Sr)	2016/11/08		NC	%	80 - 120
			Dissolved Thallium (TI)	2016/11/08		100	%	80 - 120
			Dissolved Tin (Sn)	2016/11/08		103	%	80 - 120
			Dissolved Titanium (Ti)	2016/11/08		100	%	80 - 120
			Dissolved Uranium (U)	2016/11/08		101	%	80 - 120
			Dissolved Vanadium (V)	2016/11/08		96	%	80 - 120
			Dissolved Zinc (Zn)	2016/11/08		NC	%	80 - 120
4738315	MLB	Spiked Blank	Dissolved Aluminum (AI)	2016/11/08		107	%	80 - 120
			Dissolved Antimony (Sb)	2016/11/08		97	%	80 - 120
			Dissolved Arsenic (As)	2016/11/08		97	%	80 - 120
			Dissolved Barium (Ba)	2016/11/08		97	%	80 - 120
			Dissolved Beryllium (Be)	2016/11/08		96	%	80 - 120
			Dissolved Bismuth (Bi)	2016/11/08		99	%	80 - 120
			Dissolved Boron (B)	2016/11/08		96	%	80 - 120
			Dissolved Cadmium (Cd)	2016/11/08		100	%	80 - 120
			Dissolved Calcium (Ca)	2016/11/08		103	%	80 - 120
			Dissolved Chromium (Cr)	2016/11/08		98	%	80 - 120
			Dissolved Cobalt (Co)	2016/11/08		98	%	80 - 120
			Dissolved Copper (Cu)	2016/11/08		96	%	80 - 120
			Dissolved Iron (Fe)	2016/11/08		101	%	80 - 120
			Dissolved Lead (Pb)	2016/11/08		98	%	80 - 120
			Dissolved Magnesium (Mg)	2016/11/08		105	%	80 - 120
			Dissolved Manganese (Mn)	2016/11/08		100	%	80 - 120
			Dissolved Molybdenum (Mo)	2016/11/08		99	%	80 - 120
			Dissolved Nickel (Ni)	2016/11/08		99	%	80 - 120
			Dissolved Phosphorus (P)	2016/11/08		105	%	80 - 120
			Dissolved Potassium (K)	2016/11/08		104	%	80 - 120
			Dissolved Selenium (Se)	2016/11/08		98	%	80 - 120
			Dissolved Silver (Ag)	2016/11/08		97	%	80 - 120
			Dissolved Sodium (Na)	2016/11/08		101	%	80 - 120
			Dissolved Strontium (Sr)	2016/11/08		99	%	80 - 120
			Dissolved Thallium (TI)	2016/11/08		100	%	80 - 120
			Dissolved Tin (Sn)	2016/11/08		100	%	80 - 120
			Dissolved Titanium (Ti)	2016/11/08		104	%	80 - 120
			Dissolved Uranium (U)	2016/11/08		101	%	80 - 120
			Dissolved Vanadium (V)	2016/11/08		99	%	80 - 120
			Dissolved variation (v)	2010/11/00		22	/0	00 - 120

Englobe Corp.

Client Project #: P-0010903-0-00-205

Your P.O. #: A 06392 Sampler Initials: AS

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
5410		ζο , γρο	Dissolved Zinc (Zn)	2016/11/08	74.44	99	%	80 - 120
4738315	MLB	Method Blank	Dissolved Aluminum (Al)	2016/11/08	<5.0	33	ug/L	00 110
., 00010		meaned Diam.	Dissolved Antimony (Sb)	2016/11/08	<1.0		ug/L	
			Dissolved Arsenic (As)	2016/11/08	<1.0		ug/L	
			Dissolved Barium (Ba)	2016/11/08	<1.0		ug/L	
			Dissolved Beryllium (Be)	2016/11/08	<1.0		ug/L	
			Dissolved Bismuth (Bi)	2016/11/08	<2.0		ug/L	
			Dissolved Boron (B)	2016/11/08	<50		ug/L	
			Dissolved Cadmium (Cd)	2016/11/08	0.017,		ug/L	
					RDL=0.010			
			Dissolved Calcium (Ca)	2016/11/08	<100		ug/L	
			Dissolved Chromium (Cr)	2016/11/08	<1.0		ug/L	
			Dissolved Cobalt (Co)	2016/11/08	< 0.40		ug/L	
			Dissolved Copper (Cu)	2016/11/08	<2.0		ug/L	
			Dissolved Iron (Fe)	2016/11/08	<50		ug/L	
			Dissolved Lead (Pb)	2016/11/08	< 0.50		ug/L	
			Dissolved Magnesium (Mg)	2016/11/08	<100		ug/L	
			Dissolved Manganese (Mn)	2016/11/08	<2.0		ug/L	
			Dissolved Molybdenum (Mo)	2016/11/08	<2.0		ug/L	
			Dissolved Nickel (Ni)	2016/11/08	<2.0		ug/L	
			Dissolved Phosphorus (P)	2016/11/08	<100		ug/L	
			Dissolved Potassium (K)	2016/11/08	<100		ug/L	
			Dissolved Selenium (Se)	2016/11/08	<1.0		ug/L	
			Dissolved Silver (Ag)	2016/11/08	< 0.10		ug/L	
			Dissolved Sodium (Na)	2016/11/08	<100		ug/L	
			Dissolved Strontium (Sr)	2016/11/08	<2.0		ug/L	
			Dissolved Thallium (TI)	2016/11/08	< 0.10		ug/L	
			Dissolved Tin (Sn)	2016/11/08	<2.0		ug/L	
			Dissolved Titanium (Ti)	2016/11/08	<2.0		ug/L	
			Dissolved Uranium (U)	2016/11/08	< 0.10		ug/L	
			Dissolved Vanadium (V)	2016/11/08	<2.0		ug/L	
			Dissolved Zinc (Zn)	2016/11/08	<5.0		ug/L	
4738315	MLB	RPD - Sample/Sample Dup		2016/11/08	0.31		%	20
			Dissolved Antimony (Sb)	2016/11/08	NC		%	20
			Dissolved Arsenic (As)	2016/11/08	NC		%	20
			Dissolved Barium (Ba)	2016/11/08	NC		%	20
			Dissolved Beryllium (Be)	2016/11/08	NC		%	20
			Dissolved Bismuth (Bi)	2016/11/08	NC		%	20
			Dissolved Boron (B)	2016/11/08	NC		%	20
			Dissolved Cadmium (Cd)	2016/11/08	0.49		%	20
			Dissolved Calcium (Ca)	2016/11/08	1.3		%	20
			Dissolved Chromium (Cr)	2016/11/08	NC		%	20
			Dissolved Cobalt (Co)	2016/11/08	NC		%	20
			Dissolved Copper (Cu)	2016/11/08	NC		%	20
			Dissolved Iron (Fe)	2016/11/08	NC		%	20
			Dissolved Lead (Pb)	2016/11/08	NC		%	20
			Dissolved Magnesium (Mg)	2016/11/08	1.1		%	20
			Dissolved Manganese (Mn)	2016/11/08	3.7		%	20
			Dissolved Molybdenum (Mo)	2016/11/08	NC		%	20
			Dissolved Nickel (Ni)	2016/11/08	NC		%	20
			Dissolved Phosphorus (P)	2016/11/08	NC 2.6		%	20
			Dissolved Potassium (K)	2016/11/08	2.6		%	20

Englobe Corp.

Client Project #: P-0010903-0-00-205

Your P.O. #: A 06392 Sampler Initials: AS

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
		. //	Dissolved Selenium (Se)	2016/11/08	NC	,	%	20
			Dissolved Silver (Ag)	2016/11/08	NC		%	20
			Dissolved Sodium (Na)	2016/11/08	2.3		%	20
			Dissolved Strontium (Sr)	2016/11/08	2.6		%	20
			Dissolved Thallium (TI)	2016/11/08	NC		%	20
			Dissolved Tin (Sn)	2016/11/08	NC		%	20
			Dissolved Titanium (Ti)	2016/11/08	NC		%	20
			Dissolved Uranium (U)	2016/11/08	2.4		%	20
			Dissolved Vanadium (V)	2016/11/08	NC		%	20
			Dissolved Zinc (Zn)	2016/11/08	1.5		%	20
4738394	MLB	Matrix Spike(DJO100)	Total Lead (Pb)	2016/11/09		102	%	80 - 120
4738394	MLB	Spiked Blank	Total Lead (Pb)	2016/11/08		101	%	80 - 120
4738394	MLB	Method Blank	Total Lead (Pb)	2016/11/08	< 0.50		ug/L	
4738394	MLB	RPD - Sample/Sample Dup	Total Lead (Pb)	2016/11/09	NC		%	20
4739997	BAN	Matrix Spike(DJO106)	Total Lead (Pb)	2016/11/10		97	%	80 - 120
4739997	BAN	Spiked Blank	Total Lead (Pb)	2016/11/10		92	%	80 - 120
4739997	BAN	Method Blank	Total Lead (Pb)	2016/11/10	< 0.50		ug/L	
4739997	BAN	RPD - Sample/Sample Dup	Total Lead (Pb)	2016/11/10	NC		%	20
4740002	JMV	QC Standard	рН	2016/11/09		100	%	97 - 103
4740002	JMV	RPD - Sample/Sample Dup	рН	2016/11/09	1.6		%	N/A
4740003	JMV	Spiked Blank	Conductivity	2016/11/09		101	%	80 - 120
4740003	JMV	Method Blank	Conductivity	2016/11/09	1.5, RDL=1.0		uS/cm	
4740003	JMV	RPD - Sample/Sample Dup	Conductivity	2016/11/09	0.79		%	25
4740054	BAN	Matrix Spike	Dissolved Aluminum (AI)	2016/11/10		103	%	80 - 120
		·	Dissolved Antimony (Sb)	2016/11/10		102	%	80 - 120
			Dissolved Arsenic (As)	2016/11/10		97	%	80 - 120
			Dissolved Barium (Ba)	2016/11/10		96	%	80 - 120
			Dissolved Beryllium (Be)	2016/11/10		100	%	80 - 120
			Dissolved Bismuth (Bi)	2016/11/10		100	%	80 - 120
			Dissolved Boron (B)	2016/11/10		102	%	80 - 120
			Dissolved Cadmium (Cd)	2016/11/10		99	%	80 - 120
			Dissolved Calcium (Ca)	2016/11/10		103	%	80 - 120
			Dissolved Chromium (Cr)	2016/11/10		97	%	80 - 120
			Dissolved Cobalt (Co)	2016/11/10		98	%	80 - 120
			Dissolved Copper (Cu)	2016/11/10		95	%	80 - 120
			Dissolved Iron (Fe)	2016/11/10		99	%	80 - 120
			Dissolved Lead (Pb)	2016/11/10		98	%	80 - 120
			Dissolved Magnesium (Mg)	2016/11/10		102	%	80 - 120
			Dissolved Manganese (Mn)	2016/11/10		100	%	80 - 120
			Dissolved Molybdenum (Mo)	2016/11/10		102	%	80 - 120
			Dissolved Nickel (Ni)	2016/11/10		97	%	80 - 120
			Dissolved Phosphorus (P)	2016/11/10		104	%	80 - 120
			Dissolved Potassium (K)	2016/11/10		102	%	80 - 120
			Dissolved Selenium (Se)	2016/11/10		100	%	80 - 120
			Dissolved Silver (Ag)	2016/11/10		98	%	80 - 120
			Dissolved Sodium (Na)	2016/11/10		99	%	80 - 120
			Dissolved Strontium (Sr)	2016/11/10		101	%	80 - 120
			Dissolved Thallium (TI)	2016/11/10		101	%	80 - 120
			Dissolved Tin (Sn)	2016/11/10		103	%	80 - 120
			Dissolved Titanium (Ti)	2016/11/10		103	%	80 - 120
			Dissolved Uranium (U)	2016/11/10		101	<u>%</u>	80 - 120

Englobe Corp.

Client Project #: P-0010903-0-00-205

Your P.O. #: A 06392 Sampler Initials: AS

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			Dissolved Vanadium (V)	2016/11/10		100	%	80 - 120
			Dissolved Zinc (Zn)	2016/11/10		99	%	80 - 120
4740054	BAN	Spiked Blank	Dissolved Aluminum (Al)	2016/11/09		105	%	80 - 120
			Dissolved Antimony (Sb)	2016/11/09		97	%	80 - 120
			Dissolved Arsenic (As)	2016/11/09		96	%	80 - 120
			Dissolved Barium (Ba)	2016/11/09		100	%	80 - 120
			Dissolved Beryllium (Be)	2016/11/09		103	%	80 - 120
			Dissolved Bismuth (Bi)	2016/11/09		103	%	80 - 120
			Dissolved Boron (B)	2016/11/09		101	%	80 - 120
			Dissolved Cadmium (Cd)	2016/11/09		97	%	80 - 120
			Dissolved Calcium (Ca)	2016/11/09		101	%	80 - 120
			Dissolved Chromium (Cr)	2016/11/09		97	%	80 - 120
			Dissolved Cobalt (Co)	2016/11/09		97	%	80 - 120
			Dissolved Copper (Cu)	2016/11/09		94	%	80 - 120
			Dissolved Iron (Fe)	2016/11/09		99	%	80 - 120
			Dissolved Lead (Pb)	2016/11/09		100	%	80 - 120
			Dissolved Magnesium (Mg)	2016/11/09		100	%	80 - 120
			Dissolved Manganese (Mn)	2016/11/09		98	%	80 - 120
			Dissolved Molybdenum (Mo)	2016/11/09		98	%	80 - 120
			Dissolved Nickel (Ni)	2016/11/09		96	%	80 - 120
			Dissolved Phosphorus (P)	2016/11/09		106	%	80 - 120
			Dissolved Potassium (K)	2016/11/09		106	%	80 - 120
			Dissolved Foldassidin (K) Dissolved Selenium (Se)	2016/11/09		96	%	80 - 120
			Dissolved Seleman (Se) Dissolved Silver (Ag)	2016/11/09		93	%	80 - 120
			Dissolved Silver (Ag) Dissolved Sodium (Na)	2016/11/09		97	%	80 - 120
			Dissolved Strontium (Sr)	2016/11/09		100	%	80 - 120
			Dissolved Strolltum (31) Dissolved Thallium (TI)	2016/11/09		103	% %	80 - 120
			· · ·	2016/11/09		103	%	80 - 120
			Dissolved Tin (Sn) Dissolved Titanium (Ti)	2016/11/09		102	% %	80 - 120
			` ,				% %	
			Dissolved Vanadium (V)	2016/11/09		103		80 - 120
			Dissolved Vanadium (V)	2016/11/09		96	%	80 - 120
4740054	DANI	Mathad Dlad	Dissolved Zinc (Zn)	2016/11/09	.E.O	97	%	80 - 120
4740054	BAN	Method Blank	Dissolved Aluminum (Al)	2016/11/09	<5.0		ug/L	
			Dissolved Antimony (Sb)	2016/11/09	<1.0		ug/L	
			Dissolved Arsenic (As)	2016/11/09	<1.0		ug/L	
			Dissolved Barium (Ba)	2016/11/09	<1.0		ug/L	
			Dissolved Beryllium (Be)	2016/11/09	<1.0		ug/L	
			Dissolved Bismuth (Bi)	2016/11/09	<2.0		ug/L	
			Dissolved Boron (B)	2016/11/09	<50		ug/L	
			Dissolved Cadmium (Cd)	2016/11/09	<0.010		ug/L	
			Dissolved Calcium (Ca)	2016/11/09	<100		ug/L	
			Dissolved Chromium (Cr)	2016/11/09	<1.0		ug/L	
			Dissolved Cobalt (Co)	2016/11/09	< 0.40		ug/L	
			Dissolved Copper (Cu)	2016/11/09	<2.0		ug/L	
			Dissolved Iron (Fe)	2016/11/09	<50		ug/L	
			Dissolved Lead (Pb)	2016/11/09	< 0.50		ug/L	
			Dissolved Magnesium (Mg)	2016/11/09	<100		ug/L	
			Dissolved Manganese (Mn)	2016/11/09	<2.0		ug/L	
			Dissolved Molybdenum (Mo)	2016/11/09	<2.0		ug/L	
			Dissolved Nickel (Ni)	2016/11/09	<2.0		ug/L	
			Dissolved Phosphorus (P)	2016/11/09	<100		ug/L	
			Dissolved Potassium (K)	2016/11/09	<100		ug/L	

Englobe Corp.

Client Project #: P-0010903-0-00-205

Your P.O. #: A 06392 Sampler Initials: AS

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			Dissolved Selenium (Se)	2016/11/09	<1.0		ug/L	
			Dissolved Silver (Ag)	2016/11/09	< 0.10		ug/L	
			Dissolved Sodium (Na)	2016/11/09	<100		ug/L	
			Dissolved Strontium (Sr)	2016/11/09	<2.0		ug/L	
			Dissolved Thallium (TI)	2016/11/09	< 0.10		ug/L	
			Dissolved Tin (Sn)	2016/11/09	<2.0		ug/L	
			Dissolved Titanium (Ti)	2016/11/09	<2.0		ug/L	
			Dissolved Uranium (U)	2016/11/09	< 0.10		ug/L	
			Dissolved Vanadium (V)	2016/11/09	<2.0		ug/L	
			Dissolved Zinc (Zn)	2016/11/09	<5.0		ug/L	
4740054	BAN	RPD - Sample/Sample Dup	Dissolved Aluminum (AI)	2016/11/10	NC		%	20
			Dissolved Antimony (Sb)	2016/11/10	NC		%	20
			Dissolved Arsenic (As)	2016/11/10	NC		%	20
			Dissolved Barium (Ba)	2016/11/10	NC		%	20
			Dissolved Beryllium (Be)	2016/11/10	NC		%	20
			Dissolved Boron (B)	2016/11/10	NC		%	20
			Dissolved Cadmium (Cd)	2016/11/10	NC		%	20
			Dissolved Chromium (Cr)	2016/11/10	NC		%	20
			Dissolved Cobalt (Co)	2016/11/10	NC		%	20
			Dissolved Copper (Cu)	2016/11/10	NC		%	20
			Dissolved Iron (Fe)	2016/11/10	NC		%	20
			Dissolved Lead (Pb)	2016/11/10	NC		%	20
			Dissolved Manganese (Mn)	2016/11/10	NC		%	20
			Dissolved Molybdenum (Mo)	2016/11/10	NC		%	20
			Dissolved Nickel (Ni)	2016/11/10	NC		%	20
			Dissolved Selenium (Se)	2016/11/10	NC		%	20
			Dissolved Silver (Ag)	2016/11/10	NC		%	20
			Dissolved Strontium (Sr)	2016/11/10	NC		%	20
			Dissolved Thallium (TI)	2016/11/10	NC		%	20
			Dissolved Tin (Sn)	2016/11/10	NC		%	20
			Dissolved Uranium (U)	2016/11/10	NC		%	20
			Dissolved Vanadium (V)	2016/11/10	NC		%	20
			Dissolved Zinc (Zn)	2016/11/10	NC		%	20
4740256	SMT	Matrix Spike	Total Organic Carbon (C)	2016/11/09		88	%	80 - 120
4740256	SMT	Spiked Blank	Total Organic Carbon (C)	2016/11/09		99	%	80 - 120
4740256	SMT	Method Blank	Total Organic Carbon (C)	2016/11/09	<0.50		mg/L	
4740256	SMT	RPD - Sample/Sample Dup	Total Organic Carbon (C)	2016/11/09	2.3		%	20
4742388	BAN	Matrix Spike	Total Lead (Pb)	2016/11/11		99	%	80 - 120
4742388	BAN	Spiked Blank	Total Lead (Pb)	2016/11/11		112	%	80 - 120
4742388	BAN	Method Blank	Total Lead (Pb)	2016/11/11	< 0.50		ug/L	

Englobe Corp.
Client Project #: P-0010903-0-00-205
Your P.O. #: A 06392
Sampler Initials: AS

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
4742388	BAN	RPD - Sample/Sample Dup	Total Lead (Pb)	2016/11/11	NC		%	20

N/A = Not Applicable

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than 2x that of the native sample concentration).

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

Englobe Corp.
Client Project #: P-0010903-0-00-205
Your P.O. #: A 06392
Sampler Initials: AS

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Herri D. Mac Donald	
Kevin MacDonald, Inorganics Supervisor	
Mike Than Gilling	

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your P.O. #: A 06392

Your Project #: P-0010903-0-00-205

Site#: LAKE GEORGE Your C.O.C. #: 583338-01-01

Attention:Aven Cole

Englobe Corp.
97 Troop Ave
Dartmouth, NS
CANADA B3B 2A7

Report Date: 2016/11/10

Report #: R4242492 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B6N8892 Received: 2016/11/02, 15:45

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Carbonate, Bicarbonate and Hydroxide	1	N/A	2016/11/08	N/A	SM 22 4500-CO2 D
Alkalinity	1	N/A	2016/11/08	ATL SOP 00013	EPA 310.2 R1974 m
Chloride	1	N/A	2016/11/08	ATL SOP 00014	SM 22 4500-Cl- E m
Colour	1	N/A	2016/11/08	ATL SOP 00020	SM 22 2120C m
Conductance - water	1	N/A	2016/11/08	ATL SOP 00004	SM 22 2510B m
Hardness (calculated as CaCO3)	1	N/A	2016/11/10	ATL SOP 00048	SM 22 2340 B
Metals Water Total MS	1	2016/11/09	2016/11/10	ATL SOP 00058	EPA 6020A R1 m
Ion Balance (% Difference)	1	N/A	2016/11/10	N/A	Auto Calc.
Anion and Cation Sum	1	N/A	2016/11/10	N/A	Auto Calc.
Nitrogen Ammonia - water	1	N/A	2016/11/08	ATL SOP 00015	EPA 350.1 R2 m
Nitrogen - Nitrate + Nitrite	1	N/A	2016/11/09	ATL SOP 00016	USGS SOPINCF0452.2 m
Nitrogen - Nitrite	1	N/A	2016/11/09	ATL SOP 00017	SM 22 4500-NO2- B m
Nitrogen - Nitrate (as N)	1	N/A	2016/11/09	ATL SOP 00018	ASTM D3867-16
pH (1)	1	N/A	2016/11/08	ATL SOP 00003	SM 22 4500-H+ B m
Phosphorus - ortho	1	N/A	2016/11/08	ATL SOP 00021	EPA 365.2 m
Sat. pH and Langelier Index (@ 20C)	1	N/A	2016/11/10	ATL SOP 00049	Auto Calc.
Sat. pH and Langelier Index (@ 4C)	1	N/A	2016/11/10	ATL SOP 00049	Auto Calc.
Reactive Silica	1	N/A	2016/11/08	ATL SOP 00022	EPA 366.0 m
Sulphate	1	N/A	2016/11/08	ATL SOP 00023	ASTMD516-11 m
Total Dissolved Solids (TDS calc)	1	N/A	2016/11/10	N/A	Auto Calc.
Organic carbon - Total (TOC) (2)	1	N/A	2016/11/09	ATL SOP 00037	SM 22 5310C m
Turbidity	1	N/A	2016/11/08	ATL SOP 00011	EPA 180.1 R2 m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported: unless indicated otherwise, associated sample data are not blank corrected.

Your P.O. #: A 06392

Your Project #: P-0010903-0-00-205 Site#: LAKE GEORGE

Your C.O.C. #: 583338-01-01

Attention:Aven Cole

Englobe Corp.
97 Troop Ave
Dartmouth, NS
CANADA B3B 2A7

Report Date: 2016/11/10

Report #: R4242492 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B6N8892

Received: 2016/11/02, 15:45

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods. Results relate to samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) The APHA Standard Method require pH to be analyzed within 15 minutes of sampling and therefore field analysis is required for compliance. All Laboratory pH analyses in this report are reported past the APHA Standard Method holding time.
- (2) TOC / DOC present in the sample should be considered as non-purgeable TOC / DOC.

Encryption Key

Maxxam 10 Nov 2016 16:18:30 -04:00

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Avery Withrow, Project Manager Email: AWithrow@maxxam.ca Phone# (902)420-0203 Ext:233

This report has been generated and distributed using a secure automated process.

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Englobe Corp.
Client Project #: P-0010903-0-00-205
Your P.O. #: A 06392
Sampler Initials: LL

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Maxxam ID		DJO603			
Sampling Date		2016/10/31			
		14:00			
COC Number		583338-01-01			
	UNITS	PW8	RDL	QC Batch	MDL
Calculated Parameters					
Anion Sum	me/L	2.62	N/A	4732173	N/A
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	65	1.0	4732171	0.20
Calculated TDS	mg/L	160	1.0	4732181	0.20
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	4732171	0.20
Cation Sum	me/L	2.53	N/A	4732173	N/A
Hardness (CaCO3)	mg/L	84	1.0	4731970	1.0
Ion Balance (% Difference)	%	1.75	N/A	4732172	N/A
Langelier Index (@ 20C)	N/A	-0.720		4732179	
Langelier Index (@ 4C)	N/A	-0.970		4732180	
Nitrate (N)	mg/L	<0.050	0.050	4731895	N/A
Saturation pH (@ 20C)	N/A	8.16		4732179	
Saturation pH (@ 4C)	N/A	8.41		4732180	
Inorganics					
Total Alkalinity (Total as CaCO3)	mg/L	65	5.0	4738082	N/A
Dissolved Chloride (CI)	mg/L	40	1.0	4738083	N/A
Colour	TCU	<5.0	5.0	4738087	N/A
Nitrate + Nitrite (N)	mg/L	<0.050	0.050	4738090	N/A
Nitrite (N)	mg/L	<0.010	0.010	4738091	N/A
Nitrogen (Ammonia Nitrogen)	mg/L	0.052	0.050	4736497	N/A
Total Organic Carbon (C)	mg/L	0.54	0.50	4740256	N/A
Orthophosphate (P)	mg/L	0.020	0.010	4738088	N/A
рН	рН	7.44	N/A	4738012	N/A
Reactive Silica (SiO2)	mg/L	22	0.50	4738086	N/A
Dissolved Sulphate (SO4)	mg/L	9.3	2.0	4738085	N/A
Turbidity	NTU	14	0.10	4738096	0.10
Conductivity	uS/cm	270	1.0	4738013	N/A
Metals					
Total Aluminum (Al)	ug/L	6.7	5.0	4739997	N/A
Total Antimony (Sb)	ug/L	<1.0	1.0	4739997	N/A
Total Arsenic (As)	ug/L	1.8	1.0	4739997	N/A
Total Barium (Ba)	ug/L	17	1.0	4739997	N/A
Total Beryllium (Be)	ug/L	<1.0	1.0	4739997	N/A
Total Bismuth (Bi)	ug/L	<2.0	2.0	4739997	N/A
RDL = Reportable Detection Limit					
QC Batch = Quality Control Batch					
N/A = Not Applicable					

Englobe Corp.
Client Project #: P-0010903-0-00-205
Your P.O. #: A 06392
Sampler Initials: LL

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Maxxam ID		DJO603			
Sampling Date		2016/10/31			
oumpung Date		14:00			
COC Number		583338-01-01			
	UNITS	PW8	RDL	QC Batch	MDL
Total Boron (B)	ug/L	<50	50	4739997	N/A
Total Cadmium (Cd)	ug/L	<0.010	0.010	4739997	N/A
Total Calcium (Ca)	ug/L	25000	100	4739997	N/A
Total Chromium (Cr)	ug/L	<1.0	1.0	4739997	N/A
Total Cobalt (Co)	ug/L	<0.40	0.40	4739997	N/A
Total Copper (Cu)	ug/L	<2.0	2.0	4739997	N/A
Total Iron (Fe)	ug/L	1600	50	4739997	N/A
Total Lead (Pb)	ug/L	<0.50	0.50	4739997	N/A
Total Magnesium (Mg)	ug/L	5400	100	4739997	N/A
Total Manganese (Mn)	ug/L	280	2.0	4739997	N/A
Total Molybdenum (Mo)	ug/L	<2.0	2.0	4739997	N/A
Total Nickel (Ni)	ug/L	<2.0	2.0	4739997	N/A
Total Phosphorus (P)	ug/L	<100	100	4739997	N/A
Total Potassium (K)	ug/L	1600	100	4739997	N/A
Total Selenium (Se)	ug/L	<1.0	1.0	4739997	N/A
Total Silver (Ag)	ug/L	<0.10	0.10	4739997	N/A
Total Sodium (Na)	ug/L	17000	100	4739997	N/A
Total Strontium (Sr)	ug/L	150	2.0	4739997	N/A
Total Thallium (TI)	ug/L	<0.10	0.10	4739997	N/A
Total Tin (Sn)	ug/L	<2.0	2.0	4739997	N/A
Total Titanium (Ti)	ug/L	<2.0	2.0	4739997	N/A
Total Uranium (U)	ug/L	<0.10	0.10	4739997	N/A
Total Vanadium (V)	ug/L	<2.0	2.0	4739997	N/A
Total Zinc (Zn)	ug/L	<5.0	5.0	4739997	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Englobe Corp.

Client Project #: P-0010903-0-00-205

Your P.O. #: A 06392 Sampler Initials: LL

TEST SUMMARY

Maxxam ID: DJO603 Sample ID: PW8 Matrix: Water

Collected: 2016/10/31

Shipped:

Received: 2016/11/02

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4732171	N/A	2016/11/08	Automated Statchk
Alkalinity	KONE	4738082	N/A	2016/11/08	Nancy Rogers
Chloride	KONE	4738083	N/A	2016/11/08	Nancy Rogers
Colour	KONE	4738087	N/A	2016/11/08	Nancy Rogers
Conductance - water	AT	4738013	N/A	2016/11/08	Julia McGovern
Hardness (calculated as CaCO3)		4731970	N/A	2016/11/10	Automated Statchk
Metals Water Total MS	CICP/MS	4739997	2016/11/09	2016/11/10	Bryon Angevine
Ion Balance (% Difference)	CALC	4732172	N/A	2016/11/10	Automated Statchk
Anion and Cation Sum	CALC	4732173	N/A	2016/11/10	Automated Statchk
Nitrogen Ammonia - water	KONE	4736497	N/A	2016/11/08	Mary Clancey
Nitrogen - Nitrate + Nitrite	KONE	4738090	N/A	2016/11/09	Nancy Rogers
Nitrogen - Nitrite	KONE	4738091	N/A	2016/11/09	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4731895	N/A	2016/11/09	Automated Statchk
рН	AT	4738012	N/A	2016/11/08	Julia McGovern
Phosphorus - ortho	KONE	4738088	N/A	2016/11/08	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4732179	N/A	2016/11/10	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4732180	N/A	2016/11/10	Automated Statchk
Reactive Silica	KONE	4738086	N/A	2016/11/08	Nancy Rogers
Sulphate	KONE	4738085	N/A	2016/11/08	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4732181	N/A	2016/11/10	Automated Statchk
Organic carbon - Total (TOC)	TECH	4740256	N/A	2016/11/09	Soraya Merchant
Turbidity	TURB	4738096	N/A	2016/11/08	Julia McGovern

Englobe Corp.
Client Project #: P-0010903-0-00-205
Your P.O. #: A 06392
Sampler Initials: LL

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1	4.3°C
Package 2	6.0°C
Package 3	5.3°C

Results relate only to the items tested.

Englobe Corp.
Client Project #: P-0010903-0-00-205
Your P.O. #: A 06392
Sampler Initials: LL

QUALITY ASSURANCE REPORT

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
4736497	MCN	Matrix Spike	Nitrogen (Ammonia Nitrogen)	2016/11/09		104	%	80 - 120
4736497	MCN	Spiked Blank	Nitrogen (Ammonia Nitrogen)	2016/11/09		106	%	80 - 120
4736497	MCN	Method Blank	Nitrogen (Ammonia Nitrogen)	2016/11/09	< 0.050		mg/L	
4736497	MCN	RPD - Sample/Sample Dup	Nitrogen (Ammonia Nitrogen)	2016/11/09	NC		%	20
4738012	JMV	QC Standard	pH	2016/11/08		100	%	97 - 103
4738012	JMV	RPD - Sample/Sample Dup	pH	2016/11/08	1.6		%	N/A
4738013	JMV	Spiked Blank	Conductivity	2016/11/08		100	%	80 - 120
4738013	JMV	Method Blank	Conductivity	2016/11/08	1.4,		uS/cm	
			•		RDL=1.0			
4738013	JMV	RPD - Sample/Sample Dup	Conductivity	2016/11/08	0.089		%	25
4738082	NRG	Matrix Spike	Total Alkalinity (Total as CaCO3)	2016/11/08		NC	%	80 - 120
4738082	NRG	Spiked Blank	Total Alkalinity (Total as CaCO3)	2016/11/08		107	%	80 - 120
4738082	NRG	Method Blank	Total Alkalinity (Total as CaCO3)	2016/11/08	<5.0		mg/L	
4738082	NRG	RPD - Sample/Sample Dup	Total Alkalinity (Total as CaCO3)	2016/11/08	2.0		%	25
4738083	NRG	Matrix Spike	Dissolved Chloride (CI)	2016/11/08		NC	%	80 - 120
4738083	NRG	QC Standard	Dissolved Chloride (CI)	2016/11/08		105	%	80 - 120
4738083	NRG	Spiked Blank	Dissolved Chloride (CI)	2016/11/08		105	%	80 - 120
4738083	NRG	Method Blank	Dissolved Chloride (CI)	2016/11/08	1.1,		mg/L	
			. ,		RDL=1.0		O.	
4738083	NRG	RPD - Sample/Sample Dup	Dissolved Chloride (CI)	2016/11/08	2.8		%	25
4738085	NRG	Matrix Spike	Dissolved Sulphate (SO4)	2016/11/08		NC	%	80 - 120
4738085	NRG	Spiked Blank	Dissolved Sulphate (SO4)	2016/11/08		105	%	80 - 120
4738085	NRG	Method Blank	Dissolved Sulphate (SO4)	2016/11/08	<2.0		mg/L	
4738085	NRG	RPD - Sample/Sample Dup	Dissolved Sulphate (SO4)	2016/11/08	7.0		%	25
4738086	NRG	Matrix Spike	Reactive Silica (SiO2)	2016/11/08		NC	%	80 - 120
4738086	NRG	Spiked Blank	Reactive Silica (SiO2)	2016/11/08		100	%	80 - 120
4738086	NRG	Method Blank	Reactive Silica (SiO2)	2016/11/08	< 0.50		mg/L	
4738086	NRG	RPD - Sample/Sample Dup	Reactive Silica (SiO2)	2016/11/08	1.7		%	25
4738087	NRG	Spiked Blank	Colour	2016/11/08		109	%	80 - 120
4738087	NRG	Method Blank	Colour	2016/11/08	<5.0		TCU	
4738087	NRG	RPD - Sample/Sample Dup	Colour	2016/11/08	NC		%	20
4738088	NRG	Matrix Spike	Orthophosphate (P)	2016/11/08		82	%	80 - 120
4738088	NRG	Spiked Blank	Orthophosphate (P)	2016/11/08		97	%	80 - 120
4738088	NRG	Method Blank	Orthophosphate (P)	2016/11/08	< 0.010		mg/L	
4738088	NRG	RPD - Sample/Sample Dup	Orthophosphate (P)	2016/11/08	NC		%	25
4738090	NRG	Matrix Spike	Nitrate + Nitrite (N)	2016/11/09		101	%	80 - 120
4738090	NRG	Spiked Blank	Nitrate + Nitrite (N)	2016/11/09		102	%	80 - 120
4738090	NRG	Method Blank	Nitrate + Nitrite (N)	2016/11/09	< 0.050		mg/L	
4738090	NRG	RPD - Sample/Sample Dup	Nitrate + Nitrite (N)	2016/11/09	NC		%	25
4738091	NRG	Matrix Spike	Nitrite (N)	2016/11/09		91	%	80 - 120
4738091	NRG	Spiked Blank	Nitrite (N)	2016/11/09		91	%	80 - 120
4738091	NRG	Method Blank	Nitrite (N)	2016/11/09	< 0.010		mg/L	
4738091	NRG		Nitrite (N)	2016/11/09	NC		%	25
4738096	JMV	QC Standard	Turbidity	2016/11/08		101	%	80 - 120
4738096	JMV	Spiked Blank	Turbidity	2016/11/08		95	%	80 - 120
4738096	JMV	Method Blank	Turbidity	2016/11/08	<0.10		NTU	
4738096	JMV	RPD - Sample/Sample Dup	Turbidity	2016/11/08	1.3		%	20
4739997	BAN	Matrix Spike	Total Aluminum (Al)	2016/11/10		NC	%	80 - 120
			Total Antimony (Sb)	2016/11/10		101	%	80 - 120
			Total Arsenic (As)	2016/11/10		99	%	80 - 120
			Total Barium (Ba)	2016/11/10		95	%	80 - 120
			Total Beryllium (Be)	2016/11/10		96	%	80 - 120

Englobe Corp.
Client Project #: P-0010903-0-00-205
Your P.O. #: A 06392
Sampler Initials: LL

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			Total Bismuth (Bi)	2016/11/10		101	%	80 - 120
			Total Boron (B)	2016/11/10		102	%	80 - 120
			Total Cadmium (Cd)	2016/11/10		99	%	80 - 120
			Total Calcium (Ca)	2016/11/10		100	%	80 - 120
			Total Chromium (Cr)	2016/11/10		98	%	80 - 120
			Total Cobalt (Co)	2016/11/10		100	%	80 - 120
			Total Copper (Cu)	2016/11/10		97	%	80 - 120
			Total Iron (Fe)	2016/11/10		NC	%	80 - 120
			Total Lead (Pb)	2016/11/10		97	%	80 - 120
			Total Magnesium (Mg)	2016/11/10		102	%	80 - 120
			Total Manganese (Mn)	2016/11/10		NC	%	80 - 120
			Total Molybdenum (Mo)	2016/11/10		100	%	80 - 120
			Total Nickel (Ni)	2016/11/10		100	%	80 - 120
			Total Phosphorus (P)	2016/11/10		97	%	80 - 120
			Total Potassium (K)	2016/11/10		98	%	80 - 120
			Total Selenium (Se)	2016/11/10		99	%	80 - 120
			Total Silver (Ag)	2016/11/10		99	%	80 - 120
			Total Sodium (Na)	2016/11/10		103	%	80 - 120
			Total Strontium (Sr)	2016/11/10		100	%	80 - 120
			Total Thallium (TI)	2016/11/10		100	%	80 - 120
			Total Tin (Sn)	2016/11/10		102	%	80 - 120
			Total Titanium (Ti)	2016/11/10		103	%	80 - 120
			Total Uranium (U)	2016/11/10		104	%	80 - 120
			Total Vanadium (V)	2016/11/10		99	%	80 - 120
			Total Zinc (Zn)	2016/11/10		99	%	80 - 120
4739997	BAN	Spiked Blank	Total Aluminum (Al)	2016/11/10		92	%	80 - 120
			Total Antimony (Sb)	2016/11/10		99	%	80 - 120
			Total Arsenic (As)	2016/11/10		92	%	80 - 120
			Total Barium (Ba)	2016/11/10		91	%	80 - 120
			Total Beryllium (Be)	2016/11/10		91	%	80 - 120
			Total Bismuth (Bi)	2016/11/10		102	%	80 - 120
			Total Boron (B)	2016/11/10		103	%	80 - 120
			Total Cadmium (Cd)	2016/11/10		92	%	80 - 120
			Total Calcium (Ca)	2016/11/10		90	%	80 - 120
			Total Chromium (Cr)	2016/11/10		92	%	80 - 120
			Total Cobalt (Co)	2016/11/10		93	%	80 - 120
			Total Copper (Cu)	2016/11/10		91	%	80 - 120
			Total Iron (Fe)	2016/11/10		90	%	80 - 120
			Total Lead (Pb)	2016/11/10		92	%	80 - 120
			Total Magnesium (Mg)	2016/11/10		91	%	80 - 120
			Total Manganese (Mn)	2016/11/10		94	%	80 - 120
			Total Molybdenum (Mo)	2016/11/10		100	%	80 - 120
			Total Nickel (Ni)	2016/11/10		94	%	80 - 120
			Total Phosphorus (P)	2016/11/10		89	%	80 - 120
			Total Potassium (K)	2016/11/10		90	%	80 - 120
			Total Selenium (Se)	2016/11/10		92	%	80 - 120
			Total Silver (Ag)	2016/11/10		91	%	80 - 120
			Total Sodium (Na)	2016/11/10		92	%	80 - 120
			Total Strontium (Sr)	2016/11/10		93	%	80 - 120
			Total Thallium (TI)	2016/11/10		101	%	80 - 120
			Total Tin (Sn)	2016/11/10		103	%	80 - 120

Englobe Corp.
Client Project #: P-0010903-0-00-205
Your P.O. #: A 06392
Sampler Initials: LL

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			Total Uranium (U)	2016/11/10		98	%	80 - 120
			Total Vanadium (V)	2016/11/10		93	%	80 - 120
			Total Zinc (Zn)	2016/11/10		97	%	80 - 120
4739997	BAN	Method Blank	Total Aluminum (Al)	2016/11/10	5.0,		ug/L	
			. ,		RDL=5.0		O,	
			Total Antimony (Sb)	2016/11/10	<1.0		ug/L	
			Total Arsenic (As)	2016/11/10	<1.0		ug/L	
			Total Barium (Ba)	2016/11/10	<1.0		ug/L	
			Total Beryllium (Be)	2016/11/10	<1.0		ug/L	
			Total Bismuth (Bi)	2016/11/10	<2.0		ug/L	
			Total Boron (B)	2016/11/10	<50		ug/L	
			Total Cadmium (Cd)	2016/11/10	<0.010		ug/L	
			Total Calcium (Ca)	2016/11/10	<100		ug/L	
			Total Chromium (Cr)	2016/11/10	<1.0		ug/L	
			Total Cobalt (Co)	2016/11/10	<0.40		ug/L	
			Total Copper (Cu)	2016/11/10	<2.0		ug/L	
			Total Iron (Fe)	2016/11/10	<50			
			Total Lead (Pb)	2016/11/10			ug/L	
			` '		< 0.50		ug/L	
			Total Magnesium (Mg)	2016/11/10	<100		ug/L	
			Total Manganese (Mn)	2016/11/10	<2.0		ug/L	
			Total Molybdenum (Mo)	2016/11/10	<2.0		ug/L	
			Total Nickel (Ni)	2016/11/10	<2.0		ug/L	
			Total Phosphorus (P)	2016/11/10	<100		ug/L	
			Total Potassium (K)	2016/11/10	<100		ug/L	
			Total Selenium (Se)	2016/11/10	<1.0		ug/L	
			Total Silver (Ag)	2016/11/10	<0.10		ug/L	
			Total Sodium (Na)	2016/11/10	<100		ug/L	
			Total Strontium (Sr)	2016/11/10	<2.0		ug/L	
			Total Thallium (TI)	2016/11/10	<0.10		ug/L	
			Total Tin (Sn)	2016/11/10	<2.0		ug/L	
			Total Titanium (Ti)	2016/11/10	<2.0		ug/L	
			Total Uranium (U)	2016/11/10	<0.10		ug/L	
			Total Vanadium (V)	2016/11/10	<2.0		ug/L	
			Total Zinc (Zn)	2016/11/10	<5.0		ug/L	
4739997	BAN	RPD - Sample/Sample Dup		2016/11/10	2.4		%	20
			Total Antimony (Sb)	2016/11/10	NC		%	20
			Total Arsenic (As)	2016/11/10	NC		%	20
			Total Barium (Ba)	2016/11/10	4.2		%	20
			Total Beryllium (Be)	2016/11/10	NC		%	20
			Total Bismuth (Bi)	2016/11/10	NC		%	20
			Total Boron (B)	2016/11/10	NC		%	20
			Total Cadmium (Cd)	2016/11/10	NC		%	20
			Total Calcium (Ca)	2016/11/10	3.4		%	20
			Total Chromium (Cr)	2016/11/10	NC		%	20
			Total Cobalt (Co)	2016/11/10	NC		%	20
			Total Copper (Cu)	2016/11/10	NC		%	20
			Total Iron (Fe)	2016/11/10	NC		%	20
			Total Lead (Pb)	2016/11/10	NC		%	20
			Total Magnesium (Mg)	2016/11/10	3.3		%	20
			Total Manganese (Mn)	2016/11/10	NC		%	20
			Total Molybdenum (Mo)	2016/11/10	NC		%	20
			Total Nickel (Ni)	2016/11/10	NC		%	20

Englobe Corp.
Client Project #: P-0010903-0-00-205
Your P.O. #: A 06392
Sampler Initials: LL

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			Total Phosphorus (P)	2016/11/10	NC		%	20
			Total Potassium (K)	2016/11/10	1.5		%	20
			Total Selenium (Se)	2016/11/10	NC		%	20
			Total Silver (Ag)	2016/11/10	NC		%	20
			Total Sodium (Na)	2016/11/10	2.1		%	20
			Total Strontium (Sr)	2016/11/10	1.1		%	20
			Total Thallium (TI)	2016/11/10	NC		%	20
			Total Tin (Sn)	2016/11/10	NC		%	20
			Total Titanium (Ti)	2016/11/10	NC		%	20
			Total Uranium (U)	2016/11/10	NC		%	20
			Total Vanadium (V)	2016/11/10	NC		%	20
			Total Zinc (Zn)	2016/11/10	NC		%	20
4740256	SMT	Matrix Spike(DJO603)	Total Organic Carbon (C)	2016/11/09		88	%	80 - 120
4740256	SMT	Spiked Blank	Total Organic Carbon (C)	2016/11/09		99	%	80 - 120
4740256	SMT	Method Blank	Total Organic Carbon (C)	2016/11/09	< 0.50		mg/L	
4740256	SMT	RPD - Sample/Sample Dup	Total Organic Carbon (C)	2016/11/09	2.3		%	20

N/A = Not Applicable

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than 2x that of the native sample concentration).

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

Englobe Corp.
Client Project #: P-0010903-0-00-205
Your P.O. #: A 06392
Sampler Initials: LL

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Eric Dearman, Scientific Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your P.O. #: A08303 Your Project #: P-0010903 Site Location: LAKE GEORGE Your C.O.C. #: 595821-01-01

Attention:Aven Cole

Englobe Corp.
97 Troop Ave
Dartmouth, NS
CANADA B3B 2A7

Report Date: 2017/02/08

Report #: R4353140 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B721851 Received: 2017/02/01, 11:56

Sample Matrix: Water # Samples Received: 18

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Carbonate, Bicarbonate and Hydroxide	9	N/A	2017/02/03	N/A	SM 22 4500-CO2 D
Carbonate, Bicarbonate and Hydroxide	9	N/A	2017/02/06	N/A	SM 22 4500-CO2 D
Alkalinity	18	N/A	2017/02/06	ATL SOP 00013	EPA 310.2 R1974 m
Chloride	18	N/A	2017/02/06	ATL SOP 00014	SM 22 4500-Cl- E m
Colour	18	N/A	2017/02/06	ATL SOP 00020	SM 22 2120C m
Conductance - water	9	N/A	2017/02/03	ATL SOP 00004	SM 22 2510B m
Conductance - water	9	N/A	2017/02/06	ATL SOP 00004	SM 22 2510B m
Hardness (calculated as CaCO3)	15	N/A	2017/02/06	ATL SOP 00048	SM 22 2340 B
Hardness (calculated as CaCO3)	3	N/A	2017/02/07	ATL SOP 00048	SM 22 2340 B
Mercury - Total (CVAA,LL)	18	2017/02/03	2017/02/06	ATL SOP 00026	EPA 245.1 R3 m
Metals Water Diss. MS (1)	3	N/A	2017/02/04	ATL SOP 00058	EPA 6020A R1 m
Metals Water Diss. MS (1)	9	N/A	2017/02/06	ATL SOP 00058	EPA 6020A R1 m
Metals Water Diss. MS (as rec'd)	5	N/A	2017/02/04	ATL SOP 00058	EPA 6020A R1 m
Metals Water Diss. MS (as rec'd)	1	N/A	2017/02/06	ATL SOP 00058	EPA 6020A R1 m
Metals Water Total MS	14	2017/02/03	2017/02/03	ATL SOP 00058	EPA 6020A R1 m
Metals Water Total MS	4	2017/02/03	2017/02/06	ATL SOP 00058	EPA 6020A R1 m
Ion Balance (% Difference)	18	N/A	2017/02/07	N/A	Auto Calc.
Anion and Cation Sum	18	N/A	2017/02/07	N/A	Auto Calc.
Nitrogen Ammonia - water	18	N/A	2017/02/06	ATL SOP 00015	EPA 350.1 R2 m
Nitrogen - Nitrate + Nitrite	18	N/A	2017/02/03	ATL SOP 00016	USGS SOPINCF0452.2 m
Nitrogen - Nitrite	18	N/A	2017/02/03	ATL SOP 00017	SM 22 4500-NO2- B m
Nitrogen - Nitrate (as N)	18	N/A	2017/02/07	ATL SOP 00018	ASTM D3867-16
pH (2)	9	N/A	2017/02/03	ATL SOP 00003	SM 22 4500-H+ B m
pH (2)	9	N/A	2017/02/06	ATL SOP 00003	SM 22 4500-H+ B m
Phosphorus - ortho	18	N/A	2017/02/06	ATL SOP 00021	EPA 365.2 m
Sat. pH and Langelier Index (@ 20C)	18	N/A	2017/02/07	ATL SOP 00049	Auto Calc.
Sat. pH and Langelier Index (@ 4C)	18	N/A	2017/02/07	ATL SOP 00049	Auto Calc.
Reactive Silica	18	N/A	2017/02/06	ATL SOP 00022	EPA 366.0 m
Sulphate	18	N/A	2017/02/06	ATL SOP 00023	ASTMD516-11 m
Total Dissolved Solids (TDS calc)	18	N/A	2017/02/07	N/A	Auto Calc.

Your P.O. #: A08303 Your Project #: P-0010903 Site Location: LAKE GEORGE Your C.O.C. #: 595821-01-01

Attention:Aven Cole

Englobe Corp.
97 Troop Ave
Dartmouth, NS
CANADA B3B 2A7

Report Date: 2017/02/08

Report #: R4353140 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B721851 Received: 2017/02/01, 11:56

Sample Matrix: Water # Samples Received: 18

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Organic carbon - Total (TOC) (3)	18	N/A	2017/02/03	3 ATL SOP 00037	SM 22 5310C m
Turbidity	17	N/A	2017/02/03	3 ATL SOP 00011	EPA 180.1 R2 m
Turbidity	1	N/A	2017/02/06	ATL SOP 00011	EPA 180.1 R2 m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported: unless indicated otherwise, associated sample data are not blank corrected.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods. Results relate to samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) Sample filtered in laboratory prior to analysis for dissolved metals.
- (2) The APHA Standard Method require pH to be analyzed within 15 minutes of sampling and therefore field analysis is required for compliance. All Laboratory pH analyses in this report are reported past the APHA Standard Method holding time.
- (3) TOC / DOC present in the sample should be considered as non-purgeable TOC / DOC.

Your P.O. #: A08303 Your Project #: P-0010903 Site Location: LAKE GEORGE Your C.O.C. #: 595821-01-01

Attention:Aven Cole

Englobe Corp.
97 Troop Ave
Dartmouth, NS
CANADA B3B 2A7

Report Date: 2017/02/08

Report #: R4353140 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B721851 Received: 2017/02/01, 11:56

Encryption Key

Maxxam 08 Feb 2017 13:59:53

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Avery Withrow, Project Manager Email: AWithrow@maxxam.ca Phone# (902)420-0203 Ext:233

This report has been generated and distributed using a secure automated process.

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08303 Sampler Initials: AS

ATL. RCAP-MS DISSOLVED (LABFILT) IN W

Maxxam ID		DVR754			DVR756	DVR756			
Sampling Date		2017/01/31 11:25			2017/01/31 10:55	2017/01/31 10:55			
COC Number		595821-01-01			595821-01-01	595821-01-01			
	UNITS	MW1S	RDL	QC Batch	MW2S	MW2S Lab-Dup	RDL	QC Batch	MDL
Calculated Parameters									
Anion Sum	me/L	2.57	N/A	4848533	3.91		N/A	4848533	N/A
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	96	1.0	4848529	130		1.0	4848529	0.20
Calculated TDS	mg/L	210	1.0	4848538	230		1.0	4848538	0.20
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	4848529	<1.0		1.0	4848529	0.20
Cation Sum	me/L	4.47	N/A	4848533	3.96		N/A	4848533	N/A
Hardness (CaCO3)	mg/L	98	1.0	4848531	120		1.0	4848531	1.0
Ion Balance (% Difference)	%	27.0	N/A	4848532	0.640		N/A	4848532	N/A
Langelier Index (@ 20C)	N/A	-1.60		4848536	-0.615			4848536	
Langelier Index (@ 4C)	N/A	-1.85		4848537	-0.864			4848537	
Nitrate (N)	mg/L	<0.050	0.050	4848534	0.43		0.050	4848534	N/A
Saturation pH (@ 20C)	N/A	8.06		4848536	7.63			4848536	
Saturation pH (@ 4C)	N/A	8.31		4848537	7.88			4848537	
Inorganics									
Total Alkalinity (Total as CaCO3)	mg/L	96	5.0	4849251	130		25	4849251	N/A
Dissolved Chloride (CI)	mg/L	23	1.0	4849264	22		1.0	4849264	N/A
Colour	TCU	790	150	4849291	13		5.0	4849291	N/A
Nitrate + Nitrite (N)	mg/L	<0.050	0.050	4849305	0.43		0.050	4849305	N/A
Nitrite (N)	mg/L	<0.010	0.010	4849317	<0.010		0.010	4849317	N/A
Nitrogen (Ammonia Nitrogen)	mg/L	2.7	0.25	4849175	0.089	0.088	0.050	4849175	N/A
Total Organic Carbon (C)	mg/L	56 (1)	50	4850918	11 (1)		5.0	4850918	N/A
Orthophosphate (P)	mg/L	0.015	0.010	4849294	0.013		0.010	4849294	N/A
рН	рН	6.47	N/A	4852494	7.02		N/A	4852494	N/A
Reactive Silica (SiO2)	mg/L	15	0.50	4849271	7.2		0.50	4849271	N/A
Dissolved Sulphate (SO4)	mg/L	<2.0	2.0	4849267	29		2.0	4849267	N/A
Turbidity	NTU	>1000	1.0	4852503	>1000		1.0	4850249	0.10
Conductivity	uS/cm	390	1.0	4852495	370		1.0	4852495	N/A
Metals	•	•				•		•	
Dissolved Aluminum (Al)	ug/L	39	5.0	4850616	70		5.0	4850616	N/A
Dissolved Antimony (Sb)	ug/L	<1.0	1.0	4850616	<1.0		1.0	4850616	N/A
Dissolved Arsenic (As)	ug/L	<1.0	1.0	4850616	<1.0		1.0	4850616	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08303 Sampler Initials: AS

ATL. RCAP-MS DISSOLVED (LABFILT) IN W

Maxxam ID		DVR754			DVR756	DVR756			
Sampling Date		2017/01/31 11:25			2017/01/31 10:55	2017/01/31 10:55			
COC Number		595821-01-01			595821-01-01	595821-01-01			
	UNITS	MW1S	RDL	QC Batch	MW2S	MW2S Lab-Dup	RDL	QC Batch	MDL
Dissolved Barium (Ba)	ug/L	42	1.0	4850616	40		1.0	4850616	N/A
Dissolved Beryllium (Be)	ug/L	<1.0	1.0	4850616	<1.0		1.0	4850616	N/A
Dissolved Bismuth (Bi)	ug/L	<2.0	2.0	4850616	<2.0		2.0	4850616	N/A
Dissolved Boron (B)	ug/L	<50	50	4850616	210		50	4850616	N/A
Dissolved Cadmium (Cd)	ug/L	0.13	0.010	4850616	0.034		0.010	4850616	N/A
Dissolved Calcium (Ca)	ug/L	22000	100	4850616	44000		100	4850616	N/A
Dissolved Chromium (Cr)	ug/L	1.8	1.0	4850616	<1.0		1.0	4850616	N/A
Dissolved Cobalt (Co)	ug/L	53	0.40	4850616	1.5		0.40	4850616	N/A
Dissolved Copper (Cu)	ug/L	<2.0	2.0	4850616	10		2.0	4850616	N/A
Dissolved Iron (Fe)	ug/L	54000	50	4850616	71		50	4850616	N/A
Dissolved Lead (Pb)	ug/L	<0.50	0.50	4850616	<0.50		0.50	4850616	N/A
Dissolved Magnesium (Mg)	ug/L	10000	100	4850616	2200		100	4850616	N/A
Dissolved Manganese (Mn)	ug/L	9400	2.0	4850616	620		2.0	4850616	N/A
Dissolved Molybdenum (Mo)	ug/L	<2.0	2.0	4850616	<2.0		2.0	4850616	N/A
Dissolved Nickel (Ni)	ug/L	11	2.0	4850616	<2.0		2.0	4850616	N/A
Dissolved Phosphorus (P)	ug/L	<100	100	4850616	<100		100	4850616	N/A
Dissolved Potassium (K)	ug/L	5100	100	4850616	15000		100	4850616	N/A
Dissolved Selenium (Se)	ug/L	<1.0	1.0	4850616	<1.0		1.0	4850616	N/A
Dissolved Silver (Ag)	ug/L	<0.10	0.10	4850616	<0.10		0.10	4850616	N/A
Dissolved Sodium (Na)	ug/L	6100	100	4850616	27000		100	4850616	N/A
Dissolved Strontium (Sr)	ug/L	240	2.0	4850616	130		2.0	4850616	N/A
Dissolved Thallium (TI)	ug/L	<0.10	0.10	4850616	<0.10		0.10	4850616	N/A
Dissolved Tin (Sn)	ug/L	<2.0	2.0	4850616	<2.0		2.0	4850616	N/A
Dissolved Titanium (Ti)	ug/L	<2.0	2.0	4850616	<2.0		2.0	4850616	N/A
Dissolved Uranium (U)	ug/L	0.29	0.10	4850616	0.30		0.10	4850616	N/A
Dissolved Vanadium (V)	ug/L	<2.0	2.0	4850616	<2.0		2.0	4850616	N/A
Dissolved Zinc (Zn)	ug/L	<5.0	5.0	4850616	<5.0		5.0	4850616	N/A

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08303 Sampler Initials: AS

ATL. RCAP-MS DISSOLVED (LABFILT) IN W

11:55 11:55 11:55 15 11:55 15 1	Maxxam ID		DVR758			DVR760			DVR762			
Name	Sampling Date											
Calculated Parameters Anion Sum me/L S.00 N/A 4848533 1.48 N/A 4848533 2.78 N/A 4848533 N/A Sicarb. Alkalinity (calc. as CaCO3) mg/L 200 1.0 4848529 17 1.0 4848529 120 1.0 4848529 0.20 Carb. Alkalinity (calc. as CaCO3) mg/L 4.1.0 1.0 4848529 1.10 1.0 4848529 1.0 1.0 4848529 0.20 Carb. Alkalinity (calc. as CaCO3) mg/L 4.1.0 1.0 4848538 89 1.0 4848538 1.70 1.0 4848538 0.20 Carb. Alkalinity (calc. as CaCO3) mg/L 4.1.0 1.0 4848539 1.0 1.0 4848539 1.0 1.0 4848539 0.20 Cation Sum me/L S.68 N/A 4848533 1.09 N/A 4848533 2.69 N/A 4848533 N/A 4848538 1.0 4848531 1.0 48	COC Number		595821-01-01			595821-01-01			595821-01-01			
Anion Sum me/L 5.00 N/A 4848533 1.48 N/A 4848533 2.78 N/A 4848533 N/A Bicarb. Alkalinity (calc. as CaCO3) mg/L 200 1.0 4848529 17 1.0 4848529 120 1.0 4848529 0.20 Cacloulated TDS mg/L 290 1.0 4848538 89 1.0 4848538 170 1.0 4848529 0.20 Cacloulated TDS mg/L 290 1.0 4848538 89 1.0 4848538 1.0 1.0 4848529 0.20 Cacloulated TDS mg/L 5.68 N/A 4848533 1.09 N/A 4848533 2.69 N/A 4848533 N/A 4848533 1.09 N/A 4848533 2.69 N/A 4848531 N/A 4848533 N/A 4848533 1.09 N/A 4848533 2.69 N/A 4848531 N/A 4848533 N/A 4848533 N/A 4848533 N/A 4848533 N/A 4848533 N/A 4848533 N/A 4848533 N/A 4848533 N/A 4848533 N/A 4848533 N/A 4848533 N/A 4848533 N/A 4848533 N/A 4848533 N/A 4848533 N/A 4848533 N/A 4848533 N/A 4848533 N/A 4848534 N/A 4848534 N/A 4848536 N/A 4848536 N/A 4848536 N/A 4848536 N/A 4848536 N/A 4848536 N/A 4848536 N/A 4848536 N/A 4848536 N/A 4848536 N/A 4848536 N/A 4848537		UNITS	MW3S	RDL	QC Batch	MW4S	RDL	QC Batch	MW5S	RDL	QC Batch	MDL
Bicarb. Alkalinity (calc. as CaCO3) mg/L 200 1.0 4848529 17 1.0 4848529 120 1.0 4848538 0.20 Calculated TDS mg/L 290 1.0 4848538 89 1.0 4848538 170 1.0 4848538 0.20 Carb. Alkalinity (calc. as CaCO3) mg/L < 1.0 1.0 4848538 89 1.0 4848538 170 1.0 4848538 0.20 Carb. Alkalinity (calc. as CaCO3) mg/L < 1.0 1.0 4848538 1.0 1.0 4848539 < 1.0 1.0 4848529 0.20 Cation Sum me/L 5.68 N/A 4848533 1.09 N/A 4848533 2.69 N/A 4848533 N/A Hardness (CaCO3) mg/L 240 1.0 4848531 36 1.0 4848531 73 1.0 4848531 N/A Hardness (CaCO3) mg/L 240 1.0 4848531 36 1.0 4848531 73 1.0 4848531 1.0 Ion Balance (% Difference) % 6.37 N/A 4848532 15.2 N/A 4848532 1.65 N/A 4848532 N/A Langelier Index (@ 20C) N/A 0.211 4848536 3.2.9 4848536 1.4.9 4848536 1.0 4848531 1.0 Ion Balance (% OLD) N/A 0.211 4848536 3.2.9 4848536 1.4.9 4848536 1.0 Ion Balance (% OLD) N/A 0.211 4848536 3.2.9 4848536 1.4.9 4848536 1.0 Ion Balance (% OLD) N/A 0.261 4848537 3.54 4848536 1.1.49 4848536 1.0 Ion Balance (% OLD) N/A 0.061 4848534 0.39 0.050 4848534 <0.050 0.050 4848534 N/A Saturation pH (@ 20C) N/A 7.38 4848536 9.14 4848537 8.25 4848536 Saturation pH (@ 20C) N/A 7.63 4848537 9.39 4848537 8.25 4848537 Ionorganics Total Alkalinity (Total as CaCO3) mg/L 200 25 4849251 17 5.0 4849251 120 25 4849251 N/A Dissolved Chloride (Cl) mg/L 0.050 0.050 4849305 0.010 4849317 0.010 0.010 4849317 N/A Nitrate + Nitrite (N) mg/L 0.050 0.050 484931 0.014 0.010 4849317 0.010 0.010 4849317 N/A Nitrogen (Ammonia Nitrogen) mg/L 0.056 0.050 484931 0.014 0.010 4849317 0.050 0.050 4849315 N/A Nitrogen (Ammonia Nitrogen) mg/L 0.56 0.050 484931 0.014 0.010 4849317 0.050 0.050 4849315 N/A Nitrotgen (Ammonia Nitrogen) mg/L 0.56 0.050 484931 0.014 0.010 4849317 0.050 0.050 4849317 N/A Nitrotgen (Ammonia Nitrogen) mg/L 0.56 0.050 4849317 0.031 0.030 4849317 0.050 0.050 4849317 N/A 0.050 0.050 4849317 N/A 0.050 0.050 4849317 N/A 0.050 0.050 4849317 N/A 0.050 0.050 4849317 N/A 0.050 0.050 4849317 N/A 0.050 0.050 4849317 N/A 0.050 0.050 4849317 N/A 0.050 0.050 4849317 N/A 0.050 0.050 4849317 N/A 0.050 0	Calculated Parameters											
Calculated TDS	Anion Sum	me/L	5.00	N/A	4848533	1.48	N/A	4848533	2.78	N/A	4848533	N/A
Carb. Alkalinity (calc. as CaCO3)	Bicarb. Alkalinity (calc. as CaCO3)	mg/L	200	1.0	4848529	17	1.0	4848529	120	1.0	4848529	0.20
Cation Sum me/L 5.68 N/A 4848533 1.09 N/A 4848533 2.69 N/A 4848533 N/A Hardness (CaCO3) mg/L 240 1.0 4848531 36 1.0 4848531 73 1.0 4848531 1.0 Ion Balance (% Difference) % 6.37 N/A 4848532 1.52 N/A 4848532 1.65 N/A 4848532 N/A Langelier Index (@ 20C) N/A -0.211 4848536 -3.29 4848536 -1.49 4848536 I.angelier Index (@ 4C) N/A -0.461 4848537 -3.54 4848537 -1.74 4848536 I.angelier Index (@ 4C) N/A -0.461 4848537 -3.54 4848537 -1.74 4848537 N/A Saturation pH (@ 20C) N/A 7.38 4848536 9.14 4848536 40.050 0.050 4848534 N/A Saturation pH (@ 20C) N/A 7.63 4848537 9.39 4848537 8.25 4848537 Inorganics Total Alkalinity (Total as CaCO3) mg/L 200 25 4849251 17 5.0 4849264 16 1.0 4849264 N/A Dissolved Chloride (CI) mg/L 27 1.0 4849264 34 1.0 4849264 16 1.0 4849264 N/A Nitrate + Nitrite (N) mg/L <0.050 0.050 4849305 0.41 0.050 4849317 <0.050 0.050 4849305 N/A Nitrate + Nitrite (N) mg/L <0.050 0.050 4849317 0.014 0.010 4849317 <0.010 0.010 4849317 N/A Nitrogen (Ammonia Nitrogen) mg/L <0.050 0.050 4849317 0.014 0.010 4849317 <0.010 0.010 4849317 N/A Dissolved Carbon (C) mg/L <0.050 0.050 4849294 0.011 0.010 4849215 1.1 0.050 4849291 N/A Nitrogen (Ammonia Nitrogen) mg/L <0.050 0.050 4849217 0.37 0.050 4849175 1.1 0.050 4849175 N/A Total Organic Carbon (C) mg/L <0.050 0.050 4849217 0.37 0.050 4849215 1.1 0.050 4849175 N/A Ph Ph Ph Ph Ph Ph Ph Ph Ph Ph Ph Ph Ph	Calculated TDS	mg/L	290	1.0	4848538	89	1.0	4848538	170	1.0	4848538	0.20
Hardness (CaCO3)	Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	4848529	<1.0	1.0	4848529	<1.0	1.0	4848529	0.20
Intrace Note	Cation Sum	me/L	5.68	N/A	4848533	1.09	N/A	4848533	2.69	N/A	4848533	N/A
Langelier Index (@ 20C) N/A -0.211	Hardness (CaCO3)	mg/L	240	1.0	4848531	36	1.0	4848531	73	1.0	4848531	1.0
Langelier Index (@ 4C) N/A -0.461	Ion Balance (% Difference)	%	6.37	N/A	4848532	15.2	N/A	4848532	1.65	N/A	4848532	N/A
Nitrate (N)	Langelier Index (@ 20C)	N/A	-0.211		4848536	-3.29		4848536	-1.49		4848536	
Saturation pH (@ 20C) N/A 7.38	Langelier Index (@ 4C)	N/A	-0.461		4848537	-3.54		4848537	-1.74		4848537	
Saturation pH (@ 4C) N/A 7.63 4848537 9.39 4848537 8.25 4848537 N/A	Nitrate (N)	mg/L	<0.050	0.050	4848534	0.39	0.050	4848534	<0.050	0.050	4848534	N/A
Note	Saturation pH (@ 20C)	N/A	7.38		4848536	9.14		4848536	8.00		4848536	
Total Alkalinity (Total as CaCO3) mg/L 200 25 4849251 17 5.0 4849251 120 25 4849251 N/A Dissolved Chloride (Cl) mg/L 27 1.0 4849264 34 1.0 4849264 16 1.0 4849264 N/A Colour TCU 6.7 5.0 4849291 <5.0 5.0 4849291 310 50 4849291 N/A Nitrate + Nitrite (N) mg/L <0.050 0.050 4849305 0.41 0.050 4849305 <0.050 0.050 4849305 N/A Nitrite (N) mg/L <0.010 0.010 4849317 0.014 0.010 4849317 <0.010 0.010 4849317 N/A Nitrogen (Ammonia Nitrogen) mg/L 0.56 0.050 4849317 0.37 0.050 4849175 1.1 0.050 4849175 N/A Total Organic Carbon (C) mg/L <50 (1) 50 4850918 <50 (1) 50 4850918 25 (1) 5.0 4850918 N/A Orthophosphate (P) mg/L 0.020 0.010 4849294 0.011 0.010 4849294 0.071 0.010 4849294 N/A Reactive Silica (SiO2) mg/L 22 0.50 4849271 6.7 0.50 4849271 25 1.0 4849271 N/A Dissolved Sulphate (SO4) mg/L 15 2.0 4849267 7.5 2.0 4849267 <2.0 2.0 4849267 N/A Turbidity NTU >1000 1.0 4850252 >1000 1.0 485049 360 1.0 4850252 0.10 Conductivity us/cm 440 1.0 4850456 97 5.0 4850616 370 5.0 4850616 N/A Dissolved Aluminum (Al) ug/L 7.2 5.0 4850616 97 5.0 4850616 4.7 1.0 4850616 N/A Dissolved Animony (Sb) ug/L <1.0 1.0 4850616 <1.0 1.0 4850616 4.7 1.0 4850616 N/A Dissolved Arsenic (As) ug/L <1.0 1.0 4850616 <1.0 1.0 4850616 4.7 1.0 4850616 N/A	Saturation pH (@ 4C)	N/A	7.63		4848537	9.39		4848537	8.25		4848537	
Dissolved Chloride (Cl)	Inorganics	•		•			•			•		
Colour TCU 6.7 5.0 4849291 <5.0 5.0 4849291 310 50 4849291 N/A Nitrate + Nitrite (N) mg/L <0.050 0.050 4849305 0.41 0.050 4849305 <0.050 0.050 4849305 N/A Nitrite (N) mg/L <0.010 0.010 4849317 0.014 0.010 4849317 <0.010 0.010 4849317 N/A Nitrogen (Ammonia Nitrogen) mg/L 0.56 0.050 0.050 4849175 0.37 0.050 4849175 1.1 0.050 4849175 N/A Total Organic Carbon (C) mg/L <50 (1) 50 4850918 <50 (1) 50 4850918 25 (1) 5.0 4850918 N/A Orthophosphate (P) mg/L 0.020 0.010 4849294 0.011 0.010 4849294 0.071 0.010 4849294 N/A PH PH 7.17 N/A 4852494 5.85 N/A 4852494 6.51 N/A 4852494 N/A Reactive Silica (SiO2) mg/L 22 0.50 4849271 6.7 0.50 4849271 25 1.0 4849271 N/A Dissolved Sulphate (SO4) mg/L 15 2.0 4849267 7.5 2.0 4849267 <2.0 2.0 4849267 N/A Turbidity NTU >1000 1.0 4850252 >1000 1.0 4850249 360 1.0 4850252 0.10 Conductivity us/cm 440 1.0 4850252 >1000 1.0 4850249 360 1.0 4850252 N/A Metals Dissolved Aluminum (Al) ug/L 7.2 5.0 4850616 97 5.0 4850616 370 5.0 4850616 N/A Dissolved Antimony (Sb) ug/L <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 N/A Dissolved Arsenic (As) ug/L <1.0 1.0 4850616 <1.0 1.0 4850616 4.7 1.0 4850616 N/A	Total Alkalinity (Total as CaCO3)	mg/L	200	25	4849251	17	5.0	4849251	120	25	4849251	N/A
Nitrate + Nitrite (N)	Dissolved Chloride (CI)	mg/L	27	1.0	4849264	34	1.0	4849264	16	1.0	4849264	N/A
Nitrite (N)	Colour	TCU	6.7	5.0	4849291	<5.0	5.0	4849291	310	50	4849291	N/A
Nitrogen (Ammonia Nitrogen) mg/L	Nitrate + Nitrite (N)	mg/L	<0.050	0.050	4849305	0.41	0.050	4849305	<0.050	0.050	4849305	N/A
Total Organic Carbon (C) mg/L <50 (1) 50 4850918 <50 (1) 50 4850918 25 (1) 5.0 4850918 N/A Orthophosphate (P) mg/L 0.020 0.010 4849294 0.011 0.010 4849294 0.071 0.010 4849294 N/A pH pH 7.17 N/A 4852494 5.85 N/A 4852494 6.51 N/A 4852494 N/A Reactive Silica (SiO2) mg/L 22 0.50 4849271 6.7 0.50 4849271 25 1.0 4849271 N/A Dissolved Sulphate (SO4) mg/L 15 2.0 4849267 7.5 2.0 4849267 <2.0 2.0 4849267 N/A Turbidity NTU >1000 1.0 4850252 >1000 1.0 4850249 360 1.0 4850252 0.10 Conductivity us/cm 440 1.0 4852495 160 1.0 4852495 270 1.0 4852495 N/A Metals Dissolved Aluminum (Al) ug/L 7.2 5.0 4850616 97 5.0 4850616 370 5.0 4850616 N/A Dissolved Arsenic (As) ug/L <1.0 1.0 4850616 <1.0 1.0 4850616 4.7 1.0 4850616 N/A	Nitrite (N)	mg/L	<0.010	0.010	4849317	0.014	0.010	4849317	<0.010	0.010	4849317	N/A
Orthophosphate (P) mg/L 0.020 0.010 4849294 0.011 0.010 4849294 0.071 0.010 4849294 N/A pH pH 7.17 N/A 4852494 5.85 N/A 4852494 6.51 N/A 4852494 N/A Reactive Silica (SiO2) mg/L 22 0.50 4849271 6.7 0.50 4849271 25 1.0 4849271 N/A Dissolved Sulphate (SO4) mg/L 15 2.0 4849267 7.5 2.0 4849267 text-align: center; ce	Nitrogen (Ammonia Nitrogen)	mg/L	0.56	0.050	4849175	0.37	0.050	4849175	1.1	0.050	4849175	N/A
pH pH 7.17 N/A 4852494 5.85 N/A 4852494 6.51 N/A 4852494 N/A Reactive Silica (SiO2) mg/L 22 0.50 4849271 6.7 0.50 4849271 25 1.0 4849271 N/A Dissolved Sulphate (SO4) mg/L 15 2.0 4849267 7.5 2.0 4849267 < 2.0 2.0 4849267 N/A Turbidity NTU >1000 1.0 4850252 >1000 1.0 4850249 360 1.0 4850252 0.10 Conductivity uS/cm 440 1.0 4852495 160 1.0 4852495 270 1.0 4852495 N/A Metals Dissolved Aluminum (Al) ug/L 7.2 5.0 4850616 97 5.0 4850616 370 5.0 4850616 N/A Dissolved Antimony (Sb) ug/L < 1.0 1.0 4850616 < 1.0 1.0 4850616 < 1.0 1.0 4850616 N/A Dissolved Arsenic (As) ug/L < 1.0 1.0 4850616 < 1.0 1.0 4850616 4.7 1.0 4850616 N/A	Total Organic Carbon (C)	mg/L	<50 (1)	50	4850918	<50 (1)	50	4850918	25 (1)	5.0	4850918	N/A
Reactive Silica (SiO2) mg/L 22 0.50 4849271 6.7 0.50 4849271 25 1.0 4849271 N/A Dissolved Sulphate (SO4) mg/L 15 2.0 4849267 7.5 2.0 4849267 <2.0 2.0 4849267 N/A Turbidity NTU >1000 1.0 4850252 >1000 1.0 4850249 360 1.0 4850252 0.10 Conductivity uS/cm 440 1.0 4852495 160 1.0 4852495 270 1.0 4852495 N/A Metals Dissolved Aluminum (Al) ug/L 7.2 5.0 4850616 97 5.0 4850616 370 5.0 4850616 N/A Dissolved Antimony (Sb) ug/L <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 N/A Dissolved Arsenic (As) ug/L <1.0 1.0 4850616 <1.0 1.0 4850616 4.7 1.0 4850616 N/A	Orthophosphate (P)	mg/L	0.020	0.010	4849294	0.011	0.010	4849294	0.071	0.010	4849294	N/A
Dissolved Sulphate (SO4) mg/L 15 2.0 4849267 7.5 2.0 4849267 <2.0 2.0 4849267 N/A Turbidity NTU >1000 1.0 4850252 >1000 1.0 4850249 360 1.0 4850252 0.10 Conductivity us/cm 440 1.0 4852495 160 1.0 4852495 270 1.0 4852495 N/A Metals Dissolved Aluminum (Al) ug/L 7.2 5.0 4850616 97 5.0 4850616 370 5.0 4850616 N/A Dissolved Antimony (Sb) ug/L <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 N/A Dissolved Arsenic (As) ug/L <1.0 1.0 4850616 <1.0 1.0 4850616 4.7 1.0 4850616 N/A	рН	рН	7.17	N/A	4852494	5.85	N/A	4852494	6.51	N/A	4852494	N/A
Turbidity NTU >1000 1.0 4850252 >1000 1.0 4850249 360 1.0 4850252 0.10 Conductivity uS/cm 440 1.0 4852495 160 1.0 4852495 270 1.0 4852495 N/A Metals Dissolved Aluminum (Al) ug/L 7.2 5.0 4850616 97 5.0 4850616 370 5.0 4850616 N/A Dissolved Antimony (Sb) ug/L <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 N/A Dissolved Arsenic (As) ug/L <1.0 1.0 4850616 <1.0 1.0 4850616 4.7 1.0 4850616 N/A	Reactive Silica (SiO2)	mg/L	22	0.50	4849271	6.7	0.50	4849271	25	1.0	4849271	N/A
Conductivity uS/cm 440 1.0 4852495 160 1.0 4852495 270 1.0 4852495 N/A Metals Dissolved Aluminum (Al) ug/L 7.2 5.0 4850616 97 5.0 4850616 370 5.0 4850616 N/A Dissolved Antimony (Sb) ug/L <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 N/A Dissolved Arsenic (As) ug/L <1.0 1.0 4850616 <1.0 1.0 4850616 4.7 1.0 4850616 N/A	Dissolved Sulphate (SO4)	mg/L	15	2.0	4849267	7.5	2.0	4849267	<2.0	2.0	4849267	N/A
Metals Dissolved Aluminum (Al) ug/L 7.2 5.0 4850616 97 5.0 4850616 370 5.0 4850616 N/A Dissolved Antimony (Sb) ug/L <1.0	Turbidity	NTU	>1000	1.0	4850252	>1000	1.0	4850249	360	1.0	4850252	0.10
Dissolved Aluminum (Al) ug/L 7.2 5.0 4850616 97 5.0 4850616 370 5.0 4850616 N/A Dissolved Antimony (Sb) ug/L <1.0	Conductivity	uS/cm	440	1.0	4852495	160	1.0	4852495	270	1.0	4852495	N/A
Dissolved Antimony (Sb)	Metals											
Dissolved Arsenic (As) ug/L <1.0 1.0 4850616 <1.0 1.0 4850616 4.7 1.0 4850616 N/A	Dissolved Aluminum (AI)	ug/L	7.2	5.0	4850616	97	5.0	4850616	370	5.0	4850616	N/A
	Dissolved Antimony (Sb)	ug/L	<1.0	1.0	4850616	<1.0	1.0	4850616	<1.0	1.0	4850616	N/A
Dissolved Barium (Ba)	Dissolved Arsenic (As)	ug/L	<1.0	1.0	4850616	<1.0	1.0	4850616	4.7	1.0	4850616	N/A
	Dissolved Barium (Ba)	ug/L	18	1.0	4850616	27	1.0	4850616	47	1.0	4850616	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08303 Sampler Initials: AS

ATL. RCAP-MS DISSOLVED (LABFILT) IN W

Maxxam ID		DVR758			DVR760			DVR762			
Sampling Date		2017/01/31			2017/01/31			2017/01/31			
Sampling Date		10:00			11:55			11:35			
COC Number		595821-01-01			595821-01-01			595821-01-01			
	UNITS	MW3S	RDL	QC Batch	MW4S	RDL	QC Batch	MW5S	RDL	QC Batch	MDL
Dissolved Beryllium (Be)	ug/L	<1.0	1.0	4850616	<1.0	1.0	4850616	<1.0	1.0	4850616	N/A
Dissolved Bismuth (Bi)	ug/L	<2.0	2.0	4850616	<2.0	2.0	4850616	<2.0	2.0	4850616	N/A
Dissolved Boron (B)	ug/L	<50	50	4850616	<50	50	4850616	<50	50	4850616	N/A
Dissolved Cadmium (Cd)	ug/L	0.11	0.010	4850616	0.18	0.010	4850616	0.013	0.010	4850616	N/A
Dissolved Calcium (Ca)	ug/L	55000	100	4850616	9300	100	4850616	20000	100	4850616	N/A
Dissolved Chromium (Cr)	ug/L	<1.0	1.0	4850616	<1.0	1.0	4850616	1.2	1.0	4850616	N/A
Dissolved Cobalt (Co)	ug/L	7.1	0.40	4850616	33	0.40	4850616	4.6	0.40	4850616	N/A
Dissolved Copper (Cu)	ug/L	4.2	2.0	4850616	3.1	2.0	4850616	2.1	2.0	4850616	N/A
Dissolved Iron (Fe)	ug/L	<50	50	4850616	54	50	4850616	10000	50	4850616	N/A
Dissolved Lead (Pb)	ug/L	<0.50	0.50	4850616	<0.50	0.50	4850616	0.67	0.50	4850616	N/A
Dissolved Magnesium (Mg)	ug/L	26000	100	4850616	3100	100	4850616	5300	100	4850616	N/A
Dissolved Manganese (Mn)	ug/L	7900	2.0	4850616	7100	2.0	4850616	970	2.0	4850616	N/A
Dissolved Molybdenum (Mo)	ug/L	<2.0	2.0	4850616	<2.0	2.0	4850616	<2.0	2.0	4850616	N/A
Dissolved Nickel (Ni)	ug/L	6.9	2.0	4850616	6.5	2.0	4850616	4.8	2.0	4850616	N/A
Dissolved Phosphorus (P)	ug/L	<100	100	4850616	<100	100	4850616	100	100	4850616	N/A
Dissolved Potassium (K)	ug/L	3900	100	4850616	1900	100	4850616	9700	100	4850616	N/A
Dissolved Selenium (Se)	ug/L	<1.0	1.0	4850616	<1.0	1.0	4850616	<1.0	1.0	4850616	N/A
Dissolved Silver (Ag)	ug/L	<0.10	0.10	4850616	<0.10	0.10	4850616	<0.10	0.10	4850616	N/A
Dissolved Sodium (Na)	ug/L	15000	100	4850616	6700	100	4850616	12000	100	4850616	N/A
Dissolved Strontium (Sr)	ug/L	350	2.0	4850616	35	2.0	4850616	94	2.0	4850616	N/A
Dissolved Thallium (TI)	ug/L	<0.10	0.10	4850616	<0.10	0.10	4850616	<0.10	0.10	4850616	N/A
Dissolved Tin (Sn)	ug/L	<2.0	2.0	4850616	<2.0	2.0	4850616	<2.0	2.0	4850616	N/A
Dissolved Titanium (Ti)	ug/L	<2.0	2.0	4850616	<2.0	2.0	4850616	6.2	2.0	4850616	N/A
Dissolved Uranium (U)	ug/L	0.60	0.10	4850616	<0.10	0.10	4850616	<0.10	0.10	4850616	N/A
Dissolved Vanadium (V)	ug/L	<2.0	2.0	4850616	<2.0	2.0	4850616	<2.0	2.0	4850616	N/A
Dissolved Zinc (Zn)	ug/L	<5.0	5.0	4850616	<5.0	5.0	4850616	36	5.0	4850616	N/A

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08303 Sampler Initials: AS

ATL. RCAP-MS DISSOLVED (LABFILT) IN W

Maxxam ID		DVR763			DVR764			DVR765			
Sampling Date		2017/01/31 10:35			2017/01/31 10:35			2017/01/31 10:20			
COC Number		595821-01-01			595821-01-01			595821-01-01			
	UNITS	MW6D	RDL	QC Batch	MW6S	RDL	QC Batch	MW7	RDL	QC Batch	MDL
Calculated Parameters											
Anion Sum	me/L	1.94	N/A	4848533	6.14	N/A	4848533	3.52	N/A	4848533	N/A
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	60	1.0	4848529	250	1.0	4848529	150	1.0	4848529	0.20
Calculated TDS	mg/L	120	1.0	4848538	400	1.0	4848538	190	1.0	4848538	0.20
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	4848529	<1.0	1.0	4848529	<1.0	1.0	4848529	0.20
Cation Sum	me/L	1.70	N/A	4848533	8.88	N/A	4848533	3.02	N/A	4848533	N/A
Hardness (CaCO3)	mg/L	37	1.0	4848531	290	1.0	4848531	120	1.0	4848531	1.0
Ion Balance (% Difference)	%	6.59	N/A	4848532	18.2	N/A	4848532	7.65	N/A	4848532	N/A
Langelier Index (@ 20C)	N/A	-1.13		4848536	-0.899		4848536	-0.336		4848536	
Langelier Index (@ 4C)	N/A	-1.38		4848537	-1.15		4848537	-0.586		4848537	
Nitrate (N)	mg/L	0.089	0.050	4848534	<0.050	0.050	4848534	0.15	0.050	4848534	N/A
Saturation pH (@ 20C)	N/A	8.56		4848536	7.20		4848536	7.72		4848536	
Saturation pH (@ 4C)	N/A	8.81		4848537	7.45		4848537	7.97		4848537	
Inorganics						•			•		
Total Alkalinity (Total as CaCO3)	mg/L	61	5.0	4849251	250	25	4849251	150	25	4849251	N/A
Dissolved Chloride (CI)	mg/L	17	1.0	4849264	40	1.0	4849264	14	1.0	4849264	N/A
Colour	TCU	<5.0	5.0	4849291	170	25	4849291	5.3	5.0	4849291	N/A
Nitrate + Nitrite (N)	mg/L	0.089	0.050	4849305	<0.050	0.050	4849305	0.15	0.050	4849305	N/A
Nitrite (N)	mg/L	<0.010	0.010	4849317	<0.010	0.010	4849317	<0.010	0.010	4849317	N/A
Nitrogen (Ammonia Nitrogen)	mg/L	0.13	0.050	4849175	4.8	0.25	4849179	0.065	0.050	4849179	N/A
Total Organic Carbon (C)	mg/L	<50 (1)	50	4850918	60 (1)	50	4850918	<5.0 (1)	5.0	4850918	N/A
Orthophosphate (P)	mg/L	0.018	0.010	4849294	0.024	0.010	4849294	0.031	0.010	4849294	N/A
рН	рН	7.43	N/A	4850239	6.31	N/A	4852494	7.38	N/A	4850239	N/A
Reactive Silica (SiO2)	mg/L	22	0.50	4849271	29	1.0	4849271	21	0.50	4849271	N/A
Dissolved Sulphate (SO4)	mg/L	11	2.0	4849267	<2.0	2.0	4849267	6.2	2.0	4849267	N/A
Turbidity	NTU	>1000	1.0	4850252	>1000	1.0	4850252	>1000	1.0	4850252	0.10
Conductivity	uS/cm	200	1.0	4850240	550	1.0	4852495	350	1.0	4850240	N/A
Metals											
Dissolved Aluminum (Al)	ug/L	<5.0	5.0	4850616	120	5.0	4850616	<5.0	5.0	4850616	N/A
Dissolved Antimony (Sb)	ug/L	<1.0	1.0	4850616	<1.0	1.0	4850616	<1.0	1.0	4850616	N/A
Dissolved Arsenic (As)	ug/L	<1.0	1.0	4850616	7.4	1.0	4850616	1.7	1.0	4850616	N/A
Dissolved Barium (Ba)	ug/L	2.6	1.0	4850616	62	1.0	4850616	14	1.0	4850616	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08303 Sampler Initials: AS

ATL. RCAP-MS DISSOLVED (LABFILT) IN W

Dissolved Beryllium (Be) ug/L <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 Dissolved Bismuth (Bi) ug/L <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 <2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616	Maxxam ID		DVR763			DVR764			DVR765			
Dissolved Beryllium (Be)	Sampling Date											
Dissolved Beryllium (Be) ug/L <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.	COC Number		595821-01-01			595821-01-01			595821-01-01			
Dissolved Bismuth (Bi)		UNITS	MW6D	RDL	QC Batch	MW6S	RDL	QC Batch	MW7	RDL	QC Batch	MDL
Dissolved Boron (B)	Dissolved Beryllium (Be)	ug/L	<1.0	1.0	4850616	<1.0	1.0	4850616	<1.0	1.0	4850616	N/A
Dissolved Cadmium (Cd) Ug/L <0.010 0.010 4850616 0.11 0.010 4850616 0.021 0.010 4850616 0.021 0.010 4850616 0.021 0.010 4850616 0.021 0.010 4850616 0.021 0.010 4850616 0.021 0.010 4850616 0.021 0.010 4850616 0.021 0.010 4850616 0.021 0.010 4850616 0.021 0.010 4850616 0.021 0.010 4850616 0.021 0.010 4850616 0.021 0.010 4850616 0.021 0.010 4850616 0.021 0.010 4850616 0.021 0.010 0.021 0.010 0.021 0.010 0.021 0.010 0.021 0.010 0.021 0.010 0.021 0.010 0.021 0.010 0.021 0.010 0.	Dissolved Bismuth (Bi)	ug/L	<2.0	2.0	4850616	<2.0	2.0	4850616	<2.0	2.0	4850616	N/A
Dissolved Calcium (Ca)	Dissolved Boron (B)	ug/L	<50	50	4850616	<50	50	4850616	<50	50	4850616	N/A
Dissolved Chromium (Cr)	Dissolved Cadmium (Cd)	ug/L	<0.010	0.010	4850616	0.11	0.010	4850616	0.021	0.010	4850616	N/A
Dissolved Cobalt (Co)	Dissolved Calcium (Ca)	ug/L	10000	100	4850616	70000	100	4850616	31000	100	4850616	N/A
Dissolved Copper (Cu)	Dissolved Chromium (Cr)	ug/L	<1.0	1.0	4850616	3.2	1.0	4850616	<1.0	1.0	4850616	N/A
Dissolved Iron (Fe)	Dissolved Cobalt (Co)	ug/L	<0.40	0.40	4850616	13	0.40	4850616	<0.40	0.40	4850616	N/A
Dissolved Lead (Pb) ug/L <0.50 0.50 4850616 <0.50 0.50 4850616 <0.50 0.50 4850616 <0.50 0.50 4850616 <0.50 0.50 4850616 <0.50 0.50 4850616 <0.50 0.50 4850616 <0.50 0.50 4850616 <0.50 0.50 4850616 <0.50 0.50 4850616 <0.50 0.50 4850616 <0.50 0.50 4850616 <0.50 0.50 4850616 <0.50 0.50 4850616 <0.50 0.50 4850616 <0.50 0.50 4850616 <0.50 0.50 4850616 <0.50 4850616 <0.50 0.50 4850616 <0.50 0.50 4850616 <0.50 0.50 4850616 <0.50 4850616 <0.20 4850616 <0.20 4850616 <0.20 4850616 <0.20 4850616 <0.20 2.0 4850616 <0.20 2.0 4850616 <0.20 2.0 4850616 <0.20 4850616 <0.10 <t< td=""><td>Dissolved Copper (Cu)</td><td>ug/L</td><td><2.0</td><td>2.0</td><td>4850616</td><td><2.0</td><td>2.0</td><td>4850616</td><td><2.0</td><td>2.0</td><td>4850616</td><td>N/A</td></t<>	Dissolved Copper (Cu)	ug/L	<2.0	2.0	4850616	<2.0	2.0	4850616	<2.0	2.0	4850616	N/A
Dissolved Magnesium (Mg)	Dissolved Iron (Fe)	ug/L	<50	50	4850616	39000	50	4850616	<50	50	4850616	N/A
Dissolved Manganese (Mn) ug/L 38 2.0 4850616 5700 2.0 4850616 140 2.0 4850616 Dissolved Molybdenum (Mo) ug/L 2.9 2.0 4850616 <2.0	Dissolved Lead (Pb)	ug/L	<0.50	0.50	4850616	<0.50	0.50	4850616	<0.50	0.50	4850616	N/A
Dissolved Molybdenum (Mo) ug/L 2.9 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 1.0 4850616 <2.0 1.0 4850616 <2.0 1.0 4850616 <2.0 1.0 4850616 <2.0 1.0 4850616 <2.0 1.0 4850616 <2.0 1.0 4850616 <2.0 1.0 4850616 <2.0 1.0 4850616 <2.0 <2.0 4850616 <td>Dissolved Magnesium (Mg)</td> <td>ug/L</td> <td>2600</td> <td>100</td> <td>4850616</td> <td>27000</td> <td>100</td> <td>4850616</td> <td>10000</td> <td>100</td> <td>4850616</td> <td>N/A</td>	Dissolved Magnesium (Mg)	ug/L	2600	100	4850616	27000	100	4850616	10000	100	4850616	N/A
Dissolved Nickel (Ni) ug/L <2.0 2.0 4850616 10 2.0 4850616 <2.0 2.0 4850616 Dissolved Phosphorus (P) ug/L <100	Dissolved Manganese (Mn)	ug/L	38	2.0	4850616	5700	2.0	4850616	140	2.0	4850616	N/A
Dissolved Phosphorus (P) ug/L <100 100 4850616 <100 100 4850616 <100 100 4850616 <100 100 4850616 <100 100 4850616 <100 100 4850616 <100 100 4850616 <100 100 4850616 <100 100 4850616 <100 100 4850616 <100 100 4850616 <100 100 4850616 <100 100 4850616 <100 100 4850616 <100 100 4850616 <100 100 4850616 <100 <100 4850616 <100 <100 4850616 <100 <100 4850616 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100	Dissolved Molybdenum (Mo)	ug/L	2.9	2.0	4850616	<2.0	2.0	4850616	<2.0	2.0	4850616	N/A
Dissolved Potassium (K) ug/L 570 100 4850616 6500 100 4850616 2600 100 4850616 Dissolved Selenium (Se) ug/L <1.0	Dissolved Nickel (Ni)	ug/L	<2.0	2.0	4850616	10	2.0	4850616	<2.0	2.0	4850616	N/A
Dissolved Selenium (Se) ug/L <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616 <1.0 1.0 4850616	Dissolved Phosphorus (P)	ug/L	<100	100	4850616	<100	100	4850616	<100	100	4850616	N/A
Dissolved Silver (Ag) ug/L <0.10 0.10 4850616 <0.10 0.10 4850616 <0.10 0.10 4850616 <0.10 0.10 4850616 <0.10 0.10 4850616 <0.10 0.10 4850616 13000 100 4850616 <0.10 4850616 13000 100 4850616 <0.10 <0.10 4850616 <0.10 0.10 4850616 110 2.0 4850616 <0.10 0.10 4850616 <0.10 0.10 4850616 <0.10 0.10 4850616 <0.10 0.10 4850616 <0.10 0.10 4850616 <0.10 0.10 4850616 <0.10 0.10 4850616 <0.10 0.10 4850616 <0.10 0.10 4850616 <0.10 0.10 4850616 <0.10 0.10 4850616 <0.10 0.10 4850616 <0.10 0.10 4850616 <0.10 0.10 4850616 <0.10 0.10 4850616 <0.10 0.10 4850616 <0.10	Dissolved Potassium (K)	ug/L	570	100	4850616	6500	100	4850616	2600	100	4850616	N/A
Dissolved Sodium (Na) ug/L 22000 100 4850616 29000 100 4850616 13000 100 4850616 Dissolved Strontium (Sr) ug/L 44 2.0 4850616 330 2.0 4850616 110 2.0 4850616 Dissolved Thallium (Tl) ug/L <0.10	Dissolved Selenium (Se)	ug/L	<1.0	1.0	4850616	<1.0	1.0	4850616	<1.0	1.0	4850616	N/A
Dissolved Strontium (Sr) ug/L 44 2.0 4850616 330 2.0 4850616 110 2.0 4850616 Dissolved Thallium (TI) ug/L <0.10	Dissolved Silver (Ag)	ug/L	<0.10	0.10	4850616	<0.10	0.10	4850616	<0.10	0.10	4850616	N/A
Dissolved Thallium (TI) ug/L <0.10 0.10 4850616 <0.10 0.10 4850616 <0.10 0.10 4850616 Dissolved Tin (Sn) ug/L <2.0	Dissolved Sodium (Na)	ug/L	22000	100	4850616	29000	100	4850616	13000	100	4850616	N/A
Dissolved Tin (Sn) ug/L <2.0 2.0 4850616 <2.0 2.0 4850616 <2.0 2.0 4850616 Dissolved Titanium (Ti) ug/L <2.0	Dissolved Strontium (Sr)	ug/L	44	2.0	4850616	330	2.0	4850616	110	2.0	4850616	N/A
Dissolved Titanium (Ti) ug/L <2.0 2.0 4850616 3.1 2.0 4850616 <2.0 2.0 4850616 Dissolved Uranium (U) ug/L 0.16 0.10 4850616 2.4 0.10 4850616 0.52 0.10 4850616	Dissolved Thallium (TI)	ug/L	<0.10	0.10	4850616	<0.10	0.10	4850616	<0.10	0.10	4850616	N/A
Dissolved Uranium (U) ug/L 0.16 0.10 4850616 2.4 0.10 4850616 0.52 0.10 4850616	Dissolved Tin (Sn)	ug/L	<2.0	2.0	4850616	<2.0	2.0	4850616	<2.0	2.0	4850616	N/A
	Dissolved Titanium (Ti)	ug/L	<2.0	2.0	4850616	3.1	2.0	4850616	<2.0	2.0	4850616	N/A
Dissolved Vanadium (V)	Dissolved Uranium (U)	ug/L	0.16	0.10	4850616	2.4	0.10	4850616	0.52	0.10	4850616	N/A
	Dissolved Vanadium (V)	ug/L	<2.0	2.0	4850616	2.9	2.0	4850616	<2.0	2.0	4850616	N/A
Dissolved Zinc (Zn) ug/L <5.0 5.0 4850616 6.6 5.0 4850616 <5.0 5.0 4850616	Dissolved Zinc (Zn)	ug/L	<5.0	5.0	4850616	6.6	5.0	4850616	<5.0	5.0	4850616	N/A

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08303 Sampler Initials: AS

ATL. RCAP-MS DISSOLVED (LABFILT) IN W

Maxxam ID		DVR767			DVR768			DVR769			
Sampling Date		2017/01/31 09:35			2017/01/31 11:40			2017/01/31 12:00			
COC Number		595821-01-01			595821-01-01			595821-01-01			
	UNITS	MW9	RDL	QC Batch	MW10	RDL	QC Batch	MW11	RDL	QC Batch	MDL
Calculated Parameters											
Anion Sum	me/L	1.12	N/A	4848533	3.49	N/A	4848533	3.16	N/A	4848533	N/A
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	13	1.0	4848529	120	1.0	4848529	29	1.0	4848529	0.20
Calculated TDS	mg/L	70	1.0	4848538	220	1.0	4848538	190	1.0	4848538	0.20
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	4848529	<1.0	1.0	4848529	<1.0	1.0	4848529	0.20
Cation Sum	me/L	0.900	N/A	4848533	3.70	N/A	4848533	2.63	N/A	4848533	N/A
Hardness (CaCO3)	mg/L	23	1.0	4848531	71	1.0	4848531	100	1.0	4848531	1.0
Ion Balance (% Difference)	%	10.9	N/A	4848532	2.92	N/A	4848532	9.15	N/A	4848532	N/A
Langelier Index (@ 20C)	N/A	-3.63		4848536	-1.18		4848536	-2.46		4848536	
Langelier Index (@ 4C)	N/A	-3.88		4848537	-1.43		4848537	-2.71		4848537	
Nitrate (N)	mg/L	0.18	0.050	4848534	0.093	0.050	4848534	5.2	0.25	4848534	N/A
Saturation pH (@ 20C)	N/A	9.53		4848536	7.92		4848536	8.49		4848536	
Saturation pH (@ 4C)	N/A	9.78		4848537	8.17		4848537	8.74		4848537	
Inorganics				-						-	
Total Alkalinity (Total as CaCO3)	mg/L	13	5.0	4850350	120	25	4850350	29	5.0	4850350	N/A
Dissolved Chloride (CI)	mg/L	20	1.0	4850359	26	1.0	4850359	73	1.0	4850359	N/A
Colour	TCU	<5.0	5.0	4850388	620	150	4850388	<5.0	5.0	4850388	N/A
Nitrate + Nitrite (N)	mg/L	0.18	0.050	4850394	0.093	0.050	4850394	5.2	0.25	4850394	N/A
Nitrite (N)	mg/L	<0.010	0.010	4850395	<0.010	0.010	4850395	<0.010	0.010	4850395	N/A
Nitrogen (Ammonia Nitrogen)	mg/L	<0.050	0.050	4849179	0.29	0.050	4849179	<0.050	0.050	4849179	N/A
Total Organic Carbon (C)	mg/L	<5.0 (1)	5.0	4850918	37 (1)	5.0	4850918	9.9 (1)	5.0	4850918	N/A
Orthophosphate (P)	mg/L	0.011	0.010	4850390	0.076	0.010	4850390	0.017	0.010	4850390	N/A
рН	рН	5.89	N/A	4850239	6.74	N/A	4852494	6.03	N/A	4850239	N/A
Reactive Silica (SiO2)	mg/L	6.6	0.50	4850377	8.4	0.50	4850377	10	0.50	4850377	N/A
Dissolved Sulphate (SO4)	mg/L	13	2.0	4850366	14	2.0	4850366	7.9	2.0	4850366	N/A
Turbidity	NTU	>1000	1.0	4850252	170	1.0	4850249	>1000	1.0	4850249	0.10
Conductivity	uS/cm	120	1.0	4850240	340	1.0	4852495	350	1.0	4850240	N/A
Metals										T	_
Dissolved Aluminum (Al)	ug/L	77	5.0	4850616	730	5.0	4850616	68	5.0	4850616	N/A
Dissolved Antimony (Sb)	ug/L	<1.0	1.0	4850616	<1.0	1.0	4850616	<1.0	1.0	4850616	N/A
Dissolved Arsenic (As)	ug/L	<1.0	1.0	4850616	11	1.0	4850616	<1.0	1.0	4850616	N/A
Dissolved Barium (Ba)	ug/L	20	1.0	4850616	46	1.0	4850616	23	1.0	4850616	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08303 Sampler Initials: AS

ATL. RCAP-MS DISSOLVED (LABFILT) IN W

Maxxam ID		DVR767			DVR768			DVR769			
Sampling Date		2017/01/31			2017/01/31			2017/01/31			
Sampling Date		09:35			11:40			12:00			
COC Number		595821-01-01			595821-01-01			595821-01-01			
	UNITS	MW9	RDL	QC Batch	MW10	RDL	QC Batch	MW11	RDL	QC Batch	MDL
Dissolved Beryllium (Be)	ug/L	<1.0	1.0	4850616	<1.0	1.0	4850616	<1.0	1.0	4850616	N/A
Dissolved Bismuth (Bi)	ug/L	<2.0	2.0	4850616	<2.0	2.0	4850616	<2.0	2.0	4850616	N/A
Dissolved Boron (B)	ug/L	<50	50	4850616	<50	50	4850616	<50	50	4850616	N/A
Dissolved Cadmium (Cd)	ug/L	0.14	0.010	4850616	0.16	0.010	4850616	0.23	0.010	4850616	N/A
Dissolved Calcium (Ca)	ug/L	4800	100	4850616	24000	100	4850616	27000	100	4850616	N/A
Dissolved Chromium (Cr)	ug/L	<1.0	1.0	4850616	2.1	1.0	4850616	<1.0	1.0	4850616	N/A
Dissolved Cobalt (Co)	ug/L	4.2	0.40	4850616	11	0.40	4850616	1.9	0.40	4850616	N/A
Dissolved Copper (Cu)	ug/L	<2.0	2.0	4850616	24	2.0	4850616	2.1	2.0	4850616	N/A
Dissolved Iron (Fe)	ug/L	<50	50	4850616	6700	50	4850616	<50	50	4850616	N/A
Dissolved Lead (Pb)	ug/L	<0.50	0.50	4850616	2.6	0.50	4850616	<0.50	0.50	4850616	N/A
Dissolved Magnesium (Mg)	ug/L	2800	100	4850616	2800	100	4850616	8600	100	4850616	N/A
Dissolved Manganese (Mn)	ug/L	3100	2.0	4850616	1600	2.0	4850616	8400	2.0	4850616	N/A
Dissolved Molybdenum (Mo)	ug/L	<2.0	2.0	4850616	<2.0	2.0	4850616	<2.0	2.0	4850616	N/A
Dissolved Nickel (Ni)	ug/L	2.3	2.0	4850616	7.6	2.0	4850616	<2.0	2.0	4850616	N/A
Dissolved Phosphorus (P)	ug/L	<100	100	4850616	140	100	4850616	<100	100	4850616	N/A
Dissolved Potassium (K)	ug/L	1100	100	4850616	30000	100	4850616	930	100	4850616	N/A
Dissolved Selenium (Se)	ug/L	<1.0	1.0	4850616	<1.0	1.0	4850616	<1.0	1.0	4850616	N/A
Dissolved Silver (Ag)	ug/L	<0.10	0.10	4850616	<0.10	0.10	4850616	<0.10	0.10	4850616	N/A
Dissolved Sodium (Na)	ug/L	9300	100	4850616	29000	100	4850616	12000	100	4850616	N/A
Dissolved Strontium (Sr)	ug/L	27	2.0	4850616	83	2.0	4850616	74	2.0	4850616	N/A
Dissolved Thallium (TI)	ug/L	<0.10	0.10	4850616	<0.10	0.10	4850616	<0.10	0.10	4850616	N/A
Dissolved Tin (Sn)	ug/L	<2.0	2.0	4850616	<2.0	2.0	4850616	<2.0	2.0	4850616	N/A
Dissolved Titanium (Ti)	ug/L	<2.0	2.0	4850616	23	2.0	4850616	<2.0	2.0	4850616	N/A
Dissolved Uranium (U)	ug/L	<0.10	0.10	4850616	0.55	0.10	4850616	<0.10	0.10	4850616	N/A
Dissolved Vanadium (V)	ug/L	<2.0	2.0	4850616	5.6	2.0	4850616	<2.0	2.0	4850616	N/A
Dissolved Zinc (Zn)	ug/L	<5.0	5.0	4850616	110	5.0	4850616	5.4	5.0	4850616	N/A

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08303 Sampler Initials: AS

ATL. RCAP-MS DISSOLVED (LABFILT) IN W

Maxxam ID		DVR770			
Sampling Date		2017/01/31 10:45			
COC Number		595821-01-01			
	UNITS	MW12	RDL	QC Batch	MDL
Calculated Parameters					
Anion Sum	me/L	1.04	N/A	4848533	N/A
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	13	1.0	4848529	0.20
Calculated TDS	mg/L	86	1.0	4848538	0.20
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	4848529	0.20
Cation Sum	me/L	1.56	N/A	4848533	N/A
Hardness (CaCO3)	mg/L	14	1.0	4848531	1.0
Ion Balance (% Difference)	%	20.0	N/A	4848532	N/A
Langelier Index (@ 20C)	N/A	-3.91		4848536	
Langelier Index (@ 4C)	N/A	-4.16		4848537	
Nitrate (N)	mg/L	<0.050	0.050	4848534	N/A
Saturation pH (@ 20C)	N/A	9.64		4848536	
Saturation pH (@ 4C)	N/A	9.89		4848537	
Inorganics	•		•	•	•
Total Alkalinity (Total as CaCO3)	mg/L	13	5.0	4850350	N/A
Dissolved Chloride (CI)	mg/L	15	1.0	4850359	N/A
Colour	TCU	<5.0	5.0	4850388	N/A
Nitrate + Nitrite (N)	mg/L	<0.050	0.050	4850394	N/A
Nitrite (N)	mg/L	<0.010	0.010	4850395	N/A
Nitrogen (Ammonia Nitrogen)	mg/L	1.1	0.050	4849179	N/A
Total Organic Carbon (C)	mg/L	12 (1)	5.0	4850918	N/A
Orthophosphate (P)	mg/L	0.011	0.010	4850390	N/A
рН	рН	5.73	N/A	4850239	N/A
Reactive Silica (SiO2)	mg/L	7.6	0.50	4850377	N/A
Dissolved Sulphate (SO4)	mg/L	17	2.0	4850366	N/A
Turbidity	NTU	>1000	1.0	4850252	0.10
Conductivity	uS/cm	120	1.0	4850240	N/A
Metals	•		•	•	•
Dissolved Aluminum (Al)	ug/L	51	5.0	4850616	N/A
Dissolved Antimony (Sb)	ug/L	<1.0	1.0	4850616	N/A
Dissolved Arsenic (As)	ug/L	1.1	1.0	4850616	N/A
Dissolved Barium (Ba)	ug/L	26	1.0	4850616	N/A
RDI = Reportable Detection Limit	•		•	•	

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08303 Sampler Initials: AS

ATL. RCAP-MS DISSOLVED (LABFILT) IN W

Maxxam ID		DVR770			
Sampling Date		2017/01/31 10:45			
COC Number		595821-01-01			
	UNITS	MW12	RDL	QC Batch	MDL
Dissolved Beryllium (Be)	ug/L	<1.0	1.0	4850616	N/A
Dissolved Bismuth (Bi)	ug/L	<2.0	2.0	4850616	N/A
Dissolved Boron (B)	ug/L	<50	50	4850616	N/A
Dissolved Cadmium (Cd)	ug/L	0.056	0.010	4850616	N/A
Dissolved Calcium (Ca)	ug/L	3800	100	4850616	N/A
Dissolved Chromium (Cr)	ug/L	<1.0	1.0	4850616	N/A
Dissolved Cobalt (Co)	ug/L	12	0.40	4850616	N/A
Dissolved Copper (Cu)	ug/L	2.1	2.0	4850616	N/A
Dissolved Iron (Fe)	ug/L	15000	50	4850616	N/A
Dissolved Lead (Pb)	ug/L	<0.50	0.50	4850616	N/A
Dissolved Magnesium (Mg)	ug/L	1000	100	4850616	N/A
Dissolved Manganese (Mn)	ug/L	680	2.0	4850616	N/A
Dissolved Molybdenum (Mo)	ug/L	<2.0	2.0	4850616	N/A
Dissolved Nickel (Ni)	ug/L	5.5	2.0	4850616	N/A
Dissolved Phosphorus (P)	ug/L	<100	100	4850616	N/A
Dissolved Potassium (K)	ug/L	2600	100	4850616	N/A
Dissolved Selenium (Se)	ug/L	<1.0	1.0	4850616	N/A
Dissolved Silver (Ag)	ug/L	<0.10	0.10	4850616	N/A
Dissolved Sodium (Na)	ug/L	14000	100	4850616	N/A
Dissolved Strontium (Sr)	ug/L	40	2.0	4850616	N/A
Dissolved Thallium (TI)	ug/L	<0.10	0.10	4850616	N/A
Dissolved Tin (Sn)	ug/L	<2.0	2.0	4850616	N/A
Dissolved Titanium (Ti)	ug/L	<2.0	2.0	4850616	N/A
Dissolved Uranium (U)	ug/L	0.20	0.10	4850616	N/A
Dissolved Vanadium (V)	ug/L	<2.0	2.0	4850616	N/A
Dissolved Zinc (Zn)	ug/L	17	5.0	4850616	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08303 Sampler Initials: AS

AT. RCAP-MS DISSOLVED (FIELDFILT) IN W

Maxxam ID		DVR755			DVR757	DVR757		DVR759			
Sampling Date		2017/01/31 11:25			2017/01/31 11:00	2017/01/31 11:00		2017/01/31 10:00			
COC Number		595821-01-01			595821-01-01	595821-01-01		595821-01-01			
	UNITS	MW1D	RDL	QC Batch	MW2D	MW2D Lab-Dup	RDL	MW3D	RDL	QC Batch	MDL
Calculated Parameters											
Anion Sum	me/L	10.8	N/A	4848533	2.92		N/A	4.38	N/A	4848533	N/A
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	510	1.0	4848529	120		1.0	190	1.0	4848529	0.20
Calculated TDS	mg/L	550	1.0	4848538	170		1.0	230	1.0	4848538	0.20
Carb. Alkalinity (calc. as CaCO3)	mg/L	1.2	1.0	4848529	<1.0		1.0	<1.0	1.0	4848529	0.20
Cation Sum	me/L	10.4	N/A	4848533	2.83		N/A	3.50	N/A	4848533	N/A
Hardness (CaCO3)	mg/L	440	1.0	4848531	110		1.0	130	1.0	4848531	1.0
Ion Balance (% Difference)	%	1.80	N/A	4848532	1.57		N/A	11.2	N/A	4848532	N/A
Langelier Index (@ 20C)	N/A	0.682		4848536	-0.0450			-0.835		4848536	
Langelier Index (@ 4C)	N/A	0.434		4848537	-0.295			-1.08		4848537	
Nitrate (N)	mg/L	<0.050	0.050	4848534	<0.050		0.050	<0.050	0.050	4848534	N/A
Saturation pH (@ 20C)	N/A	6.72		4848536	7.89			7.65		4848536	
Saturation pH (@ 4C)	N/A	6.97		4848537	8.14			7.90		4848537	
Inorganics									•	•	•
Total Alkalinity (Total as CaCO3)	mg/L	510	100	4849251	120		25	190	25	4849251	N/A
Dissolved Chloride (CI)	mg/L	13	1.0	4849264	11		1.0	18	1.0	4849264	N/A
Colour	TCU	<5.0	5.0	4849291	<5.0		5.0	18	5.0	4849291	N/A
Nitrate + Nitrite (N)	mg/L	<0.050	0.050	4849305	<0.050		0.050	<0.050	0.050	4849305	N/A
Nitrite (N)	mg/L	<0.010	0.010	4849317	<0.010		0.010	<0.010	0.010	4849317	N/A
Nitrogen (Ammonia Nitrogen)	mg/L	<0.050	0.050	4849175	<0.050		0.050	<0.050	0.050	4849175	N/A
Total Organic Carbon (C)	mg/L	2.3	0.50	4850918	<5.0 (1)		5.0	1.6	0.50	4850918	N/A
Orthophosphate (P)	mg/L	0.025	0.010	4849294	0.040		0.010	0.024	0.010	4849294	N/A
рН	рН	7.40	N/A	4850239	7.85		N/A	6.82	N/A	4850239	N/A
Reactive Silica (SiO2)	mg/L	29	1.0	4849271	20		0.50	27	1.0	4849271	N/A
Dissolved Sulphate (SO4)	mg/L	6.0	2.0	4849267	12		2.0	6.3	2.0	4849267	N/A
Turbidity	NTU	88	0.10	4850249	>1000		1.0	200	1.0	4850252	0.10
Conductivity	uS/cm	950	1.0	4850240	290		1.0	420	1.0	4850240	N/A
Metals											
Dissolved Aluminum (AI)	ug/L	<5.0	5.0	4850622	<5.0	<5.0	5.0	<5.0	5.0	4850625	N/A
Dissolved Antimony (Sb)	ug/L	<1.0	1.0	4850622	<1.0	<1.0	1.0	<1.0	1.0	4850625	N/A
Dissolved Arsenic (As)	ug/L	5.3	1.0	4850622	9.7	9.6	1.0	2.2	1.0	4850625	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08303 Sampler Initials: AS

AT. RCAP-MS DISSOLVED (FIELDFILT) IN W

Maxxam ID		DVR755			DVR757	DVR757		DVR759			
Sampling Date		2017/01/31			2017/01/31	2017/01/31		2017/01/31			
Sampling Date		11:25			11:00	11:00		10:00			
COC Number		595821-01-01			595821-01-01	595821-01-01		595821-01-01			
	UNITS	MW1D	RDL	QC Batch	MW2D	MW2D Lab-Dup	RDL	MW3D	RDL	QC Batch	MDL
Dissolved Barium (Ba)	ug/L	290	1.0	4850622	39	39	1.0	13	1.0	4850625	N/A
Dissolved Beryllium (Be)	ug/L	<1.0	1.0	4850622	<1.0	<1.0	1.0	<1.0	1.0	4850625	N/A
Dissolved Bismuth (Bi)	ug/L	<2.0	2.0	4850622	<2.0	<2.0	2.0	<2.0	2.0	4850625	N/A
Dissolved Boron (B)	ug/L	<50	50	4850622	970	970	50	<50	50	4850625	N/A
Dissolved Cadmium (Cd)	ug/L	<0.010	0.010	4850622	<0.010	<0.010	0.010	0.016	0.010	4850625	N/A
Dissolved Calcium (Ca)	ug/L	110000	100	4850622	26000	26000	100	30000	100	4850625	N/A
Dissolved Chromium (Cr)	ug/L	<1.0	1.0	4850622	<1.0	<1.0	1.0	<1.0	1.0	4850625	N/A
Dissolved Cobalt (Co)	ug/L	0.70	0.40	4850622	<0.40	<0.40	0.40	3.4	0.40	4850625	N/A
Dissolved Copper (Cu)	ug/L	<2.0	2.0	4850622	<2.0	<2.0	2.0	<2.0	2.0	4850625	N/A
Dissolved Iron (Fe)	ug/L	<50	50	4850622	<50	<50	50	73	50	4850625	N/A
Dissolved Lead (Pb)	ug/L	<0.50	0.50	4850622	<0.50	<0.50	0.50	<0.50	0.50	4850625	N/A
Dissolved Magnesium (Mg)	ug/L	39000	100	4850622	11000	11000	100	13000	100	4850625	N/A
Dissolved Manganese (Mn)	ug/L	630	2.0	4850622	200	190	2.0	240	2.0	4850625	N/A
Dissolved Molybdenum (Mo)	ug/L	<2.0	2.0	4850622	<2.0	<2.0	2.0	<2.0	2.0	4850625	N/A
Dissolved Nickel (Ni)	ug/L	3.0	2.0	4850622	2.4	2.3	2.0	7.6	2.0	4850625	N/A
Dissolved Phosphorus (P)	ug/L	<100	100	4850622	<100	<100	100	<100	100	4850625	N/A
Dissolved Potassium (K)	ug/L	11000	100	4850622	3000	3000	100	2800	100	4850625	N/A
Dissolved Selenium (Se)	ug/L	<1.0	1.0	4850622	<1.0	<1.0	1.0	<1.0	1.0	4850625	N/A
Dissolved Silver (Ag)	ug/L	<0.10	0.10	4850622	<0.10	<0.10	0.10	<0.10	0.10	4850625	N/A
Dissolved Sodium (Na)	ug/L	31000	100	4850622	12000	12000	100	21000	100	4850625	N/A
Dissolved Strontium (Sr)	ug/L	430	2.0	4850622	160	160	2.0	170	2.0	4850625	N/A
Dissolved Thallium (TI)	ug/L	<0.10	0.10	4850622	<0.10	<0.10	0.10	<0.10	0.10	4850625	N/A
Dissolved Tin (Sn)	ug/L	<2.0	2.0	4850622	<2.0	<2.0	2.0	<2.0	2.0	4850625	N/A
Dissolved Titanium (Ti)	ug/L	<2.0	2.0	4850622	<2.0	<2.0	2.0	<2.0	2.0	4850625	N/A
Dissolved Uranium (U)	ug/L	3.8	0.10	4850622	1.1	1.1	0.10	0.16	0.10	4850625	N/A
Dissolved Vanadium (V)	ug/L	<2.0	2.0	4850622	<2.0	<2.0	2.0	<2.0	2.0	4850625	N/A
Dissolved Zinc (Zn)	ug/L	14	5.0	4850622	<5.0	<5.0	5.0	8.0	5.0	4850625	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08303 Sampler Initials: AS

AT. RCAP-MS DISSOLVED (FIELDFILT) IN W

Maxxam ID		DVR761			DVR766	DVR766			
Sampling Date		2017/01/31 11:55			2017/01/31 09:50	2017/01/31 09:50			
COC Number		595821-01-01			595821-01-01	595821-01-01			
	UNITS	MW4D	RDL	QC Batch	MW8	MW8 Lab-Dup	RDL	QC Batch	MDL
Calculated Parameters									
Anion Sum	me/L	1.31	N/A	4848533	2.61		N/A	4848533	N/A
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	16	1.0	4848529	110		1.0	4848529	0.20
Calculated TDS	mg/L	86	1.0	4848538	160		1.0	4848538	0.20
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	4848529	<1.0		1.0	4848529	0.20
Cation Sum	me/L	1.16	N/A	4848533	2.69		N/A	4848533	N/A
Hardness (CaCO3)	mg/L	34	1.0	4848531	95		1.0	4848531	1.0
Ion Balance (% Difference)	%	6.07	N/A	4848532	1.51		N/A	4848532	N/A
Langelier Index (@ 20C)	N/A	-2.86		4848536	-1.33			4848536	
Langelier Index (@ 4C)	N/A	-3.11		4848537	-1.58			4848537	
Nitrate (N)	mg/L	0.25	0.050	4848534	<0.050		0.050	4848534	N/A
Saturation pH (@ 20C)	N/A	9.19		4848536	7.93			4848536	
Saturation pH (@ 4C)	N/A	9.44		4848537	8.18			4848537	
Inorganics		•				•			•
Total Alkalinity (Total as CaCO3)	mg/L	16	5.0	4849251	110	110	25	4850350	N/A
Dissolved Chloride (CI)	mg/L	23	1.0	4849264	12	11	1.0	4850359	N/A
Colour	TCU	20	5.0	4849291	<5.0	<5.0	5.0	4850388	N/A
Nitrate + Nitrite (N)	mg/L	0.25	0.050	4849305	<0.050	<0.050	0.050	4850394	N/A
Nitrite (N)	mg/L	<0.010	0.010	4849317	<0.010	<0.010	0.010	4850395	N/A
Nitrogen (Ammonia Nitrogen)	mg/L	<0.050	0.050	4849175	<0.050		0.050	4849179	N/A
Total Organic Carbon (C)	mg/L	1.3	0.50	4850918	5.8 (1)		5.0	4850918	N/A
Orthophosphate (P)	mg/L	0.013	0.010	4849294	0.023	0.022	0.010	4850390	N/A
рН	рН	6.33	N/A	4850239	6.60		N/A	4852494	N/A
Reactive Silica (SiO2)	mg/L	13	0.50	4849271	21	21	0.50	4850377	N/A
Dissolved Sulphate (SO4)	mg/L	15	2.0	4849267	5.4	5.6	2.0	4850366	N/A
Turbidity	NTU	96	0.10	4850252	>1000		1.0	4850249	0.10
Conductivity	uS/cm	150	1.0	4850240	240		1.0	4852495	N/A
Metals	•	•		•		•			
Dissolved Aluminum (Al)	ug/L	36	5.0	4850625	5.1		5.0	4850625	N/A
Dissolved Antimony (Sb)	ug/L	<1.0	1.0	4850625	<1.0		1.0	4850625	N/A
Dissolved Arsenic (As)	ug/L	<1.0	1.0	4850625	<1.0		1.0	4850625	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08303 Sampler Initials: AS

AT. RCAP-MS DISSOLVED (FIELDFILT) IN W

Maxxam ID		DVR761			DVR766	DVR766			
Sampling Date		2017/01/31 11:55			2017/01/31 09:50	2017/01/31 09:50			
COC Number		595821-01-01			595821-01-01	595821-01-01			
	UNITS	MW4D	RDL	QC Batch	MW8	MW8 Lab-Dup	RDL	QC Batch	MDL
Dissolved Barium (Ba)	ug/L	16	1.0	4850625	16		1.0	4850625	N/A
Dissolved Beryllium (Be)	ug/L	<1.0	1.0	4850625	<1.0		1.0	4850625	N/A
Dissolved Bismuth (Bi)	ug/L	<2.0	2.0	4850625	<2.0		2.0	4850625	N/A
Dissolved Boron (B)	ug/L	<50	50	4850625	<50		50	4850625	N/A
Dissolved Cadmium (Cd)	ug/L	0.061	0.010	4850625	0.057		0.010	4850625	N/A
Dissolved Calcium (Ca)	ug/L	8400	100	4850625	25000		100	4850625	N/A
Dissolved Chromium (Cr)	ug/L	<1.0	1.0	4850625	<1.0		1.0	4850625	N/A
Dissolved Cobalt (Co)	ug/L	3.5	0.40	4850625	4.3		0.40	4850625	N/A
Dissolved Copper (Cu)	ug/L	<2.0	2.0	4850625	<2.0		2.0	4850625	N/A
Dissolved Iron (Fe)	ug/L	380	50	4850625	<50		50	4850625	N/A
Dissolved Lead (Pb)	ug/L	<0.50	0.50	4850625	<0.50		0.50	4850625	N/A
Dissolved Magnesium (Mg)	ug/L	3200	100	4850625	7700		100	4850625	N/A
Dissolved Manganese (Mn)	ug/L	900	2.0	4850625	820		2.0	4850625	N/A
Dissolved Molybdenum (Mo)	ug/L	<2.0	2.0	4850625	<2.0		2.0	4850625	N/A
Dissolved Nickel (Ni)	ug/L	3.6	2.0	4850625	5.1		2.0	4850625	N/A
Dissolved Phosphorus (P)	ug/L	<100	100	4850625	<100		100	4850625	N/A
Dissolved Potassium (K)	ug/L	990	100	4850625	1900		100	4850625	N/A
Dissolved Selenium (Se)	ug/L	<1.0	1.0	4850625	<1.0		1.0	4850625	N/A
Dissolved Silver (Ag)	ug/L	<0.10	0.10	4850625	<0.10		0.10	4850625	N/A
Dissolved Sodium (Na)	ug/L	10000	100	4850625	17000		100	4850625	N/A
Dissolved Strontium (Sr)	ug/L	69	2.0	4850625	140		2.0	4850625	N/A
Dissolved Thallium (TI)	ug/L	<0.10	0.10	4850625	<0.10		0.10	4850625	N/A
Dissolved Tin (Sn)	ug/L	<2.0	2.0	4850625	<2.0		2.0	4850625	N/A
Dissolved Titanium (Ti)	ug/L	<2.0	2.0	4850625	<2.0		2.0	4850625	N/A
Dissolved Uranium (U)	ug/L	<0.10	0.10	4850625	<0.10		0.10	4850625	N/A
Dissolved Vanadium (V)	ug/L	<2.0	2.0	4850625	<2.0		2.0	4850625	N/A
Dissolved Zinc (Zn)	ug/L	5.4	5.0	4850625	5.1		5.0	4850625	N/A

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08303 Sampler Initials: AS

AT. RCAP-MS DISSOLVED (FIELDFILT) IN W

Maxxam ID		DVR771			
Sampling Date		2017/01/31			
COC Number		595821-01-01			
	UNITS	MW-DUP	RDL	QC Batch	MDL
Calculated Parameters		<u> </u>	·	<u> </u>	·
Anion Sum	me/L	2.93	N/A	4848533	N/A
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	120	1.0	4848529	0.20
Calculated TDS	mg/L	170	1.0	4848538	0.20
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	4848529	0.20
Cation Sum	me/L	2.82	N/A	4848533	N/A
Hardness (CaCO3)	mg/L	110	1.0	4848531	1.0
Ion Balance (% Difference)	%	1.91	N/A	4848532	N/A
Langelier Index (@ 20C)	N/A	-0.0990		4848536	
Langelier Index (@ 4C)	N/A	-0.350		4848537	
Nitrate (N)	mg/L	0.069	0.050	4848534	N/A
Saturation pH (@ 20C)	N/A	7.90		4848536	
Saturation pH (@ 4C)	N/A	8.15		4848537	
Inorganics	· ·				
Total Alkalinity (Total as CaCO3)	mg/L	120	25	4850350	N/A
Dissolved Chloride (Cl)	mg/L	12	1.0	4850359	N/A
Colour	TCU	<5.0	5.0	4850388	N/A
Nitrate + Nitrite (N)	mg/L	0.080	0.050	4850394	N/A
Nitrite (N)	mg/L	0.011	0.010	4850395	N/A
Nitrogen (Ammonia Nitrogen)	mg/L	<0.050	0.050	4849179	N/A
Total Organic Carbon (C)	mg/L	<5.0 (1)	5.0	4850918	N/A
Orthophosphate (P)	mg/L	0.040	0.010	4850390	N/A
рН	pН	7.80	N/A	4852494	N/A
Reactive Silica (SiO2)	mg/L	19	0.50	4850377	N/A
Dissolved Sulphate (SO4)	mg/L	13	2.0	4850366	N/A
Turbidity	NTU	>1000	1.0	4850252	0.10
Conductivity	uS/cm	280	1.0	4852495	N/A
Metals	1 -		!		
Dissolved Aluminum (Al)	ug/L	5.5	5.0	4850625	N/A
Dissolved Antimony (Sb)	ug/L	<1.0	1.0	4850625	N/A
Dissolved Arsenic (As)	ug/L	9.5	1.0	4850625	N/A
Dissolved Barium (Ba)	ug/L	38	1.0	4850625	N/A
RDI = Reportable Detection Limit	1 - 0, -				

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08303 Sampler Initials: AS

AT. RCAP-MS DISSOLVED (FIELDFILT) IN W

Maxxam ID		DVR771			
Sampling Date		2017/01/31			
COC Number		595821-01-01			
	UNITS	MW-DUP	RDL	QC Batch	MDL
Dissolved Beryllium (Be)	ug/L	<1.0	1.0	4850625	N/A
Dissolved Bismuth (Bi)	ug/L	<2.0	2.0	4850625	N/A
Dissolved Boron (B)	ug/L	970	50	4850625	N/A
Dissolved Cadmium (Cd)	ug/L	<0.010	0.010	4850625	N/A
Dissolved Calcium (Ca)	ug/L	26000	100	4850625	N/A
Dissolved Chromium (Cr)	ug/L	<1.0	1.0	4850625	N/A
Dissolved Cobalt (Co)	ug/L	<0.40	0.40	4850625	N/A
Dissolved Copper (Cu)	ug/L	<2.0	2.0	4850625	N/A
Dissolved Iron (Fe)	ug/L	<50	50	4850625	N/A
Dissolved Lead (Pb)	ug/L	<0.50	0.50	4850625	N/A
Dissolved Magnesium (Mg)	ug/L	11000	100	4850625	N/A
Dissolved Manganese (Mn)	ug/L	200	2.0	4850625	N/A
Dissolved Molybdenum (Mo)	ug/L	<2.0	2.0	4850625	N/A
Dissolved Nickel (Ni)	ug/L	2.3	2.0	4850625	N/A
Dissolved Phosphorus (P)	ug/L	<100	100	4850625	N/A
Dissolved Potassium (K)	ug/L	3000	100	4850625	N/A
Dissolved Selenium (Se)	ug/L	<1.0	1.0	4850625	N/A
Dissolved Silver (Ag)	ug/L	<0.10	0.10	4850625	N/A
Dissolved Sodium (Na)	ug/L	12000	100	4850625	N/A
Dissolved Strontium (Sr)	ug/L	160	2.0	4850625	N/A
Dissolved Thallium (TI)	ug/L	<0.10	0.10	4850625	N/A
Dissolved Tin (Sn)	ug/L	<2.0	2.0	4850625	N/A
Dissolved Titanium (Ti)	ug/L	<2.0	2.0	4850625	N/A
Dissolved Uranium (U)	ug/L	1.1	0.10	4850625	N/A
Dissolved Vanadium (V)	ug/L	<2.0	2.0	4850625	N/A
Dissolved Zinc (Zn)	ug/L	<5.0	5.0	4850625	N/A
DDI Demontable Detection Lineit					

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08303 Sampler Initials: AS

MERCURY BY COLD VAPOUR AA (WATER)

Maxxam ID		DVR754	DVR755	DVR755	DVR756	DVR757	DVR758			
Sampling Date		2017/01/31 11:25	2017/01/31 11:25	2017/01/31 11:25	2017/01/31 10:55	2017/01/31 11:00	2017/01/31 10:00			
COC Number		595821-01-01	595821-01-01	595821-01-01	595821-01-01	595821-01-01	595821-01-01			
	UNITS	MW1S	MW1D	MW1D Lab-Dup	MW2S	MW2D	MW3S	RDL	QC Batch	MDL
Metals										
		l		l					4850858	

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

Maxxam ID		DVR759	DVR760	DVR761	DVR762	DVR763	DVR764			
Sampling Date		2017/01/31	2017/01/31	2017/01/31	2017/01/31	2017/01/31	2017/01/31			
Sampling Date		10:00	11:55	11:55	11:35	10:35	10:35			
COC Number		595821-01-01	595821-01-01	595821-01-01	595821-01-01	595821-01-01	595821-01-01			
	UNITS	MW3D	MW4S	MW4D	MW5S	MW6D	MW6S	RDL	QC Batch	MDL
Metals										
Total Mercury (Hg)	ug/L	<0.013	0.062	0.015	<0.013	<0.013	0.050	0.013	4850858	N/A

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

N/A = Not Applicable

Maxxam ID		DVR765	DVR766	DVR767	DVR768	DVR769	DVR770			
Sampling Date		2017/01/31 10:20	2017/01/31 09:50	2017/01/31 09:35	2017/01/31 11:40	2017/01/31 12:00	2017/01/31 10:45			
COC Number		595821-01-01	595821-01-01	595821-01-01	595821-01-01	595821-01-01	595821-01-01			
	UNITS	MW7	MW8	MW9	MW10	MW11	MW12	RDL	QC Batch	MDL
Metals										
Total Mercury (Hg)	ug/L	0.013	< 0.013	< 0.013	0.033	0.36	0.017	0.013	4850858	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08303 Sampler Initials: AS

MERCURY BY COLD VAPOUR AA (WATER)

Maxxam ID		DVR771			
Sampling Date		2017/01/31			
COC Number		595821-01-01			
	UNITS	MW-DUP	RDL	QC Batch	MDL
Metals					
1					
Total Mercury (Hg)	ug/L	< 0.013	0.013	4850869	N/A
Total Mercury (Hg) RDL = Reportable Detection L		<0.013	0.013	4850869	N/A
, , , ,	imit	<0.013	0.013	4850869	N/A

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08303 Sampler Initials: AS

ELEMENTS BY ICP/MS (WATER)

Maxxam ID		DVR754			DVR755	DVR756	DVR757	DVR758			
Sampling Date		2017/01/31 11:25			2017/01/31 11:25	2017/01/31 10:55	2017/01/31 11:00	2017/01/31 10:00			
COC Number		595821-01-01			595821-01-01	595821-01-01	595821-01-01	595821-01-01			
	UNITS	MW1S	RDL	QC Batch	MW1D	MW2S	MW2D	MW3S	RDL	QC Batch	MDL
Metals											
Total Lead (Pb)	ug/L	120	5.0	4850234	0.75	17	3.9	34	0.50	4850231	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Maxxam ID		DVR759			DVR760		DVR761		DVR762			
Sampling Date		2017/01/31 10:00			2017/01/31 11:55		2017/01/31 11:55		2017/01/31 11:35			
COC Number		595821-01-01			595821-01-01		595821-01-01		595821-01-01			
	UNITS	MW3D	RDL	QC Batch	MW4S	RDL	MW4D	QC Batch	MW5S	RDL	QC Batch	MDL
Metals		·		<u> </u>	·		·	<u> </u>	·		<u> </u>	

Total Lead (Pb) ug/L 2.2 0.50 4850231 190 5.0 0.52 4850234 4.4 0.50 4850231 N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Maxxam ID		DVR763			DVR764		DVR765	DVR766			
Sampling Date		2017/01/31 10:35			2017/01/31 10:35		2017/01/31 10:20	2017/01/31 09:50			
COC Number		595821-01-01			595821-01-01		595821-01-01	595821-01-01			
	UNITS	MW6D	RDL	QC Batch	MW6S	RDL	MW7	MW8	RDL	QC Batch	MDL
Metals											
Total Lead (Pb)	ug/L	21	0.50	4850231	190	5.0	20	16	0.50	4850234	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Maxxam ID		DVR767		DVR768	DVR769	DVR770			
Sampling Date		2017/01/31 09:35		2017/01/31 11:40	2017/01/31 12:00	2017/01/31 10:45			
COC Number		595821-01-01		595821-01-01	595821-01-01	595821-01-01			
	UNITS	MW9	QC Batch	MW10	MW11	MW12	RDL	QC Batch	MDL
Metals									
Total Lead (Pb)	ug/L	0.58	4850234	5.0	40	36	0.50	4850231	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08303 Sampler Initials: AS

ELEMENTS BY ICP/MS (WATER)

Maxxam ID		DVR771			
Sampling Date		2017/01/31			
COC Number		595821-01-01			
	UNITS	MW-DUP	RDL	QC Batch	MDL
Metals					
Metals Total Lead (Pb)	ug/L	4.8	0.50	4850234	N/A
		4.8	0.50	4850234	N/A
Total Lead (Pb)	imit	4.8	0.50	4850234	N/A

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08303 Sampler Initials: AS

TEST SUMMARY

Maxxam ID: DVR754
Sample ID: MW1S
Matrix: Water

Collected:

2017/01/31

Shipped:

Received: 2017/02/01

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4848529	N/A	2017/02/06	Automated Statchk
Alkalinity	KONE	4849251	N/A	2017/02/06	Nancy Rogers
Chloride	KONE	4849264	N/A	2017/02/06	Mary Clancey
Colour	KONE	4849291	N/A	2017/02/06	Mary Clancey
Conductance - water	AT	4852495	N/A	2017/02/06	Julia McGovern
Hardness (calculated as CaCO3)		4848531	N/A	2017/02/07	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4850858	2017/02/03	2017/02/06	Arlene Rossiter
Metals Water Diss. MS	CICP/MS	4850616	N/A	2017/02/06	Bryon Angevine
Metals Water Total MS	CICP/MS	4850234	2017/02/03	2017/02/06	Bryon Angevine
Ion Balance (% Difference)	CALC	4848532	N/A	2017/02/07	Automated Statchk
Anion and Cation Sum	CALC	4848533	N/A	2017/02/07	Automated Statchk
Nitrogen Ammonia - water	KONE	4849175	N/A	2017/02/06	Mary Clancey
Nitrogen - Nitrate + Nitrite	KONE	4849305	N/A	2017/02/03	Nancy Rogers
Nitrogen - Nitrite	KONE	4849317	N/A	2017/02/03	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4848534	N/A	2017/02/07	Automated Statchk
рН	AT	4852494	N/A	2017/02/06	Julia McGovern
Phosphorus - ortho	KONE	4849294	N/A	2017/02/06	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4848536	N/A	2017/02/07	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4848537	N/A	2017/02/07	Automated Statchk
Reactive Silica	KONE	4849271	N/A	2017/02/06	Nancy Rogers
Sulphate	KONE	4849267	N/A	2017/02/06	Mary Clancey
Total Dissolved Solids (TDS calc)	CALC	4848538	N/A	2017/02/07	Automated Statchk
Organic carbon - Total (TOC)	TECH	4850918	N/A	2017/02/03	Steven Smith
Turbidity	TURB	4852503	N/A	2017/02/06	Julia McGovern

Maxxam ID: DVR755 Sample ID: MW1D Matrix: Water llected: 2017/01/31

Collected: Shipped:

Received: 2017/02/01

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4848529	N/A	2017/02/03	Automated Statchk
Alkalinity	KONE	4849251	N/A	2017/02/06	Nancy Rogers
Chloride	KONE	4849264	N/A	2017/02/06	Mary Clancey
Colour	KONE	4849291	N/A	2017/02/06	Mary Clancey
Conductance - water	AT	4850240	N/A	2017/02/03	Julia McGovern
Hardness (calculated as CaCO3)		4848531	N/A	2017/02/06	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4850858	2017/02/03	2017/02/06	Arlene Rossiter
Metals Water Diss. MS (as rec'd)	CICP/MS	4850622	N/A	2017/02/06	Bryon Angevine
Metals Water Total MS	CICP/MS	4850231	2017/02/03	2017/02/03	Bryon Angevine
Ion Balance (% Difference)	CALC	4848532	N/A	2017/02/07	Automated Statchk
Anion and Cation Sum	CALC	4848533	N/A	2017/02/07	Automated Statchk
Nitrogen Ammonia - water	KONE	4849175	N/A	2017/02/06	Mary Clancey
Nitrogen - Nitrate + Nitrite	KONE	4849305	N/A	2017/02/03	Nancy Rogers

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08303 Sampler Initials: AS

TEST SUMMARY

Maxxam ID: DVR755 Sample ID: MW1D Collected: 2

2017/01/31

Matrix: Water

Shipped: Received: 2017/02/01

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Nitrogen - Nitrite	KONE	4849317	N/A	2017/02/03	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4848534	N/A	2017/02/07	Automated Statchk
рН	AT	4850239	N/A	2017/02/03	Julia McGovern
Phosphorus - ortho	KONE	4849294	N/A	2017/02/06	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4848536	N/A	2017/02/07	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4848537	N/A	2017/02/07	Automated Statchk
Reactive Silica	KONE	4849271	N/A	2017/02/06	Nancy Rogers
Sulphate	KONE	4849267	N/A	2017/02/06	Mary Clancey
Total Dissolved Solids (TDS calc)	CALC	4848538	N/A	2017/02/07	Automated Statchk
Organic carbon - Total (TOC)	TECH	4850918	N/A	2017/02/03	Steven Smith
Turbidity	TURB	4850249	N/A	2017/02/03	Julia McGovern

Maxxam ID: DVR755 Dup Sample ID: MW1D

Water

Matrix:

Collected: 2017/01/31

Shipped:

Received: 2017/02/01

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Mercury - Total (CVAA,LL)	CV/AA	4850858	2017/02/03	2017/02/06	Arlene Rossiter

Maxxam ID: DVR756 Sample ID: MW2S Matrix: Water **Collected:** 2017/01/31

Shipped:

Received: 2017/02/01

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4848529	N/A	2017/02/06	Automated Statchk
Alkalinity	KONE	4849251	N/A	2017/02/06	Nancy Rogers
Chloride	KONE	4849264	N/A	2017/02/06	Mary Clancey
Colour	KONE	4849291	N/A	2017/02/06	Mary Clancey
Conductance - water	AT	4852495	N/A	2017/02/06	Julia McGovern
Hardness (calculated as CaCO3)		4848531	N/A	2017/02/06	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4850858	2017/02/03	2017/02/06	Arlene Rossiter
Metals Water Diss. MS	CICP/MS	4850616	N/A	2017/02/06	Bryon Angevine
Metals Water Total MS	CICP/MS	4850231	2017/02/03	2017/02/03	Bryon Angevine
Ion Balance (% Difference)	CALC	4848532	N/A	2017/02/07	Automated Statchk
Anion and Cation Sum	CALC	4848533	N/A	2017/02/07	Automated Statchk
Nitrogen Ammonia - water	KONE	4849175	N/A	2017/02/06	Mary Clancey
Nitrogen - Nitrate + Nitrite	KONE	4849305	N/A	2017/02/03	Nancy Rogers
Nitrogen - Nitrite	KONE	4849317	N/A	2017/02/03	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4848534	N/A	2017/02/07	Automated Statchk
рН	AT	4852494	N/A	2017/02/06	Julia McGovern
Phosphorus - ortho	KONE	4849294	N/A	2017/02/06	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4848536	N/A	2017/02/07	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4848537	N/A	2017/02/07	Automated Statchk

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08303 Sampler Initials: AS

TEST SUMMARY

Maxxam ID: DVR756 Sample ID: MW2S

Collected:

2017/01/31

Matrix: Water

Shipped: Received: 2017/02/01

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Reactive Silica	KONE	4849271	N/A	2017/02/06	Nancy Rogers
Sulphate	KONE	4849267	N/A	2017/02/06	Mary Clancey
Total Dissolved Solids (TDS calc)	CALC	4848538	N/A	2017/02/07	Automated Statchk
Organic carbon - Total (TOC)	TECH	4850918	N/A	2017/02/03	Steven Smith
Turbidity	TURB	4850249	N/A	2017/02/03	Julia McGovern

Maxxam ID: DVR756 Dup Sample ID: MW2S Matrix: Water

2017/01/31 Collected:

Shipped:

Received: 2017/02/01

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Nitrogen Ammonia - water	KONE	4849175	N/A	2017/02/06	Mary Clancey

Maxxam ID: DVR757 Sample ID: MW2D Matrix: Water

2017/01/31 Collected:

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4848529	N/A	2017/02/03	Automated Statchk
Alkalinity	KONE	4849251	N/A	2017/02/06	Nancy Rogers
Chloride	KONE	4849264	N/A	2017/02/06	Mary Clancey
Colour	KONE	4849291	N/A	2017/02/06	Mary Clancey
Conductance - water	AT	4850240	N/A	2017/02/03	Julia McGovern
Hardness (calculated as CaCO3)		4848531	N/A	2017/02/06	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4850858	2017/02/03	2017/02/06	Arlene Rossiter
Metals Water Diss. MS (as rec'd)	CICP/MS	4850625	N/A	2017/02/04	Bryon Angevine
Metals Water Total MS	CICP/MS	4850231	2017/02/03	2017/02/03	Bryon Angevine
Ion Balance (% Difference)	CALC	4848532	N/A	2017/02/07	Automated Statchk
Anion and Cation Sum	CALC	4848533	N/A	2017/02/07	Automated Statchk
Nitrogen Ammonia - water	KONE	4849175	N/A	2017/02/06	Mary Clancey
Nitrogen - Nitrate + Nitrite	KONE	4849305	N/A	2017/02/03	Nancy Rogers
Nitrogen - Nitrite	KONE	4849317	N/A	2017/02/03	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4848534	N/A	2017/02/07	Automated Statchk
pH	AT	4850239	N/A	2017/02/03	Julia McGovern
Phosphorus - ortho	KONE	4849294	N/A	2017/02/06	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4848536	N/A	2017/02/07	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4848537	N/A	2017/02/07	Automated Statchk
Reactive Silica	KONE	4849271	N/A	2017/02/06	Nancy Rogers
Sulphate	KONE	4849267	N/A	2017/02/06	Mary Clancey
Total Dissolved Solids (TDS calc)	CALC	4848538	N/A	2017/02/07	Automated Statchk
Organic carbon - Total (TOC)	TECH	4850918	N/A	2017/02/03	Steven Smith
Turbidity	TURB	4850252	N/A	2017/02/03	Julia McGovern

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08303 Sampler Initials: AS

TEST SUMMARY

Maxxam ID: DVR757 Dup

Sample ID: MW2D

Collected: Shipped:

2017/01/31 2017/02/01

Matrix: Water

Received:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Metals Water Diss. MS (as rec'd)	CICP/MS	4850625	N/A	2017/02/04	Bryon Angevine

Maxxam ID: DVR758 Sample ID: MW3S

Matrix: Water

Collected: Shipped:

2017/01/31

Received: 2017/02/01

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4848529	N/A	2017/02/06	Automated Statchk
Alkalinity	KONE	4849251	N/A	2017/02/06	Nancy Rogers
Chloride	KONE	4849264	N/A	2017/02/06	Mary Clancey
Colour	KONE	4849291	N/A	2017/02/06	Mary Clancey
Conductance - water	AT	4852495	N/A	2017/02/06	Julia McGovern
Hardness (calculated as CaCO3)		4848531	N/A	2017/02/06	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4850858	2017/02/03	2017/02/06	Arlene Rossiter
Metals Water Diss. MS	CICP/MS	4850616	N/A	2017/02/06	Bryon Angevine
Metals Water Total MS	CICP/MS	4850231	2017/02/03	2017/02/03	Bryon Angevine
Ion Balance (% Difference)	CALC	4848532	N/A	2017/02/07	Automated Statchk
Anion and Cation Sum	CALC	4848533	N/A	2017/02/07	Automated Statchk
Nitrogen Ammonia - water	KONE	4849175	N/A	2017/02/06	Mary Clancey
Nitrogen - Nitrate + Nitrite	KONE	4849305	N/A	2017/02/03	Nancy Rogers
Nitrogen - Nitrite	KONE	4849317	N/A	2017/02/03	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4848534	N/A	2017/02/07	Automated Statchk
рН	AT	4852494	N/A	2017/02/06	Julia McGovern
Phosphorus - ortho	KONE	4849294	N/A	2017/02/06	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4848536	N/A	2017/02/07	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4848537	N/A	2017/02/07	Automated Statchk
Reactive Silica	KONE	4849271	N/A	2017/02/06	Nancy Rogers
Sulphate	KONE	4849267	N/A	2017/02/06	Mary Clancey
Total Dissolved Solids (TDS calc)	CALC	4848538	N/A	2017/02/07	Automated Statchk
Organic carbon - Total (TOC)	TECH	4850918	N/A	2017/02/03	Steven Smith
Turbidity	TURB	4850252	N/A	2017/02/03	Julia McGovern

Maxxam ID: DVR759 Sample ID: MW3D

Matrix: Water

Collected: 2017/01/31 Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4848529	N/A	2017/02/03	Automated Statchk
Alkalinity	KONE	4849251	N/A	2017/02/06	Nancy Rogers
Chloride	KONE	4849264	N/A	2017/02/06	Mary Clancey
Colour	KONE	4849291	N/A	2017/02/06	Mary Clancey
Conductance - water	AT	4850240	N/A	2017/02/03	Julia McGovern
Hardness (calculated as CaCO3)		4848531	N/A	2017/02/06	Automated Statchk

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08303 Sampler Initials: AS

TEST SUMMARY

Maxxam ID: DVR759 Sample ID: MW3D Matrix: Water Collected:

2017/01/31

Shipped:

Received: 2017/02/01

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Mercury - Total (CVAA,LL)	CV/AA	4850858	2017/02/03	2017/02/06	Arlene Rossiter
Metals Water Diss. MS (as rec'd)	CICP/MS	4850625	N/A	2017/02/04	Bryon Angevine
Metals Water Total MS	CICP/MS	4850231	2017/02/03	2017/02/03	Bryon Angevine
Ion Balance (% Difference)	CALC	4848532	N/A	2017/02/07	Automated Statchk
Anion and Cation Sum	CALC	4848533	N/A	2017/02/07	Automated Statchk
Nitrogen Ammonia - water	KONE	4849175	N/A	2017/02/06	Mary Clancey
Nitrogen - Nitrate + Nitrite	KONE	4849305	N/A	2017/02/03	Nancy Rogers
Nitrogen - Nitrite	KONE	4849317	N/A	2017/02/03	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4848534	N/A	2017/02/07	Automated Statchk
pH	AT	4850239	N/A	2017/02/03	Julia McGovern
Phosphorus - ortho	KONE	4849294	N/A	2017/02/06	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4848536	N/A	2017/02/07	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4848537	N/A	2017/02/07	Automated Statchk
Reactive Silica	KONE	4849271	N/A	2017/02/06	Nancy Rogers
Sulphate	KONE	4849267	N/A	2017/02/06	Mary Clancey
Total Dissolved Solids (TDS calc)	CALC	4848538	N/A	2017/02/07	Automated Statchk
Organic carbon - Total (TOC)	TECH	4850918	N/A	2017/02/03	Steven Smith
Turbidity	TURB	4850252	N/A	2017/02/03	Julia McGovern

Maxxam ID: DVR760 Sample ID: MW4S

Matrix: Water

Collected: 2017/01/31

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4848529	N/A	2017/02/06	Automated Statchk
Alkalinity	KONE	4849251	N/A	2017/02/06	Nancy Rogers
Chloride	KONE	4849264	N/A	2017/02/06	Mary Clancey
Colour	KONE	4849291	N/A	2017/02/06	Mary Clancey
Conductance - water	AT	4852495	N/A	2017/02/06	Julia McGovern
Hardness (calculated as CaCO3)		4848531	N/A	2017/02/07	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4850858	2017/02/03	2017/02/06	Arlene Rossiter
Metals Water Diss. MS	CICP/MS	4850616	N/A	2017/02/06	Bryon Angevine
Metals Water Total MS	CICP/MS	4850234	2017/02/03	2017/02/06	Bryon Angevine
Ion Balance (% Difference)	CALC	4848532	N/A	2017/02/07	Automated Statchk
Anion and Cation Sum	CALC	4848533	N/A	2017/02/07	Automated Statchk
Nitrogen Ammonia - water	KONE	4849175	N/A	2017/02/06	Mary Clancey
Nitrogen - Nitrate + Nitrite	KONE	4849305	N/A	2017/02/03	Nancy Rogers
Nitrogen - Nitrite	KONE	4849317	N/A	2017/02/03	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4848534	N/A	2017/02/07	Automated Statchk
pH	AT	4852494	N/A	2017/02/06	Julia McGovern
Phosphorus - ortho	KONE	4849294	N/A	2017/02/06	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4848536	N/A	2017/02/07	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4848537	N/A	2017/02/07	Automated Statchk

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08303 Sampler Initials: AS

TEST SUMMARY

Maxxam ID: DVR760 MW4S Sample ID: Matrix: Water

Collected:

2017/01/31

Shipped: Received:

2017/02/01

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Reactive Silica	KONE	4849271	N/A	2017/02/06	Nancy Rogers
Sulphate	KONE	4849267	N/A	2017/02/06	Mary Clancey
Total Dissolved Solids (TDS calc)	CALC	4848538	N/A	2017/02/07	Automated Statchk
Organic carbon - Total (TOC)	TECH	4850918	N/A	2017/02/03	Steven Smith
Turbidity	TURB	4850249	N/A	2017/02/03	Julia McGovern

Maxxam ID: DVR761 Sample ID: MW4D Matrix: Water

2017/01/31 Collected:

Shipped:

Received: 2017/02/01

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4848529	N/A	2017/02/03	Automated Statchk
Alkalinity	KONE	4849251	N/A	2017/02/06	Nancy Rogers
Chloride	KONE	4849264	N/A	2017/02/06	Mary Clancey
Colour	KONE	4849291	N/A	2017/02/06	Mary Clancey
Conductance - water	AT	4850240	N/A	2017/02/03	Julia McGovern
Hardness (calculated as CaCO3)		4848531	N/A	2017/02/06	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4850858	2017/02/03	2017/02/06	Arlene Rossiter
Metals Water Diss. MS (as rec'd)	CICP/MS	4850625	N/A	2017/02/04	Bryon Angevine
Metals Water Total MS	CICP/MS	4850234	2017/02/03	2017/02/06	Bryon Angevine
Ion Balance (% Difference)	CALC	4848532	N/A	2017/02/07	Automated Statchk
Anion and Cation Sum	CALC	4848533	N/A	2017/02/07	Automated Statchk
Nitrogen Ammonia - water	KONE	4849175	N/A	2017/02/06	Mary Clancey
Nitrogen - Nitrate + Nitrite	KONE	4849305	N/A	2017/02/03	Nancy Rogers
Nitrogen - Nitrite	KONE	4849317	N/A	2017/02/03	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4848534	N/A	2017/02/07	Automated Statchk
рН	AT	4850239	N/A	2017/02/03	Julia McGovern
Phosphorus - ortho	KONE	4849294	N/A	2017/02/06	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4848536	N/A	2017/02/07	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4848537	N/A	2017/02/07	Automated Statchk
Reactive Silica	KONE	4849271	N/A	2017/02/06	Nancy Rogers
Sulphate	KONE	4849267	N/A	2017/02/06	Mary Clancey
Total Dissolved Solids (TDS calc)	CALC	4848538	N/A	2017/02/07	Automated Statchk
Organic carbon - Total (TOC)	TECH	4850918	N/A	2017/02/03	Steven Smith
Turbidity	TURB	4850252	N/A	2017/02/03	Julia McGovern

Maxxam ID: DVR762 Sample ID: MW5S Matrix: Water

Collected: 2017/01/31 Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4848529	N/A	2017/02/06	Automated Statchk
Alkalinity	KONE	4849251	N/A	2017/02/06	Nancy Rogers

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08303 Sampler Initials: AS

TEST SUMMARY

Maxxam ID: DVR762 Sample ID: MW5S Matrix: Water Collected:

2017/01/31

Shipped:

Received: 2017/02/01

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Chloride	KONE	4849264	N/A	2017/02/06	Mary Clancey
Colour	KONE	4849291	N/A	2017/02/06	Mary Clancey
Conductance - water	AT	4852495	N/A	2017/02/06	Julia McGovern
Hardness (calculated as CaCO3)		4848531	N/A	2017/02/06	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4850858	2017/02/03	2017/02/06	Arlene Rossiter
Metals Water Diss. MS	CICP/MS	4850616	N/A	2017/02/06	Bryon Angevine
Metals Water Total MS	CICP/MS	4850231	2017/02/03	2017/02/03	Bryon Angevine
Ion Balance (% Difference)	CALC	4848532	N/A	2017/02/07	Automated Statchk
Anion and Cation Sum	CALC	4848533	N/A	2017/02/07	Automated Statchk
Nitrogen Ammonia - water	KONE	4849175	N/A	2017/02/06	Mary Clancey
Nitrogen - Nitrate + Nitrite	KONE	4849305	N/A	2017/02/03	Nancy Rogers
Nitrogen - Nitrite	KONE	4849317	N/A	2017/02/03	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4848534	N/A	2017/02/07	Automated Statchk
рН	AT	4852494	N/A	2017/02/06	Julia McGovern
Phosphorus - ortho	KONE	4849294	N/A	2017/02/06	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4848536	N/A	2017/02/07	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4848537	N/A	2017/02/07	Automated Statchk
Reactive Silica	KONE	4849271	N/A	2017/02/06	Nancy Rogers
Sulphate	KONE	4849267	N/A	2017/02/06	Mary Clancey
Total Dissolved Solids (TDS calc)	CALC	4848538	N/A	2017/02/07	Automated Statchk
Organic carbon - Total (TOC)	TECH	4850918	N/A	2017/02/03	Steven Smith
Turbidity	TURB	4850252	N/A	2017/02/03	Julia McGovern

Maxxam ID: DVR763 Sample ID: MW6D Matrix: Water **Collected:** 2017/01/31

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4848529	N/A	2017/02/03	Automated Statchk
Alkalinity	KONE	4849251	N/A	2017/02/06	Nancy Rogers
Chloride	KONE	4849264	N/A	2017/02/06	Mary Clancey
Colour	KONE	4849291	N/A	2017/02/06	Mary Clancey
Conductance - water	AT	4850240	N/A	2017/02/03	Julia McGovern
Hardness (calculated as CaCO3)		4848531	N/A	2017/02/06	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4850858	2017/02/03	2017/02/06	Arlene Rossiter
Metals Water Diss. MS	CICP/MS	4850616	N/A	2017/02/06	Bryon Angevine
Metals Water Total MS	CICP/MS	4850231	2017/02/03	2017/02/03	Bryon Angevine
Ion Balance (% Difference)	CALC	4848532	N/A	2017/02/07	Automated Statchk
Anion and Cation Sum	CALC	4848533	N/A	2017/02/07	Automated Statchk
Nitrogen Ammonia - water	KONE	4849175	N/A	2017/02/06	Mary Clancey
Nitrogen - Nitrate + Nitrite	KONE	4849305	N/A	2017/02/03	Nancy Rogers
Nitrogen - Nitrite	KONE	4849317	N/A	2017/02/03	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4848534	N/A	2017/02/07	Automated Statchk

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08303 Sampler Initials: AS

TEST SUMMARY

Maxxam ID: DVR763 Sample ID: MW6D Matrix: Water Collected:

2017/01/31

Shipped: Received:

2017/02/01

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
рН	AT	4850239	N/A	2017/02/03	Julia McGovern
Phosphorus - ortho	KONE	4849294	N/A	2017/02/06	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4848536	N/A	2017/02/07	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4848537	N/A	2017/02/07	Automated Statchk
Reactive Silica	KONE	4849271	N/A	2017/02/06	Nancy Rogers
Sulphate	KONE	4849267	N/A	2017/02/06	Mary Clancey
Total Dissolved Solids (TDS calc)	CALC	4848538	N/A	2017/02/07	Automated Statchk
Organic carbon - Total (TOC)	TECH	4850918	N/A	2017/02/03	Steven Smith
Turbidity	TURB	4850252	N/A	2017/02/03	Julia McGovern

Maxxam ID: DVR764 Sample ID: MW6S Matrix: Water **Collected:** 2017/01/31

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4848529	N/A	2017/02/06	Automated Statchk
Alkalinity	KONE	4849251	N/A	2017/02/06	Nancy Rogers
Chloride	KONE	4849264	N/A	2017/02/06	Mary Clancey
Colour	KONE	4849291	N/A	2017/02/06	Mary Clancey
Conductance - water	AT	4852495	N/A	2017/02/06	Julia McGovern
Hardness (calculated as CaCO3)		4848531	N/A	2017/02/07	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4850858	2017/02/03	2017/02/06	Arlene Rossiter
Metals Water Diss. MS	CICP/MS	4850616	N/A	2017/02/06	Bryon Angevine
Metals Water Total MS	CICP/MS	4850234	2017/02/03	2017/02/06	Bryon Angevine
Ion Balance (% Difference)	CALC	4848532	N/A	2017/02/07	Automated Statchk
Anion and Cation Sum	CALC	4848533	N/A	2017/02/07	Automated Statchk
Nitrogen Ammonia - water	KONE	4849179	N/A	2017/02/06	Mary Clancey
Nitrogen - Nitrate + Nitrite	KONE	4849305	N/A	2017/02/03	Nancy Rogers
Nitrogen - Nitrite	KONE	4849317	N/A	2017/02/03	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4848534	N/A	2017/02/07	Automated Statchk
рН	AT	4852494	N/A	2017/02/06	Julia McGovern
Phosphorus - ortho	KONE	4849294	N/A	2017/02/06	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4848536	N/A	2017/02/07	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4848537	N/A	2017/02/07	Automated Statchk
Reactive Silica	KONE	4849271	N/A	2017/02/06	Nancy Rogers
Sulphate	KONE	4849267	N/A	2017/02/06	Mary Clancey
Total Dissolved Solids (TDS calc)	CALC	4848538	N/A	2017/02/07	Automated Statchk
Organic carbon - Total (TOC)	TECH	4850918	N/A	2017/02/03	Steven Smith
Turbidity	TURB	4850252	N/A	2017/02/03	Julia McGovern

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08303 Sampler Initials: AS

TEST SUMMARY

Maxxam ID: DVR765 Sample ID: MW7 Matrix: Water Collected:

2017/01/31

Shipped:

Received: 2017/02/01

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4848529	N/A	2017/02/03	Automated Statchk
Alkalinity	KONE	4849251	N/A	2017/02/06	Nancy Rogers
Chloride	KONE	4849264	N/A	2017/02/06	Mary Clancey
Colour	KONE	4849291	N/A	2017/02/06	Mary Clancey
Conductance - water	AT	4850240	N/A	2017/02/03	Julia McGovern
Hardness (calculated as CaCO3)		4848531	N/A	2017/02/06	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4850858	2017/02/03	2017/02/06	Arlene Rossiter
Metals Water Diss. MS	CICP/MS	4850616	N/A	2017/02/06	Bryon Angevine
Metals Water Total MS	CICP/MS	4850234	2017/02/03	2017/02/03	Bryon Angevine
Ion Balance (% Difference)	CALC	4848532	N/A	2017/02/07	Automated Statchk
Anion and Cation Sum	CALC	4848533	N/A	2017/02/07	Automated Statchk
Nitrogen Ammonia - water	KONE	4849179	N/A	2017/02/06	Mary Clancey
Nitrogen - Nitrate + Nitrite	KONE	4849305	N/A	2017/02/03	Nancy Rogers
Nitrogen - Nitrite	KONE	4849317	N/A	2017/02/03	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4848534	N/A	2017/02/07	Automated Statchk
рН	AT	4850239	N/A	2017/02/03	Julia McGovern
Phosphorus - ortho	KONE	4849294	N/A	2017/02/06	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4848536	N/A	2017/02/07	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4848537	N/A	2017/02/07	Automated Statchk
Reactive Silica	KONE	4849271	N/A	2017/02/06	Nancy Rogers
Sulphate	KONE	4849267	N/A	2017/02/06	Mary Clancey
Total Dissolved Solids (TDS calc)	CALC	4848538	N/A	2017/02/07	Automated Statchk
Organic carbon - Total (TOC)	TECH	4850918	N/A	2017/02/03	Steven Smith
Turbidity	TURB	4850252	N/A	2017/02/03	Julia McGovern

Maxxam ID: DVR766 Sample ID: MW8 Matrix: Water ollected: 2017/01/31

Collected: Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4848529	N/A	2017/02/06	Automated Statchk
Alkalinity	KONE	4850350	N/A	2017/02/06	Nancy Rogers
Chloride	KONE	4850359	N/A	2017/02/06	Mary Clancey
Colour	KONE	4850388	N/A	2017/02/06	Mary Clancey
Conductance - water	AT	4852495	N/A	2017/02/06	Julia McGovern
Hardness (calculated as CaCO3)		4848531	N/A	2017/02/06	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4850858	2017/02/03	2017/02/06	Arlene Rossiter
Metals Water Diss. MS (as rec'd)	CICP/MS	4850625	N/A	2017/02/04	Bryon Angevine
Metals Water Total MS	CICP/MS	4850234	2017/02/03	2017/02/03	Bryon Angevine
Ion Balance (% Difference)	CALC	4848532	N/A	2017/02/07	Automated Statchk
Anion and Cation Sum	CALC	4848533	N/A	2017/02/07	Automated Statchk
Nitrogen Ammonia - water	KONE	4849179	N/A	2017/02/06	Mary Clancey
Nitrogen - Nitrate + Nitrite	KONE	4850394	N/A	2017/02/03	Nancy Rogers

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08303 Sampler Initials: AS

TEST SUMMARY

Maxxam ID: DVR766 Sample ID: MW8

Collected:

2017/01/31

Matrix: Water

Shipped: Received: 2017/02/01

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Nitrogen - Nitrite	KONE	4850395	N/A	2017/02/03	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4848534	N/A	2017/02/07	Automated Statchk
рН	AT	4852494	N/A	2017/02/06	Julia McGovern
Phosphorus - ortho	KONE	4850390	N/A	2017/02/06	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4848536	N/A	2017/02/07	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4848537	N/A	2017/02/07	Automated Statchk
Reactive Silica	KONE	4850377	N/A	2017/02/06	Nancy Rogers
Sulphate	KONE	4850366	N/A	2017/02/06	Mary Clancey
Total Dissolved Solids (TDS calc)	CALC	4848538	N/A	2017/02/07	Automated Statchk
Organic carbon - Total (TOC)	TECH	4850918	N/A	2017/02/03	Steven Smith
Turbidity	TURB	4850249	N/A	2017/02/03	Julia McGovern

Maxxam ID: DVR766 Dup Sample ID: MW8

Matrix: Water

Collected:

2017/01/31

Shipped:

Received: 2017/02/01

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	KONE	4850350	N/A	2017/02/06	Nancy Rogers
Chloride	KONE	4850359	N/A	2017/02/06	Mary Clancey
Colour	KONE	4850388	N/A	2017/02/06	Mary Clancey
Nitrogen - Nitrate + Nitrite	KONE	4850394	N/A	2017/02/03	Nancy Rogers
Nitrogen - Nitrite	KONE	4850395	N/A	2017/02/03	Nancy Rogers
Phosphorus - ortho	KONE	4850390	N/A	2017/02/06	Nancy Rogers
Reactive Silica	KONE	4850377	N/A	2017/02/06	Nancy Rogers
Sulphate	KONE	4850366	N/A	2017/02/06	Mary Clancey

Maxxam ID: DVR767 Sample ID: MW9

Matrix: Water

Shipped:

Collected: 2017/01/31

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4848529	N/A	2017/02/03	Automated Statchk
Alkalinity	KONE	4850350	N/A	2017/02/06	Nancy Rogers
Chloride	KONE	4850359	N/A	2017/02/06	Mary Clancey
Colour	KONE	4850388	N/A	2017/02/06	Mary Clancey
Conductance - water	AT	4850240	N/A	2017/02/03	Julia McGovern
Hardness (calculated as CaCO3)		4848531	N/A	2017/02/06	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4850858	2017/02/03	2017/02/06	Arlene Rossiter
Metals Water Diss. MS	CICP/MS	4850616	N/A	2017/02/04	Bryon Angevine
Metals Water Total MS	CICP/MS	4850234	2017/02/03	2017/02/03	Bryon Angevine
Ion Balance (% Difference)	CALC	4848532	N/A	2017/02/07	Automated Statchk
Anion and Cation Sum	CALC	4848533	N/A	2017/02/07	Automated Statchk
Nitrogen Ammonia - water	KONE	4849179	N/A	2017/02/06	Mary Clancey

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08303 Sampler Initials: AS

TEST SUMMARY

Maxxam ID: DVR767 Sample ID: MW9 Matrix: Water

Collected: 2017/01/31

Shipped:

Received: 2017/02/01

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Nitrogen - Nitrate + Nitrite	KONE	4850394	N/A	2017/02/03	Nancy Rogers
Nitrogen - Nitrite	KONE	4850395	N/A	2017/02/03	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4848534	N/A	2017/02/07	Automated Statchk
рН	AT	4850239	N/A	2017/02/03	Julia McGovern
Phosphorus - ortho	KONE	4850390	N/A	2017/02/06	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4848536	N/A	2017/02/07	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4848537	N/A	2017/02/07	Automated Statchk
Reactive Silica	KONE	4850377	N/A	2017/02/06	Nancy Rogers
Sulphate	KONE	4850366	N/A	2017/02/06	Mary Clancey
Total Dissolved Solids (TDS calc)	CALC	4848538	N/A	2017/02/07	Automated Statchk
Organic carbon - Total (TOC)	TECH	4850918	N/A	2017/02/03	Steven Smith
Turbidity	TURB	4850252	N/A	2017/02/03	Julia McGovern

Maxxam ID: DVR768 Sample ID: MW10 Matrix: Water

Collected: 2017/01/31

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4848529	N/A	2017/02/06	Automated Statchk
Alkalinity	KONE	4850350	N/A	2017/02/06	Nancy Rogers
Chloride	KONE	4850359	N/A	2017/02/06	Mary Clancey
Colour	KONE	4850388	N/A	2017/02/06	Mary Clancey
Conductance - water	AT	4852495	N/A	2017/02/06	Julia McGovern
Hardness (calculated as CaCO3)		4848531	N/A	2017/02/06	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4850858	2017/02/03	2017/02/06	Arlene Rossiter
Metals Water Diss. MS	CICP/MS	4850616	N/A	2017/02/06	Bryon Angevine
Metals Water Total MS	CICP/MS	4850231	2017/02/03	2017/02/03	Bryon Angevine
Ion Balance (% Difference)	CALC	4848532	N/A	2017/02/07	Automated Statchk
Anion and Cation Sum	CALC	4848533	N/A	2017/02/07	Automated Statchk
Nitrogen Ammonia - water	KONE	4849179	N/A	2017/02/06	Mary Clancey
Nitrogen - Nitrate + Nitrite	KONE	4850394	N/A	2017/02/03	Nancy Rogers
Nitrogen - Nitrite	KONE	4850395	N/A	2017/02/03	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4848534	N/A	2017/02/07	Automated Statchk
рН	AT	4852494	N/A	2017/02/06	Julia McGovern
Phosphorus - ortho	KONE	4850390	N/A	2017/02/06	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4848536	N/A	2017/02/07	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4848537	N/A	2017/02/07	Automated Statchk
Reactive Silica	KONE	4850377	N/A	2017/02/06	Nancy Rogers
Sulphate	KONE	4850366	N/A	2017/02/06	Mary Clancey
Total Dissolved Solids (TDS calc)	CALC	4848538	N/A	2017/02/07	Automated Statchk
Organic carbon - Total (TOC)	TECH	4850918	N/A	2017/02/03	Steven Smith
Turbidity	TURB	4850249	N/A	2017/02/03	Julia McGovern

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08303 Sampler Initials: AS

TEST SUMMARY

Maxxam ID: DVR769 MW11 Sample ID: Matrix: Water

Collected:

2017/01/31

Shipped:

Received: 2017/02/01

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4848529	N/A	2017/02/03	Automated Statchk
Alkalinity	KONE	4850350	N/A	2017/02/06	Nancy Rogers
Chloride	KONE	4850359	N/A	2017/02/06	Mary Clancey
Colour	KONE	4850388	N/A	2017/02/06	Mary Clancey
Conductance - water	AT	4850240	N/A	2017/02/03	Julia McGovern
Hardness (calculated as CaCO3)		4848531	N/A	2017/02/06	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4850858	2017/02/03	2017/02/06	Arlene Rossiter
Metals Water Diss. MS	CICP/MS	4850616	N/A	2017/02/04	Bryon Angevine
Metals Water Total MS	CICP/MS	4850231	2017/02/03	2017/02/03	Bryon Angevine
Ion Balance (% Difference)	CALC	4848532	N/A	2017/02/07	Automated Statchk
Anion and Cation Sum	CALC	4848533	N/A	2017/02/07	Automated Statchk
Nitrogen Ammonia - water	KONE	4849179	N/A	2017/02/06	Mary Clancey
Nitrogen - Nitrate + Nitrite	KONE	4850394	N/A	2017/02/03	Nancy Rogers
Nitrogen - Nitrite	KONE	4850395	N/A	2017/02/03	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4848534	N/A	2017/02/07	Automated Statchk
рН	AT	4850239	N/A	2017/02/03	Julia McGovern
Phosphorus - ortho	KONE	4850390	N/A	2017/02/06	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4848536	N/A	2017/02/07	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4848537	N/A	2017/02/07	Automated Statchk
Reactive Silica	KONE	4850377	N/A	2017/02/06	Nancy Rogers
Sulphate	KONE	4850366	N/A	2017/02/06	Mary Clancey
Total Dissolved Solids (TDS calc)	CALC	4848538	N/A	2017/02/07	Automated Statchk
Organic carbon - Total (TOC)	TECH	4850918	N/A	2017/02/03	Steven Smith
Turbidity	TURB	4850249	N/A	2017/02/03	Julia McGovern

Maxxam ID: DVR770 Sample ID: MW12 Matrix: Water

Collected: Shipped: 2017/01/31

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4848529	N/A	2017/02/03	Automated Statchk
Alkalinity	KONE	4850350	N/A	2017/02/06	Nancy Rogers
Chloride	KONE	4850359	N/A	2017/02/06	Mary Clancey
Colour	KONE	4850388	N/A	2017/02/06	Mary Clancey
Conductance - water	AT	4850240	N/A	2017/02/03	Julia McGovern
Hardness (calculated as CaCO3)		4848531	N/A	2017/02/06	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4850858	2017/02/03	2017/02/06	Arlene Rossiter
Metals Water Diss. MS	CICP/MS	4850616	N/A	2017/02/04	Bryon Angevine
Metals Water Total MS	CICP/MS	4850231	2017/02/03	2017/02/03	Bryon Angevine
Ion Balance (% Difference)	CALC	4848532	N/A	2017/02/07	Automated Statchk
Anion and Cation Sum	CALC	4848533	N/A	2017/02/07	Automated Statchk
Nitrogen Ammonia - water	KONE	4849179	N/A	2017/02/06	Mary Clancey
Nitrogen - Nitrate + Nitrite	KONE	4850394	N/A	2017/02/03	Nancy Rogers

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08303 Sampler Initials: AS

TEST SUMMARY

Maxxam ID: DVR770 Sample ID: MW12 Matrix: Water

Collected:

2017/01/31

Shipped:

Received: 2017/02/01

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Nitrogen - Nitrite	KONE	4850395	N/A	2017/02/03	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4848534	N/A	2017/02/07	Automated Statchk
pH	AT	4850239	N/A	2017/02/03	Julia McGovern
Phosphorus - ortho	KONE	4850390	N/A	2017/02/06	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4848536	N/A	2017/02/07	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4848537	N/A	2017/02/07	Automated Statchk
Reactive Silica	KONE	4850377	N/A	2017/02/06	Nancy Rogers
Sulphate	KONE	4850366	N/A	2017/02/06	Mary Clancey
Total Dissolved Solids (TDS calc)	CALC	4848538	N/A	2017/02/07	Automated Statchk
Organic carbon - Total (TOC)	TECH	4850918	N/A	2017/02/03	Steven Smith
Turbidity	TURB	4850252	N/A	2017/02/03	Julia McGovern

Maxxam ID: DVR771 Sample ID: MW-DUP Matrix: Water

Collected: Shipped:

2017/01/31

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4848529	N/A	2017/02/06	Automated Statchk
Alkalinity	KONE	4850350	N/A	2017/02/06	Nancy Rogers
Chloride	KONE	4850359	N/A	2017/02/06	Mary Clancey
Colour	KONE	4850388	N/A	2017/02/06	Mary Clancey
Conductance - water	AT	4852495	N/A	2017/02/06	Julia McGovern
Hardness (calculated as CaCO3)		4848531	N/A	2017/02/06	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4850869	2017/02/03	2017/02/06	Arlene Rossiter
Metals Water Diss. MS (as rec'd)	CICP/MS	4850625	N/A	2017/02/04	Bryon Angevine
Metals Water Total MS	CICP/MS	4850234	2017/02/03	2017/02/03	Bryon Angevine
Ion Balance (% Difference)	CALC	4848532	N/A	2017/02/07	Automated Statchk
Anion and Cation Sum	CALC	4848533	N/A	2017/02/07	Automated Statchk
Nitrogen Ammonia - water	KONE	4849179	N/A	2017/02/06	Mary Clancey
Nitrogen - Nitrate + Nitrite	KONE	4850394	N/A	2017/02/03	Nancy Rogers
Nitrogen - Nitrite	KONE	4850395	N/A	2017/02/03	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4848534	N/A	2017/02/07	Automated Statchk
рН	AT	4852494	N/A	2017/02/06	Julia McGovern
Phosphorus - ortho	KONE	4850390	N/A	2017/02/06	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4848536	N/A	2017/02/07	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4848537	N/A	2017/02/07	Automated Statchk
Reactive Silica	KONE	4850377	N/A	2017/02/06	Nancy Rogers
Sulphate	KONE	4850366	N/A	2017/02/06	Mary Clancey
Total Dissolved Solids (TDS calc)	CALC	4848538	N/A	2017/02/07	Automated Statchk
Organic carbon - Total (TOC)	TECH	4850918	N/A	2017/02/03	Steven Smith
Turbidity	TURB	4850252	N/A	2017/02/03	Julia McGovern

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08303 Sampler Initials: AS

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1	2.0°C
Package 2	3.0°C
Package 3	3.3°C
Package 4	5.3°C

Poor RCAp Ion Balance due to sample matrix. Cation sum does not include contribution from manganese.

Sample DVR754 [MW1S] : Elevated reporting limits for trace metals due to sample matrix.

Poor RCAp Ion Balance due to sample matrix. Possibly due to fine particulate matter.

Sample DVR758 [MW3S]: Poor RCAp Ion Balance due to sample matrix. Possibly due to fine particulate matter.

Sample DVR759 [MW3D] : Poor RCAp Ion Balance due to sample matrix.

Sample DVR760 [MW4S] : Elevated reporting limits for trace metals due to sample matrix. Cation sum does not include contribution from manganese.

Sample DVR761 [MW4D]: RCAp Ion Balance acceptable. Anion/cation agreement within 0.2 meq/L.

Sample DVR763 [MW6D]: Poor RCAp Ion Balance due to sample matrix. Possibly due to fine particulate matter.

Sample $\,$ DVR764 [MW6S] $\,$: Elevated reporting limits for trace metals due to sample matrix.

Poor RCAp Ion Balance due to sample matrix. Possibly due to fine particulate matter.

Sample DVR765 [MW7]: Poor RCAp Ion Balance due to sample matrix. Possibly due to fine particulate matter.

Sample DVR767 [MW9]: Poor RCAp Ion Balance due to sample matrix. Possibly due to fine particulate matter.

Sample DVR770 [MW12]: Poor RCAp Ion Balance due to sample matrix. Possibly due to fine particulate matter.

Results relate only to the items tested.

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08303 Sampler Initials: AS

QUALITY ASSURANCE REPORT

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
4849175	MCN	Matrix Spike(DVR756)	Nitrogen (Ammonia Nitrogen)	2017/02/06		100	%	80 - 120
4849175	MCN	Spiked Blank	Nitrogen (Ammonia Nitrogen)	2017/02/06		107	%	80 - 120
4849175	MCN	Method Blank	Nitrogen (Ammonia Nitrogen)	2017/02/06	< 0.050		mg/L	
4849175	MCN	RPD - Sample/Sample Dup	Nitrogen (Ammonia Nitrogen)	2017/02/06	NC		%	20
4849179	MCN	Matrix Spike	Nitrogen (Ammonia Nitrogen)	2017/02/06		104	%	80 - 120
4849179	MCN	Spiked Blank	Nitrogen (Ammonia Nitrogen)	2017/02/06		106	%	80 - 120
4849179	MCN	•	Nitrogen (Ammonia Nitrogen)	2017/02/06	< 0.050		mg/L	
4849179	MCN	RPD - Sample/Sample Dup	Nitrogen (Ammonia Nitrogen)	2017/02/06	NC		%	20
4849251	NRG	Matrix Spike	Total Alkalinity (Total as CaCO3)	2017/02/06		107	%	80 - 120
4849251	NRG	Spiked Blank	Total Alkalinity (Total as CaCO3)	2017/02/06		108	%	80 - 120
4849251	NRG	Method Blank	Total Alkalinity (Total as CaCO3)	2017/02/06	<5.0		mg/L	
4849251	NRG	RPD - Sample/Sample Dup	Total Alkalinity (Total as CaCO3)	2017/02/06	NC		%	25
4849264	MCN	Matrix Spike	Dissolved Chloride (CI)	2017/02/06		NC	%	80 - 120
4849264	MCN	QC Standard	Dissolved Chloride (CI)	2017/02/06		110	%	80 - 120
4849264	MCN	Spiked Blank	Dissolved Chloride (CI)	2017/02/06		103	%	80 - 120
4849264	MCN	Method Blank	Dissolved Chloride (CI)	2017/02/06	<1.0		mg/L	
4849264	MCN	RPD - Sample/Sample Dup	Dissolved Chloride (CI)	2017/02/06	1.0		%	25
4849267	MCN	Matrix Spike	Dissolved Sulphate (SO4)	2017/02/06	1.0	105	%	80 - 120
4849267	MCN	Spiked Blank	Dissolved Sulphate (SO4)	2017/02/06		98	%	80 - 120
4849267	MCN	Method Blank	Dissolved Sulphate (SO4)	2017/02/06	<2.0	30	mg/L	00 120
4849267	MCN	RPD - Sample/Sample Dup	Dissolved Sulphate (SO4)	2017/02/06	NC		%	25
4849271	NRG	Matrix Spike	Reactive Silica (SiO2)	2017/02/06		99	%	80 - 120
4849271	NRG	Spiked Blank	Reactive Silica (SiO2)	2017/02/06		102	%	80 - 120
4849271	NRG	Method Blank	Reactive Silica (SiO2)	2017/02/06	<0.50		mg/L	00 120
4849271	NRG	RPD - Sample/Sample Dup	Reactive Silica (SiO2)	2017/02/06	NC		%	25
4849291	MCN	Spiked Blank	Colour	2017/02/06	110	92	%	80 - 120
4849291	MCN	Method Blank	Colour	2017/02/06	<5.0	3-	TCU	00 120
4849291	MCN	RPD - Sample/Sample Dup	Colour	2017/02/06	NC		%	20
4849294	NRG	Matrix Spike	Orthophosphate (P)	2017/02/06		92	%	80 - 120
4849294	NRG	Spiked Blank	Orthophosphate (P)	2017/02/06		97	%	80 - 120
4849294	NRG	Method Blank	Orthophosphate (P)	2017/02/06	< 0.010		mg/L	
4849294	NRG	RPD - Sample/Sample Dup	Orthophosphate (P)	2017/02/06	NC		%	25
4849305	NRG	Matrix Spike	Nitrate + Nitrite (N)	2017/02/03		96	%	80 - 120
4849305	NRG	Spiked Blank	Nitrate + Nitrite (N)	2017/02/03		97	%	80 - 120
4849305	NRG	Method Blank	Nitrate + Nitrite (N)	2017/02/03	0.079,		mg/L	
			,	, , , , , , ,	RDL=0.050		0,	
4849305	NRG	RPD - Sample/Sample Dup	Nitrate + Nitrite (N)	2017/02/03	7.0		%	25
4849317		Matrix Spike	Nitrite (N)	2017/02/03	7.0	84	%	80 - 120
4849317	NRG	Spiked Blank	Nitrite (N)	2017/02/03		87	%	80 - 120
4849317	NRG	Method Blank	Nitrite (N)	2017/02/03	<0.010	0,	mg/L	00 120
4849317	NRG	RPD - Sample/Sample Dup		2017/02/03	NC		%	25
4850231	BAN	Matrix Spike	Total Lead (Pb)	2017/02/03		93	%	80 - 120
4850231	BAN	Spiked Blank	Total Lead (Pb)	2017/02/03		93	%	80 - 120
4850231	BAN	Method Blank	Total Lead (Pb)	2017/02/03	<0.50		ug/L	1. 1.
4850231	BAN	RPD - Sample/Sample Dup		2017/02/03	NC		%	20
4850234	BAN	Matrix Spike	Total Lead (Pb)	2017/02/03		90	%	80 - 120
4850234	BAN	Spiked Blank	Total Lead (Pb)	2017/02/03		96	%	80 - 120
4850234	BAN	Method Blank	Total Lead (Pb)	2017/02/03	<0.50		ug/L	1. 1.
4850234	BAN	RPD - Sample/Sample Dup		2017/02/03	NC		%	20
4850239	JMV	QC Standard	pH	2017/02/03		101	%	97 - 103
4850239	JMV	RPD - Sample/Sample Dup	•	2017/02/03	1.3		%	N/A
.0002	5.7.0	5 Jampie Bap	F- : :	=51,752,55			,,	,,,

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08303 Sampler Initials: AS

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
4850240	JMV	Spiked Blank	Conductivity	2017/02/03		103	%	80 - 120
4850240	JMV	Method Blank	Conductivity	2017/02/03	1.5,		uS/cm	
					RDL=1.0			
4850240	JMV	RPD - Sample/Sample Dup	Conductivity	2017/02/03	0.0013		%	25
4850249	JMV	QC Standard	Turbidity	2017/02/03		97	%	80 - 120
4850249	JMV	Spiked Blank	Turbidity	2017/02/03		92	%	80 - 120
4850249	JMV	Method Blank	Turbidity	2017/02/03	< 0.10		NTU	
4850249	JMV	RPD - Sample/Sample Dup	Turbidity	2017/02/03	NC		%	20
4850252	JMV	QC Standard	Turbidity	2017/02/03		97	%	80 - 120
4850252	JMV	Spiked Blank	Turbidity	2017/02/03		92	%	80 - 120
4850252	JMV	Method Blank	Turbidity	2017/02/03	< 0.10		NTU	
4850252	JMV	RPD - Sample/Sample Dup	Turbidity	2017/02/03	NC		%	20
4850350	NRG	Matrix Spike(DVR766)	Total Alkalinity (Total as CaCO3)	2017/02/06		NC	%	80 - 120
4850350	NRG	Spiked Blank	Total Alkalinity (Total as CaCO3)	2017/02/06		109	%	80 - 120
4850350	NRG	Method Blank	Total Alkalinity (Total as CaCO3)	2017/02/06	<5.0		mg/L	
4850350	NRG	RPD - Sample/Sample Dup	Total Alkalinity (Total as CaCO3)	2017/02/06	NC		%	25
4850359	MCN	Matrix Spike(DVR766)	Dissolved Chloride (CI)	2017/02/06		NC	%	80 - 120
4850359	MCN	QC Standard	Dissolved Chloride (CI)	2017/02/06		108	%	80 - 120
4850359	MCN	Spiked Blank	Dissolved Chloride (CI)	2017/02/06		106	%	80 - 120
4850359	MCN	Method Blank	Dissolved Chloride (CI)	2017/02/06	<1.0		mg/L	
4850359	MCN	RPD - Sample/Sample Dup	Dissolved Chloride (CI)	2017/02/06	6.0		%	25
4850366	MCN	Matrix Spike(DVR766)	Dissolved Sulphate (SO4)	2017/02/06		110	%	80 - 120
4850366	MCN	Spiked Blank	Dissolved Sulphate (SO4)	2017/02/06		100	%	80 - 120
4850366	MCN	Method Blank	Dissolved Sulphate (SO4)	2017/02/06	<2.0		mg/L	
4850366	MCN	RPD - Sample/Sample Dup	Dissolved Sulphate (SO4)	2017/02/06	NC		%	25
4850377	NRG	Matrix Spike(DVR766)	Reactive Silica (SiO2)	2017/02/06		NC	%	80 - 120
4850377	NRG	Spiked Blank	Reactive Silica (SiO2)	2017/02/06		104	%	80 - 120
4850377	NRG	Method Blank	Reactive Silica (SiO2)	2017/02/06	< 0.50		mg/L	
4850377	NRG	RPD - Sample/Sample Dup	Reactive Silica (SiO2)	2017/02/06	0.47		%	25
4850388	MCN	Spiked Blank	Colour	2017/02/06		99	%	80 - 120
4850388	MCN	Method Blank	Colour	2017/02/06	<5.0		TCU	
4850388	MCN	RPD - Sample/Sample Dup	Colour	2017/02/06	NC		%	20
4850390	NRG	Matrix Spike(DVR766)	Orthophosphate (P)	2017/02/06		91	%	80 - 120
4850390	NRG	Spiked Blank	Orthophosphate (P)	2017/02/06		96	%	80 - 120
4850390	NRG	Method Blank	Orthophosphate (P)	2017/02/06	< 0.010		mg/L	
4850390	NRG	RPD - Sample/Sample Dup	Orthophosphate (P)	2017/02/06	NC		%	25
4850394	NRG	Matrix Spike(DVR766)	Nitrate + Nitrite (N)	2017/02/03		92	%	80 - 120
4850394	NRG	Spiked Blank	Nitrate + Nitrite (N)	2017/02/03		100	%	80 - 120
4850394	NRG	Method Blank	Nitrate + Nitrite (N)	2017/02/03	< 0.050		mg/L	
4850394	NRG	RPD - Sample/Sample Dup	Nitrate + Nitrite (N)	2017/02/03	NC		%	25
4850395	NRG	Matrix Spike(DVR766)	Nitrite (N)	2017/02/03		84	%	80 - 120
4850395	NRG	Spiked Blank	Nitrite (N)	2017/02/03		85	%	80 - 120
4850395	NRG	Method Blank	Nitrite (N)	2017/02/03	< 0.010		mg/L	
4850395	NRG	RPD - Sample/Sample Dup	Nitrite (N)	2017/02/03	NC		%	25
4850616	BAN	Matrix Spike	Dissolved Aluminum (AI)	2017/02/06		105	%	80 - 120
		•	Dissolved Antimony (Sb)	2017/02/06		107	%	80 - 120
			Dissolved Arsenic (As)	2017/02/06		98	%	80 - 120
			Dissolved Barium (Ba)	2017/02/06		100	%	80 - 120
			Dissolved Beryllium (Be)	2017/02/06		101	%	80 - 120
			Dissolved Bismuth (Bi)	2017/02/06		107	%	80 - 120
				, 3-, 50				

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08303 Sampler Initials: AS

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			Dissolved Cadmium (Cd)	2017/02/06		101	%	80 - 120
			Dissolved Calcium (Ca)	2017/02/06		96	%	80 - 120
			Dissolved Chromium (Cr)	2017/02/06		95	%	80 - 120
			Dissolved Cobalt (Co)	2017/02/06		98	%	80 - 120
			Dissolved Copper (Cu)	2017/02/06		96	%	80 - 120
			Dissolved Iron (Fe)	2017/02/06		102	%	80 - 120
			Dissolved Lead (Pb)	2017/02/06		101	%	80 - 120
			Dissolved Magnesium (Mg)	2017/02/06		103	%	80 - 120
			Dissolved Manganese (Mn)	2017/02/06		99	%	80 - 120
			Dissolved Molybdenum (Mo)	2017/02/06		102	%	80 - 120
			Dissolved Nickel (Ni)	2017/02/06		99	%	80 - 120
			Dissolved Phosphorus (P)	2017/02/06		105	%	80 - 120
			Dissolved Potassium (K)	2017/02/06		104	%	80 - 120
			Dissolved Selenium (Se)	2017/02/06		99	%	80 - 120
			Dissolved Silver (Ag)	2017/02/06		100	%	80 - 120
			Dissolved Sodium (Na)	2017/02/06		100	%	80 - 120
			Dissolved Strontium (Sr)	2017/02/06		101	%	80 - 120
			Dissolved Thallium (TI)	2017/02/06		106	%	80 - 120
			Dissolved Tin (Sn)	2017/02/06		106	%	80 - 120
			Dissolved Titanium (Ti)	2017/02/06		101	%	80 - 120
			Dissolved Uranium (U)	2017/02/06		109	%	80 - 120
			Dissolved Vanadium (V)	2017/02/06		101	%	80 - 120
			Dissolved Zinc (Zn)	2017/02/06		101	%	80 - 120
4850616	BAN	Spiked Blank	Dissolved Aluminum (AI)	2017/02/06		108	%	80 - 120
			Dissolved Antimony (Sb)	2017/02/06		103	%	80 - 120
			Dissolved Arsenic (As)	2017/02/06		96	%	80 - 120
			Dissolved Barium (Ba)	2017/02/06		99	%	80 - 120
			Dissolved Beryllium (Be)	2017/02/06		100	%	80 - 120
			Dissolved Bismuth (Bi)	2017/02/06		103	%	80 - 120
			Dissolved Boron (B)	2017/02/06		95	%	80 - 120
			Dissolved Cadmium (Cd)	2017/02/06		100	%	80 - 120
			Dissolved Calcium (Ca)	2017/02/06		98	%	80 - 120
			Dissolved Chromium (Cr)	2017/02/06		93	%	80 - 120
			Dissolved Cobalt (Co)	2017/02/06		95	%	80 - 120
			Dissolved Copper (Cu)	2017/02/06		94	%	80 - 120
			Dissolved Iron (Fe)	2017/02/06		103	%	80 - 120
			Dissolved Lead (Pb)	2017/02/06		100	%	80 - 120
			Dissolved Magnesium (Mg)	2017/02/06		104	%	80 - 120
			Dissolved Manganese (Mn)	2017/02/06		97	%	80 - 120
			Dissolved Molybdenum (Mo)	2017/02/06		98	%	80 - 120
			Dissolved Nickel (Ni)	2017/02/06		97	%	80 - 120
			Dissolved Phosphorus (P)	2017/02/06		109	%	80 - 120
			Dissolved Potassium (K)	2017/02/06		103	%	80 - 120
			Dissolved Foldassidin (K) Dissolved Selenium (Se)	2017/02/06		97	%	80 - 120
			Dissolved Silver (Ag)	2017/02/06		98	%	80 - 120
			Dissolved Sodium (Na)	2017/02/06		100	%	80 - 120
			Dissolved Strontium (Sr)	2017/02/06		100	% %	80 - 120
			Dissolved Strontium (SI)	2017/02/06		101	%	80 - 120
			Dissolved Triallium (11) Dissolved Tin (Sn)	2017/02/06		102	% %	80 - 120
			Dissolved Till (311) Dissolved Titanium (Ti)	2017/02/06		100	%	80 - 120
			Dissolved Titalium (T) Dissolved Uranium (U)	2017/02/06		100	%	80 - 120
			Dissolved Orallidili (O)	201//02/00		103	/0	00 - 120

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08303 Sampler Initials: AS

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			Dissolved Vanadium (V)	2017/02/06		99	%	80 - 120
			Dissolved Zinc (Zn)	2017/02/06		99	%	80 - 120
4850616	BAN	Method Blank	Dissolved Aluminum (Al)	2017/02/06	<5.0		ug/L	
			Dissolved Antimony (Sb)	2017/02/06	<1.0		ug/L	
			Dissolved Arsenic (As)	2017/02/06	<1.0		ug/L	
			Dissolved Barium (Ba)	2017/02/06	<1.0		ug/L	
			Dissolved Beryllium (Be)	2017/02/06	<1.0		ug/L	
			Dissolved Bismuth (Bi)	2017/02/06	<2.0		ug/L	
			Dissolved Boron (B)	2017/02/06	<50		ug/L	
			Dissolved Cadmium (Cd)	2017/02/06	< 0.010		ug/L	
			Dissolved Calcium (Ca)	2017/02/06	<100		ug/L	
			Dissolved Chromium (Cr)	2017/02/06	<1.0		ug/L	
			Dissolved Cobalt (Co)	2017/02/06	< 0.40		ug/L	
			Dissolved Copper (Cu)	2017/02/06	<2.0		ug/L	
			Dissolved Iron (Fe)	2017/02/06	<50		ug/L	
			Dissolved Lead (Pb)	2017/02/06	< 0.50		ug/L	
			Dissolved Magnesium (Mg)	2017/02/06	<100		ug/L	
			Dissolved Manganese (Mn)	2017/02/06	<2.0		ug/L	
			Dissolved Molybdenum (Mo)	2017/02/06	<2.0		ug/L	
			Dissolved Nickel (Ni)	2017/02/06	<2.0		ug/L	
			Dissolved Phosphorus (P)	2017/02/06	<100		ug/L	
			Dissolved Potassium (K)	2017/02/06	<100		ug/L	
			Dissolved Selenium (Se)	2017/02/06	<1.0		ug/L	
			Dissolved Silver (Ag)	2017/02/06	< 0.10		ug/L	
			Dissolved Sodium (Na)	2017/02/06	<100		ug/L	
			Dissolved Strontium (Sr)	2017/02/06	<2.0		ug/L	
			Dissolved Thallium (TI)	2017/02/06	< 0.10		ug/L	
			Dissolved Tin (Sn)	2017/02/06	<2.0		ug/L	
			Dissolved Titanium (Ti)	2017/02/06	<2.0		ug/L	
			Dissolved Uranium (U)	2017/02/06	<0.10		ug/L	
			Dissolved Vanadium (V)	2017/02/06	<2.0		ug/L	
			Dissolved Zinc (Zn)	2017/02/06	<5.0		ug/L	
1850616	BAN	RPD - Sample/Sample Dup	Dissolved Aluminum (Al)	2017/02/06	NC		%	20
000010	27	2 Campie, Campie 2 ap	Dissolved Antimony (Sb)	2017/02/06	NC		%	20
			Dissolved Arsenic (As)	2017/02/06	NC		%	20
			Dissolved Barium (Ba)	2017/02/06	NC		%	20
			Dissolved Beryllium (Be)	2017/02/06	NC		%	20
			Dissolved Bismuth (Bi)	2017/02/06	NC		%	20
			Dissolved Boron (B)	2017/02/06	NC		%	20
			Dissolved Cadmium (Cd)	2017/02/06	NC		%	20
			Dissolved Calcium (Ca)	2017/02/06	NC		%	20
			Dissolved Chromium (Cr)	2017/02/06	NC		%	20
			Dissolved Cobalt (Co)	2017/02/06	NC		%	20
			Dissolved Copper (Cu)	2017/02/06	NC		%	20
			Dissolved Iron (Fe)	2017/02/06	NC		%	20
			Dissolved For (Fe)	2017/02/06	NC		%	20
			Dissolved Magnesium (Mg)	2017/02/06	NC		% %	20
			Dissolved Manganese (Mn)	2017/02/06	NC		%	20
			Dissolved Molybdenum (Mo)	2017/02/00	NC		% %	20
			Dissolved Nickel (Ni)	2017/02/06	NC		% %	20
			Dissolved Phosphorus (P)	2017/02/06	NC NC		% %	20
			Dissolved Filospilorus (F)	2017/02/00	INC		70	20

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08303 Sampler Initials: AS

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			Dissolved Potassium (K)	2017/02/06	NC		%	20
			Dissolved Selenium (Se)	2017/02/06	NC		%	20
			Dissolved Silver (Ag)	2017/02/06	NC		%	20
			Dissolved Sodium (Na)	2017/02/06	NC		%	20
			Dissolved Strontium (Sr)	2017/02/06	NC		%	20
			Dissolved Thallium (TI)	2017/02/06	NC		%	20
			Dissolved Tin (Sn)	2017/02/06	NC		%	20
			Dissolved Titanium (Ti)	2017/02/06	NC		%	20
			Dissolved Uranium (U)	2017/02/06	NC		%	20
			Dissolved Vanadium (V)	2017/02/06	NC		%	20
			Dissolved Zinc (Zn)	2017/02/06	NC		%	20
4850622	BAN	Matrix Spike	Dissolved Aluminum (AI)	2017/02/06		113	%	80 - 120
			Dissolved Antimony (Sb)	2017/02/06		108	%	80 - 120
			Dissolved Arsenic (As)	2017/02/06		102	%	80 - 120
			Dissolved Barium (Ba)	2017/02/06		NC	%	80 - 120
			Dissolved Beryllium (Be)	2017/02/06		94	%	80 - 120
			Dissolved Bismuth (Bi)	2017/02/06		96	%	80 - 120
			Dissolved Boron (B)	2017/02/06		91	%	80 - 120
			Dissolved Cadmium (Cd)	2017/02/06		101	%	80 - 120
			Dissolved Calcium (Ca)	2017/02/06		NC	%	80 - 120
			Dissolved Chromium (Cr)	2017/02/06		97	%	80 - 120
			Dissolved Cobalt (Co)	2017/02/06		95	%	80 - 120
			Dissolved Copper (Cu)	2017/02/06		91	%	80 - 120
			Dissolved Iron (Fe)	2017/02/06		108	%	80 - 120
			Dissolved Lead (Pb)	2017/02/06		95	%	80 - 120
			Dissolved Magnesium (Mg)	2017/02/06		NC	%	80 - 120
			Dissolved Manganese (Mn)	2017/02/06		NC	%	80 - 120
			Dissolved Molybdenum (Mo)	2017/02/06		108	%	80 - 120
			Dissolved Nickel (Ni)	2017/02/06		95	%	80 - 120
			Dissolved Phosphorus (P)	2017/02/06		111	%	80 - 120
			Dissolved Potassium (K)	2017/02/06		NC	%	80 - 120
			Dissolved Fotassium (K) Dissolved Selenium (Se)	2017/02/06		99	%	80 - 120
			Dissolved Selemann (Se)	2017/02/06		98	% %	80 - 120
			Dissolved Solium (Na)	2017/02/06		NC	%	80 - 120
			Dissolved Strontium (Sr)	2017/02/06		NC	%	80 - 120
				2017/02/06		101	% %	80 - 120
			Dissolved Thallium (TI) Dissolved Tin (Sn)	2017/02/06		101	%	80 - 120
			Dissolved Till (SII) Dissolved Titanium (Ti)	2017/02/06		108	%	80 - 120
				2017/02/06		104	%	
			Dissolved Uranium (U) Dissolved Vanadium (V)	2017/02/06		99	%	80 - 120 80 - 120
				2017/02/06				
4050633	DAN	Cuiliad Dlauli	Dissolved Zinc (Zn)			97	%	80 - 120
4850622	BAIN	Spiked Blank	Dissolved Autimany (Sh)	2017/02/06		119	%	80 - 120
			Dissolved Antimony (Sb)	2017/02/06		101	%	80 - 120
			Dissolved Arsenic (As)	2017/02/06		99	%	80 - 120
			Dissolved Barium (Ba)	2017/02/06		97	%	80 - 120
			Dissolved Beryllium (Be)	2017/02/06		92 104	%	80 - 120
			Dissolved Bismuth (Bi)	2017/02/06		104	%	80 - 120
			Dissolved Boron (B)	2017/02/06		93	%	80 - 120
			Dissolved Cadmium (Cd)	2017/02/06		102	%	80 - 120
			Dissolved Calcium (Ca)	2017/02/06		105	%	80 - 120
			Dissolved Chromium (Cr)	2017/02/06		98	%	80 - 120

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08303 Sampler Initials: AS

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limit
			Dissolved Cobalt (Co)	2017/02/06		99	%	80 - 120
			Dissolved Copper (Cu)	2017/02/06		98	%	80 - 120
			Dissolved Iron (Fe)	2017/02/06		113	%	80 - 120
			Dissolved Lead (Pb)	2017/02/06		100	%	80 - 120
			Dissolved Magnesium (Mg)	2017/02/06		115	%	80 - 120
			Dissolved Manganese (Mn)	2017/02/06		103	%	80 - 120
			Dissolved Molybdenum (Mo)	2017/02/06		101	%	80 - 120
			Dissolved Nickel (Ni)	2017/02/06		101	%	80 - 120
			Dissolved Phosphorus (P)	2017/02/06		116	%	80 - 120
			Dissolved Potassium (K)	2017/02/06		115	%	80 - 120
			Dissolved Selenium (Se)	2017/02/06		100	%	80 - 120
			Dissolved Silver (Ag)	2017/02/06		98	%	80 - 120
			Dissolved Sodium (Na)	2017/02/06		104	%	80 - 120
			Dissolved Strontium (Sr)	2017/02/06		103	%	80 - 120
			Dissolved Thallium (TI)	2017/02/06		103	%	80 - 120
			Dissolved Tin (Sn)	2017/02/06		105	%	80 - 120
			Dissolved Titanium (Ti)	2017/02/06		100	%	80 - 120
			Dissolved Uranium (U)	2017/02/06		111	%	80 - 12
			Dissolved Vanadium (V)	2017/02/06		97	%	80 - 120
			Dissolved Zinc (Zn)	2017/02/06		103	%	80 - 120
350622	BAN	Method Blank	Dissolved Aluminum (AI)	2017/02/06	<5.0	103	ug/L	00 12
30022	D/ (14	Weerloa Blank	Dissolved Antimony (Sb)	2017/02/06	<1.0		ug/L	
			Dissolved Arsenic (As)	2017/02/06	<1.0		ug/L	
			Dissolved Barium (Ba)	2017/02/06	<1.0		ug/L	
			Dissolved Beryllium (Be)	2017/02/06	<1.0		ug/L	
			Dissolved Bismuth (Bi)	2017/02/06	<2.0		ug/L	
			Dissolved Boron (B)	2017/02/06	<50		ug/L	
			Dissolved Cadmium (Cd)	2017/02/06	<0.010		ug/L	
			Dissolved Calcium (Ca)	2017/02/06	<100		ug/L	
			Dissolved Chromium (Cr)	2017/02/06	<1.0		ug/L	
			Dissolved Cobalt (Co)	2017/02/06	<0.40		ug/L	
			Dissolved Copper (Cu)	2017/02/06	<2.0		ug/L	
			Dissolved Iron (Fe)	2017/02/06	<50		ug/L	
			Dissolved Lead (Pb)	2017/02/06	< 0.50		ug/L	
			Dissolved Magnesium (Mg)	2017/02/06	<100		ug/L	
			Dissolved Manganese (Mn)	2017/02/06	<2.0		ug/L	
			Dissolved Molybdenum (Mo)	2017/02/06	<2.0		ug/L	
			Dissolved Nickel (Ni)	2017/02/06	<2.0		ug/L	
			Dissolved Phosphorus (P)	2017/02/06	<100		ug/L	
			Dissolved Potassium (K)	2017/02/06	<100		ug/L	
			Dissolved Selenium (Se)	2017/02/06	<1.0		ug/L	
			Dissolved Silver (Ag)	2017/02/06	< 0.10		ug/L	
			Dissolved Sodium (Na)	2017/02/06	<100		ug/L	
			Dissolved Strontium (Sr)	2017/02/06	<2.0		ug/L	
			Dissolved Thallium (TI)	2017/02/06	< 0.10		ug/L	
			Dissolved Tin (Sn)	2017/02/06	<2.0		ug/L	
			Dissolved Titanium (Ti)	2017/02/06	<2.0		ug/L	
			Dissolved Uranium (U)	2017/02/06	< 0.10		ug/L	
			Dissolved Vanadium (V)	2017/02/06	<2.0		ug/L	
			Dissolved Zinc (Zn)	2017/02/06	<5.0		ug/L	
350622	BAN	RPD - Sample/Sample Dun	Dissolved Aluminum (AI)	2017/02/06	NC		%	20

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08303 Sampler Initials: AS

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			Dissolved Antimony (Sb)	2017/02/06	NC		%	20
			Dissolved Arsenic (As)	2017/02/06	NC		%	20
			Dissolved Barium (Ba)	2017/02/06	0.47		%	20
			Dissolved Beryllium (Be)	2017/02/06	NC		%	20
			Dissolved Bismuth (Bi)	2017/02/06	NC		%	20
			Dissolved Boron (B)	2017/02/06	NC		%	20
			Dissolved Cadmium (Cd)	2017/02/06	12		%	20
			Dissolved Calcium (Ca)	2017/02/06	0.39		%	20
			Dissolved Chromium (Cr)	2017/02/06	NC		%	20
			Dissolved Cobalt (Co)	2017/02/06	2.2		%	20
			Dissolved Copper (Cu)	2017/02/06	NC		%	20
			Dissolved Iron (Fe)	2017/02/06	NC		%	20
			Dissolved Lead (Pb)	2017/02/06	NC		%	20
			Dissolved Magnesium (Mg)	2017/02/06	0.55		%	20
			Dissolved Manganese (Mn)	2017/02/06	2.5		%	20
			Dissolved Molybdenum (Mo)	2017/02/06	NC		%	20
			Dissolved Nickel (Ni)	2017/02/06	NC		%	20
			Dissolved Phosphorus (P)	2017/02/06	NC		%	20
			Dissolved Potassium (K)	2017/02/06	2.7		%	20
			Dissolved Foldssidiff (K) Dissolved Selenium (Se)	2017/02/06	NC		%	20
			Dissolved Silver (Ag)	2017/02/06	NC		% %	20
			Dissolved Sodium (Na)	2017/02/06	0.13		%	20
			Dissolved Strontium (Sr)	2017/02/06	0.13		% %	20
							%	
			Dissolved Thallium (TI)	2017/02/06	NC		% %	20
			Dissolved Titanium (Ti)	2017/02/06	NC		% %	20 20
			Dissolved Litanium (Ti)	2017/02/06	NC			
			Dissolved Uranium (U)	2017/02/06	1.7		%	20
			Dissolved Vanadium (V)	2017/02/06	NC		%	20
4050635	DAN	Martinia Carilla (D) (D757)	Dissolved Zinc (Zn)	2017/02/06	NC	442	%	20
4850625	BAN	Matrix Spike(DVR757)	Dissolved Aluminum (Al)	2017/02/04		113	%	80 - 120
			Dissolved Antimony (Sb)	2017/02/04		110	%	80 - 120
			Dissolved Arsenic (As)	2017/02/04		103	%	80 - 120
			Dissolved Barium (Ba)	2017/02/04		97	%	80 - 120
			Dissolved Beryllium (Be)	2017/02/04		95	%	80 - 120
			Dissolved Bismuth (Bi)	2017/02/04		109	%	80 - 120
			Dissolved Boron (B)	2017/02/04		NC	%	80 - 120
			Dissolved Cadmium (Cd)	2017/02/04		106	%	80 - 120
			Dissolved Calcium (Ca)	2017/02/04		NC	%	80 - 120
			Dissolved Chromium (Cr)	2017/02/04		101	%	80 - 120
			Dissolved Cobalt (Co)	2017/02/04		102	%	80 - 120
			Dissolved Copper (Cu)	2017/02/04		102	%	80 - 120
			Dissolved Iron (Fe)	2017/02/04		112	%	80 - 120
			Dissolved Lead (Pb)	2017/02/04		102	%	80 - 120
			Dissolved Magnesium (Mg)	2017/02/04			%	80 - 120
			Dissolved Manganese (Mn)	2017/02/04		NC	%	80 - 120
			Dissolved Molybdenum (Mo)	2017/02/04		107	%	80 - 120
		Dissolved Nickel (Ni)	2017/02/04		103	%	80 - 120	
			Dissolved Phosphorus (P)	2017/02/04		111	%	80 - 120
			Dissolved Potassium (K)	2017/02/04		113	%	80 - 120
			Dissolved Selenium (Se)	2017/02/04		104	%	80 - 120
			Dissolved Silver (Ag)	2017/02/04		101	%	80 - 120

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08303 Sampler Initials: AS

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			Dissolved Sodium (Na)	2017/02/04		105	%	80 - 120
			Dissolved Strontium (Sr)	2017/02/04		NC	%	80 - 120
			Dissolved Thallium (TI)	2017/02/04		109	%	80 - 120
			Dissolved Tin (Sn)	2017/02/04		111	%	80 - 120
			Dissolved Titanium (Ti)	2017/02/04		101	%	80 - 120
			Dissolved Uranium (U)	2017/02/04		113	%	80 - 120
			Dissolved Vanadium (V)	2017/02/04		100	%	80 - 120
			Dissolved Zinc (Zn)	2017/02/04		108	%	80 - 120
4850625	BAN	Spiked Blank	Dissolved Aluminum (AI)	2017/02/04		105	%	80 - 120
		,	Dissolved Antimony (Sb)	2017/02/04		99	%	80 - 120
			Dissolved Arsenic (As)	2017/02/04		96	%	80 - 120
			Dissolved Barium (Ba)	2017/02/04		93	%	80 - 120
			Dissolved Beryllium (Be)	2017/02/04		90	%	80 - 120
			Dissolved Bismuth (Bi)	2017/02/04		101	%	80 - 120
			Dissolved Boron (B)	2017/02/04		90	%	80 - 120
			Dissolved Cadmium (Cd)	2017/02/04		100	%	80 - 120
			Dissolved Calcium (Ca)	2017/02/04		96	%	80 - 120
			Dissolved Carcium (Ca) Dissolved Chromium (Cr)	2017/02/04		95	% %	80 - 120
			Dissolved Cobalt (Co)	2017/02/04		96	% %	80 - 120
			` ,	2017/02/04			%	
			Dissolved Copper (Cu)			96		80 - 120
			Dissolved Iron (Fe)	2017/02/04		103	%	80 - 120
			Dissolved Lead (Pb)	2017/02/04		97	%	80 - 120
			Dissolved Magnesium (Mg)	2017/02/04		103	%	80 - 120
			Dissolved Manganese (Mn)	2017/02/04		99	%	80 - 120
			Dissolved Molybdenum (Mo)	2017/02/04		98	%	80 - 120
			Dissolved Nickel (Ni)	2017/02/04		99	%	80 - 120
			Dissolved Phosphorus (P)	2017/02/04		105	%	80 - 120
			Dissolved Potassium (K)	2017/02/04		108	%	80 - 120
			Dissolved Selenium (Se)	2017/02/04		99	%	80 - 120
			Dissolved Silver (Ag)	2017/02/04		98	%	80 - 120
			Dissolved Sodium (Na)	2017/02/04		99	%	80 - 120
			Dissolved Strontium (Sr)	2017/02/04		98	%	80 - 120
			Dissolved Thallium (TI)	2017/02/04		101	%	80 - 120
			Dissolved Tin (Sn)	2017/02/04		102	%	80 - 120
			Dissolved Titanium (Ti)	2017/02/04		99	%	80 - 120
			Dissolved Uranium (U)	2017/02/04		106	%	80 - 120
			Dissolved Vanadium (V)	2017/02/04		94	%	80 - 120
			Dissolved Zinc (Zn)	2017/02/04		101	%	80 - 120
4850625	BAN	Method Blank	Dissolved Aluminum (AI)	2017/02/04	<5.0		ug/L	
			Dissolved Antimony (Sb)	2017/02/04	<1.0		ug/L	
			Dissolved Arsenic (As)	2017/02/04	<1.0		ug/L	
			Dissolved Barium (Ba)	2017/02/04	<1.0		ug/L	
			Dissolved Beryllium (Be)	2017/02/04	<1.0		ug/L	
			Dissolved Bismuth (Bi)	2017/02/04	<2.0		ug/L	
			Dissolved Boron (B)	2017/02/04	<50		ug/L	
			Dissolved Cadmium (Cd)	2017/02/04	< 0.010		ug/L	
			Dissolved Calcium (Ca)	2017/02/04	<100		ug/L	
			Dissolved Chromium (Cr)	2017/02/04	<1.0		ug/L	
			Dissolved Cobalt (Co)	2017/02/04	<0.40		ug/L	
			Dissolved Copper (Cu)	2017/02/04	<2.0		ug/L ug/L	
			Dissolved Iron (Fe)	2017/02/04	<50		ug/L	

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08303 Sampler Initials: AS

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			Dissolved Lead (Pb)	2017/02/04	<0.50	· · · · · · · · · · · · · · · · · · ·	ug/L	
			Dissolved Magnesium (Mg)	2017/02/04	<100		ug/L	
			Dissolved Manganese (Mn)	2017/02/04	<2.0		ug/L	
			Dissolved Molybdenum (Mo)	2017/02/04	<2.0		ug/L	
			Dissolved Nickel (Ni)	2017/02/04	<2.0		ug/L	
			Dissolved Phosphorus (P)	2017/02/04	<100		ug/L	
			Dissolved Potassium (K)	2017/02/04	<100		ug/L	
			Dissolved Selenium (Se)	2017/02/04	<1.0		ug/L	
			Dissolved Silver (Ag)	2017/02/04	<0.10		ug/L	
			Dissolved Sodium (Na)	2017/02/04	<100		ug/L	
			Dissolved Strontium (Sr)	2017/02/04	<2.0		ug/L	
			Dissolved Thallium (TI)	2017/02/04	<0.10		ug/L	
			Dissolved Tin (Sn)	2017/02/04	<2.0		ug/L	
			Dissolved Titanium (Ti)	2017/02/04	<2.0		ug/L	
			Dissolved Uranium (U)	2017/02/04	<0.10		ug/L	
			Dissolved Vanadium (V)	2017/02/04	<2.0		ug/L	
			Dissolved Zinc (Zn)	2017/02/04	<5.0		ug/L	
4850625	BAN	RPD - Sample/Sample Dup	Dissolved Aluminum (Al)	2017/02/04	NC		wg/L %	20
4030023	D/ (14	THE Sumpley Sumple Bup	Dissolved Antimony (Sb)	2017/02/04	NC		%	20
			Dissolved Arsenic (As)	2017/02/04	1.6		%	20
			Dissolved Parium (Ba)	2017/02/04	1.2		%	20
			Dissolved Beryllium (Be)	2017/02/04	NC		%	20
			Dissolved Bismuth (Bi)	2017/02/04	NC		%	20
			Dissolved Boron (B)	2017/02/04	0.38		%	20
			Dissolved Cadmium (Cd)	2017/02/04	NC		%	20
			Dissolved Calcium (Ca)	2017/02/04	1.8		%	20
			Dissolved Chromium (Cr)	2017/02/04	NC		%	20
			Dissolved Cobalt (Co)	2017/02/04	NC		%	20
			Dissolved Copper (Cu)	2017/02/04	NC		%	20
			Dissolved Iron (Fe)	2017/02/04	NC		%	20
			Dissolved Iron (1e)	2017/02/04	NC		%	20
			Dissolved Magnesium (Mg)	2017/02/04	2.7		%	20
				2017/02/04	4.0		% %	20
			Dissolved Manganese (Mn) Dissolved Molybdenum (Mo)	2017/02/04	NC		%	20
			Dissolved Nickel (Ni)	2017/02/04	NC		%	20
			Dissolved Phosphorus (P)	2017/02/04	NC		% %	20
			Dissolved Potassium (K)	2017/02/04	0.31		%	20
			Dissolved Potassium (K) Dissolved Selenium (Se)	2017/02/04	NC		%	
			Dissolved Silver (Ag)	2017/02/04			%	20 20
			Dissolved Sodium (Na)		NC			
			Dissolved Strontium (Sr)	2017/02/04	2.7		%	20
			· /	2017/02/04	3.1		%	20
			Dissolved Thallium (TI)	2017/02/04	NC		%	20
			Dissolved Tin (Sn)	2017/02/04	NC		%	20
			Dissolved Titanium (Ti)	2017/02/04	NC		%	20
			Dissolved Uranium (U)	2017/02/04	1.7		%	20
			Dissolved Zing (Zn)	2017/02/04	NC		%	20
4050050	A D.C	Matrix Coile (D) (D7C7)	Dissolved Zinc (Zn)	2017/02/04	NC	400	%	20
4850858	ARS	Matrix Spike(DVR767)	Total Mercury (Hg)	2017/02/06		100	%	80 - 120
4850858	ARS	Spiked Blank	Total Mercury (Hg)	2017/02/06	.0.043	107	%	80 - 120
4850858	ARS	Method Blank	Total Mercury (Hg)	2017/02/06	<0.013		ug/L	20
4850858	ARS	RPD - Sample/Sample Dup	Total Mercury (Hg)	2017/02/06	NC		%	20

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08303 Sampler Initials: AS

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
4850869	ARS	Matrix Spike	Total Mercury (Hg)	2017/02/06		107	%	80 - 120
4850869	ARS	Spiked Blank	Total Mercury (Hg)	2017/02/06		106	%	80 - 120
4850869	ARS	Method Blank	Total Mercury (Hg)	2017/02/06	< 0.013		ug/L	
4850869	ARS	RPD - Sample/Sample Dup	Total Mercury (Hg)	2017/02/06	NC		%	20
4850918	SSI	Matrix Spike	Total Organic Carbon (C)	2017/02/03		109	%	80 - 120
4850918	SSI	Spiked Blank	Total Organic Carbon (C)	2017/02/03		101	%	80 - 120
4850918	SSI	Method Blank	Total Organic Carbon (C)	2017/02/03	< 0.50		mg/L	
4850918	SSI	RPD - Sample/Sample Dup	Total Organic Carbon (C)	2017/02/03	NC		%	20
4852494	JMV	QC Standard	рН	2017/02/06		100	%	97 - 103
4852494	JMV	RPD - Sample/Sample Dup	рН	2017/02/06	0.48		%	N/A
4852495	JMV	Spiked Blank	Conductivity	2017/02/06		101	%	80 - 120
4852495	JMV	Method Blank	Conductivity	2017/02/06	1.5,		uS/cm	
					RDL=1.0			
4852495	JMV	RPD - Sample/Sample Dup	Conductivity	2017/02/06	1.7		%	25
4852503	JMV	QC Standard	Turbidity	2017/02/06		97	%	80 - 120
4852503	JMV	Spiked Blank	Turbidity	2017/02/06		92	%	80 - 120
4852503	JMV	Method Blank	Turbidity	2017/02/06	< 0.10		NTU	
4852503	JMV	RPD - Sample/Sample Dup	Turbidity	2017/02/06	0.88		%	20

N/A = Not Applicable

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than 2x that of the native sample concentration).

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08303 Sampler Initials: AS

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Kevin MacDonald, Inorganics Supervisor

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Maxxam Analytics International Corporation o/a Maxxam Analytics

Maxxam Analytics International Corporation o/a Maxxam Analytics

4,3,3/4,5,5

Your P.O. #: A08304 Your Project #: P-0010903 Site Location: LAKE GEORGE Your C.O.C. #: 595820-01-01

Attention:Aven Cole

Englobe Corp.
97 Troop Ave
Dartmouth, NS
CANADA B3B 2A7

Report Date: 2017/02/08

Report #: R4353020 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B721946 Received: 2017/02/01, 11:56

Sample Matrix: Water # Samples Received: 3

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Carbonate, Bicarbonate and Hydroxide	2	N/A	2017/02/03	N/A	SM 22 4500-CO2 D
Alkalinity	2	N/A	2017/02/06	ATL SOP 00013	EPA 310.2 R1974 m
Chloride	2	N/A	2017/02/06	ATL SOP 00014	SM 22 4500-Cl- E m
Colour	2	N/A	2017/02/06	ATL SOP 00020	SM 22 2120C m
Conductance - water	2	N/A	2017/02/03	ATL SOP 00004	SM 22 2510B m
Hardness (calculated as CaCO3)	2	N/A	2017/02/06	ATL SOP 00048	SM 22 2340 B
Metals Water Total MS	3	2017/02/03	2017/02/03	ATL SOP 00058	EPA 6020A R1 m
Ion Balance (% Difference)	2	N/A	2017/02/07	N/A	Auto Calc.
Anion and Cation Sum	2	N/A	2017/02/07	N/A	Auto Calc.
Nitrogen Ammonia - water	2	N/A	2017/02/06	ATL SOP 00015	EPA 350.1 R2 m
Nitrogen - Nitrate + Nitrite	2	N/A	2017/02/03	ATL SOP 00016	USGS SOPINCF0452.2 m
Nitrogen - Nitrite	2	N/A	2017/02/03	ATL SOP 00017	SM 22 4500-NO2- B m
Nitrogen - Nitrate (as N)	2	N/A	2017/02/07	ATL SOP 00018	ASTM D3867-16
pH (1)	2	N/A	2017/02/03	ATL SOP 00003	SM 22 4500-H+ B m
Phosphorus - ortho	2	N/A	2017/02/06	ATL SOP 00021	EPA 365.2 m
Sat. pH and Langelier Index (@ 20C)	2	N/A	2017/02/07	ATL SOP 00049	Auto Calc.
Sat. pH and Langelier Index (@ 4C)	2	N/A	2017/02/07	ATL SOP 00049	Auto Calc.
Reactive Silica	2	N/A	2017/02/06	ATL SOP 00022	EPA 366.0 m
Sulphate	2	N/A	2017/02/06	ATL SOP 00023	ASTMD516-11 m
Total Dissolved Solids (TDS calc)	2	N/A	2017/02/07	N/A	Auto Calc.
Organic carbon - Total (TOC) (2)	2	N/A	2017/02/07	ATL SOP 00037	SM 22 5310C m
Turbidity	2	N/A	2017/02/03	ATL SOP 00011	EPA 180.1 R2 m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported: unless indicated otherwise, associated sample data are not blank corrected.

Your P.O. #: A08304 Your Project #: P-0010903 Site Location: LAKE GEORGE Your C.O.C. #: 595820-01-01

Attention:Aven Cole

Englobe Corp. 97 Troop Ave Dartmouth, NS CANADA B3B 2A7

Report Date: 2017/02/08

Report #: R4353020 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B721946 Received: 2017/02/01, 11:56

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods. Results relate to samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) The APHA Standard Method require pH to be analyzed within 15 minutes of sampling and therefore field analysis is required for compliance. All Laboratory pH analyses in this report are reported past the APHA Standard Method holding time.
- (2) TOC / DOC present in the sample should be considered as non-purgeable TOC / DOC.

Encryption Key

Maxxam 08 Feb 2017 11:02:41

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Avery Withrow, Project Manager Email: AWithrow@maxxam.ca Phone# (902)420-0203 Ext:233

This report has been generated and distributed using a secure automated process.

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08304 Sampler Initials: LL

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Maxxam ID		DVS374	DVS374		DVS376			
Sampling Date		2017/01/31 12:25	2017/01/31 12:25		2017/01/31 13:10			
COC Number		595820-01-01	595820-01-01		595820-01-01			
	UNITS	PW3	PW3 Lab-Dup	QC Batch	PW8	RDL	QC Batch	MDL
Calculated Parameters								
Anion Sum	me/L	2.51		4848533	2.60	N/A	4848533	N/A
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	8.8		4848529	69	1.0	4848529	0.20
Calculated TDS	mg/L	150		4848538	160	1.0	4848538	0.20
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0		4848529	<1.0	1.0	4848529	0.20
Cation Sum	me/L	2.25		4848533	2.61	N/A	4848533	N/A
Hardness (CaCO3)	mg/L	21		4848531	84	1.0	4848531	1.0
Ion Balance (% Difference)	%	5.46		4848532	0.190	N/A	4848532	N/A
Langelier Index (@ 20C)	N/A	-3.31		4848536	-0.609		4848536	
Langelier Index (@ 4C)	N/A	-3.56		4848537	-0.859		4848537	
Nitrate (N)	mg/L	0.092		4848534	<0.050	0.050	4848534	N/A
Saturation pH (@ 20C)	N/A	9.62		4848536	8.14		4848536	
Saturation pH (@ 4C)	N/A	9.87		4848537	8.39		4848537	
Inorganics			I					ı
Total Alkalinity (Total as CaCO3)	mg/L	8.8		4850350	69	5.0	4850350	N/A
Dissolved Chloride (CI)	mg/L	77		4850359	37	1.0	4850359	N/A
Colour	TCU	17		4850388	<5.0	5.0	4850388	N/A
Nitrate + Nitrite (N)	mg/L	0.092		4850394	<0.050	0.050	4850394	N/A
Nitrite (N)	mg/L	<0.010		4850395	<0.010	0.010	4850395	N/A
Nitrogen (Ammonia Nitrogen)	mg/L	<0.050		4849179	0.050	0.050	4849179	N/A
Total Organic Carbon (C)	mg/L	0.61		4854231	0.72	0.50	4854231	N/A
Orthophosphate (P)	mg/L	<0.010		4850390	0.018	0.010	4850390	N/A
рН	рН	6.31		4850237	7.53	N/A	4850237	N/A
Reactive Silica (SiO2)	mg/L	5.6		4850377	22	0.50	4850377	N/A
Dissolved Sulphate (SO4)	mg/L	8.0		4850366	8.2	2.0	4850366	N/A
Turbidity	NTU	0.34	0.37	4850252	66	0.10	4850249	0.10
Conductivity	uS/cm	280		4850238	260	1.0	4850238	N/A
Metals	•		•	•		•		•
Total Aluminum (AI)	ug/L	94		4850280	22	5.0	4850280	N/A
Total Antimony (Sb)	ug/L	<1.0		4850280	<1.0	1.0	4850280	N/A
Total Arsenic (As)	ug/L	<1.0		4850280	8.7	1.0	4850280	N/A
Total Barium (Ba)	ug/L	16		4850280	19	1.0	4850280	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08304 Sampler Initials: LL

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Maxxam ID		DVS374	DVS374		DVS376			
Sampling Date		2017/01/31	2017/01/31		2017/01/31			
Jumphing Dute		12:25	12:25		13:10			
COC Number		595820-01-01	595820-01-01		595820-01-01			
	UNITS	PW3	PW3 Lab-Dup	QC Batch	PW8	RDL	QC Batch	MDL
Total Beryllium (Be)	ug/L	<1.0		4850280	<1.0	1.0	4850280	N/A
Total Bismuth (Bi)	ug/L	<2.0		4850280	<2.0	2.0	4850280	N/A
Total Boron (B)	ug/L	<50		4850280	<50	50	4850280	N/A
Total Cadmium (Cd)	ug/L	0.054		4850280	<0.010	0.010	4850280	N/A
Total Calcium (Ca)	ug/L	6300		4850280	25000	100	4850280	N/A
Total Chromium (Cr)	ug/L	<1.0		4850280	<1.0	1.0	4850280	N/A
Total Cobalt (Co)	ug/L	<0.40		4850280	<0.40	0.40	4850280	N/A
Total Copper (Cu)	ug/L	5.2		4850280	5.3	2.0	4850280	N/A
Total Iron (Fe)	ug/L	530		4850280	6300	50	4850280	N/A
Total Lead (Pb)	ug/L	0.99		4850280	<0.50	0.50	4850280	N/A
Total Magnesium (Mg)	ug/L	1400		4850280	5200	100	4850280	N/A
Total Manganese (Mn)	ug/L	28		4850280	260	2.0	4850280	N/A
Total Molybdenum (Mo)	ug/L	<2.0		4850280	<2.0	2.0	4850280	N/A
Total Nickel (Ni)	ug/L	<2.0		4850280	<2.0	2.0	4850280	N/A
Total Phosphorus (P)	ug/L	<100		4850280	120	100	4850280	N/A
Total Potassium (K)	ug/L	740		4850280	1700	100	4850280	N/A
Total Selenium (Se)	ug/L	<1.0		4850280	<1.0	1.0	4850280	N/A
Total Silver (Ag)	ug/L	<0.10		4850280	<0.10	0.10	4850280	N/A
Total Sodium (Na)	ug/L	41000		4850280	15000	100	4850280	N/A
Total Strontium (Sr)	ug/L	32		4850280	160	2.0	4850280	N/A
Total Thallium (TI)	ug/L	<0.10		4850280	<0.10	0.10	4850280	N/A
Total Tin (Sn)	ug/L	<2.0		4850280	<2.0	2.0	4850280	N/A
Total Titanium (Ti)	ug/L	<2.0		4850280	<2.0	2.0	4850280	N/A
Total Uranium (U)	ug/L	<0.10		4850280	0.15	0.10	4850280	N/A
Total Vanadium (V)	ug/L	<2.0		4850280	<2.0	2.0	4850280	N/A
Total Zinc (Zn)	ug/L	29		4850280	<5.0	5.0	4850280	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08304 Sampler Initials: LL

ELEMENTS BY ICP/MS (WATER)

Maxxam ID		DVS375			
Sampling Date		2017/01/31 12:20			
COC Number		595820-01-01			
	UNITS	PW3A	RDL	QC Batch	MDL
Metals					
Total Aluminum (Al)	ug/L	91	5.0	4850234	N/A
Total Antimony (Sb)	ug/L	<1.0	1.0	4850234	N/A
Total Arsenic (As)	ug/L	<1.0	1.0	4850234	N/A
Total Barium (Ba)	ug/L	16	1.0	4850234	N/A
Total Beryllium (Be)	ug/L	<1.0	1.0	4850234	N/A
Total Bismuth (Bi)	ug/L	<2.0	2.0	4850234	N/A
Total Boron (B)	ug/L	<50	50	4850234	N/A
Total Cadmium (Cd)	ug/L	0.040	0.010	4850234	N/A
Total Calcium (Ca)	ug/L	6000	100	4850234	N/A
Total Chromium (Cr)	ug/L	<1.0	1.0	4850234	N/A
Total Cobalt (Co)	ug/L	<0.40	0.40	4850234	N/A
Total Copper (Cu)	ug/L	76	2.0	4850234	N/A
Total Iron (Fe)	ug/L	440	50	4850234	N/A
Total Lead (Pb)	ug/L	<0.50	0.50	4850234	N/A
Total Magnesium (Mg)	ug/L	1400	100	4850234	N/A
Total Manganese (Mn)	ug/L	27	2.0	4850234	N/A
Total Molybdenum (Mo)	ug/L	<2.0	2.0	4850234	N/A
Total Nickel (Ni)	ug/L	<2.0	2.0	4850234	N/A
Total Phosphorus (P)	ug/L	<100	100	4850234	N/A
Total Potassium (K)	ug/L	710	100	4850234	N/A
Total Selenium (Se)	ug/L	<1.0	1.0	4850234	N/A
Total Silver (Ag)	ug/L	<0.10	0.10	4850234	N/A
Total Sodium (Na)	ug/L	41000	100	4850234	N/A
Total Strontium (Sr)	ug/L	31	2.0	4850234	N/A
Total Thallium (TI)	ug/L	<0.10	0.10	4850234	N/A
Total Tin (Sn)	ug/L	<2.0	2.0	4850234	N/A
Total Titanium (Ti)	ug/L	<2.0	2.0	4850234	N/A
Total Uranium (U)	ug/L	<0.10	0.10	4850234	N/A
Total Vanadium (V)	ug/L	<2.0	2.0	4850234	N/A
Total Zinc (Zn)	ug/L	12	5.0	4850234	N/A
RDL = Reportable Detection	Limit				

QC Batch = Quality Control Batch

N/A = Not Applicable

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08304 Sampler Initials: LL

TEST SUMMARY

Maxxam ID: **DVS374** Sample ID: PW3

Water

Matrix:

Collected:

2017/01/31

Shipped:

Received: 2017/02/01

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4848529	N/A	2017/02/03	Automated Statchk
Alkalinity	KONE	4850350	N/A	2017/02/06	Nancy Rogers
Chloride	KONE	4850359	N/A	2017/02/06	Mary Clancey
Colour	KONE	4850388	N/A	2017/02/06	Mary Clancey
Conductance - water	AT	4850238	N/A	2017/02/03	Julia McGovern
Hardness (calculated as CaCO3)		4848531	N/A	2017/02/06	Automated Statchk
Metals Water Total MS	CICP/MS	4850280	2017/02/03	2017/02/03	Mike Leblanc
Ion Balance (% Difference)	CALC	4848532	N/A	2017/02/07	Automated Statchk
Anion and Cation Sum	CALC	4848533	N/A	2017/02/07	Automated Statchk
Nitrogen Ammonia - water	KONE	4849179	N/A	2017/02/06	Mary Clancey
Nitrogen - Nitrate + Nitrite	KONE	4850394	N/A	2017/02/03	Nancy Rogers
Nitrogen - Nitrite	KONE	4850395	N/A	2017/02/03	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4848534	N/A	2017/02/07	Automated Statchk
рН	AT	4850237	N/A	2017/02/03	Julia McGovern
Phosphorus - ortho	KONE	4850390	N/A	2017/02/06	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4848536	N/A	2017/02/07	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4848537	N/A	2017/02/07	Automated Statchk
Reactive Silica	KONE	4850377	N/A	2017/02/06	Nancy Rogers
Sulphate	KONE	4850366	N/A	2017/02/06	Mary Clancey
Total Dissolved Solids (TDS calc)	CALC	4848538	N/A	2017/02/07	Automated Statchk
Organic carbon - Total (TOC)	TECH	4854231	N/A	2017/02/07	Steven Smith
Turbidity	TURB	4850252	N/A	2017/02/03	Julia McGovern

Maxxam ID: DVS374 Dup Sample ID: PW3

Water

Water

Matrix:

Collected: Shipped:

2017/01/31

Received: 2017/02/01

Test Description Date Analyzed Instrumentation Batch **Extracted** Analyst Turbidity TURB 4850252 N/A 2017/02/03 Julia McGovern

Maxxam ID: **DVS375** Sample ID: PW3A

Matrix:

Collected: 2017/01/31

Shipped:

Received: 2017/02/01

Test Description Instrumentation Batch **Extracted Date Analyzed** Analyst Metals Water Total MS CICP/MS 4850234 2017/02/03 2017/02/03 Bryon Angevine

Maxxam ID: DVS376 Sample ID: PW8 . Matrix: Water

Collected: 2017/01/31 Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4848529	N/A	2017/02/03	Automated Statchk
Alkalinity	KONE	4850350	N/A	2017/02/06	Nancy Rogers

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08304 Sampler Initials: LL

TEST SUMMARY

Maxxam ID: DVS376 Sample ID: PW8 Matrix: Water

Collected: 2017/01/31 Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Chloride	KONE	4850359	N/A	2017/02/06	Mary Clancey
Colour	KONE	4850388	N/A	2017/02/06	Mary Clancey
Conductance - water	AT	4850238	N/A	2017/02/03	Julia McGovern
Hardness (calculated as CaCO3)		4848531	N/A	2017/02/06	Automated Statchk
Metals Water Total MS	CICP/MS	4850280	2017/02/03	2017/02/03	Mike Leblanc
Ion Balance (% Difference)	CALC	4848532	N/A	2017/02/07	Automated Statchk
Anion and Cation Sum	CALC	4848533	N/A	2017/02/07	Automated Statchk
Nitrogen Ammonia - water	KONE	4849179	N/A	2017/02/06	Mary Clancey
Nitrogen - Nitrate + Nitrite	KONE	4850394	N/A	2017/02/03	Nancy Rogers
Nitrogen - Nitrite	KONE	4850395	N/A	2017/02/03	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4848534	N/A	2017/02/07	Automated Statchk
рН	AT	4850237	N/A	2017/02/03	Julia McGovern
Phosphorus - ortho	KONE	4850390	N/A	2017/02/06	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4848536	N/A	2017/02/07	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4848537	N/A	2017/02/07	Automated Statchk
Reactive Silica	KONE	4850377	N/A	2017/02/06	Nancy Rogers
Sulphate	KONE	4850366	N/A	2017/02/06	Mary Clancey
Total Dissolved Solids (TDS calc)	CALC	4848538	N/A	2017/02/07	Automated Statchk
Organic carbon - Total (TOC)	TECH	4854231	N/A	2017/02/07	Steven Smith
Turbidity	TURB	4850249	N/A	2017/02/03	Julia McGovern

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08304 Sampler Initials: LL

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1	2.0°C
Package 2	3.0°C
Package 3	3.3°C
Package 4	5.3°C

Sample DVS374 [PW3] : Poor RCAp Ion Balance due to sample matrix.

Results relate only to the items tested.

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08304 Sampler Initials: LL

QUALITY ASSURANCE REPORT

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
4849179	MCN	Matrix Spike	Nitrogen (Ammonia Nitrogen)	2017/02/06		104	%	80 - 120
4849179	MCN	Spiked Blank	Nitrogen (Ammonia Nitrogen)	2017/02/06		106	%	80 - 120
4849179	MCN		Nitrogen (Ammonia Nitrogen)	2017/02/06	< 0.050		mg/L	
4849179	MCN	RPD - Sample/Sample Dup	Nitrogen (Ammonia Nitrogen)	2017/02/06	NC		%	20
4850234	BAN	Matrix Spike	Total Aluminum (Al)	2017/02/03		94	%	80 - 120
			Total Antimony (Sb)	2017/02/03		98	%	80 - 120
			Total Arsenic (As)	2017/02/03		91	%	80 - 120
			Total Barium (Ba)	2017/02/03		88	%	80 - 120
			Total Beryllium (Be)	2017/02/03		89	%	80 - 120
			Total Bismuth (Bi)	2017/02/03		99	%	80 - 120
			Total Boron (B)	2017/02/03		96	%	80 - 120
			Total Cadmium (Cd)	2017/02/03		93	%	80 - 120
			Total Calcium (Ca)	2017/02/03		98	%	80 - 120
			Total Chromium (Cr)	2017/02/03		90	%	80 - 120
			Total Cobalt (Co)	2017/02/03		92	%	80 - 120
			Total Copper (Cu)	2017/02/03		93	%	80 - 120
			Total Iron (Fe)	2017/02/03		95	%	80 - 120
			Total Lead (Pb)	2017/02/03		90	%	80 - 120
			Total Magnesium (Mg)	2017/02/03		98	%	80 - 120
			Total Manganese (Mn)	2017/02/03		91	%	80 - 120
			Total Molybdenum (Mo)	2017/02/03		102	%	80 - 120
			Total Nickel (Ni)	2017/02/03		92	%	80 - 120
			Total Phosphorus (P)	2017/02/03		99	%	80 - 120
			Total Potassium (K)	2017/02/03		103	%	80 - 120
			Total Selenium (Se)	2017/02/03		95	%	80 - 120
			Total Silver (Ag)	2017/02/03		93	%	80 - 120
			Total Sodium (Na)	2017/02/03		NC	%	80 - 120
			Total Strontium (Sr)	2017/02/03		90	%	80 - 120
			Total Thallium (TI)	2017/02/03		99	%	80 - 120
			Total Tin (Sn)	2017/02/03		98	%	80 - 120
			Total Titanium (Ti)	2017/02/03		92	%	80 - 120
			Total Uranium (U)	2017/02/03		100	%	80 - 120
			Total Vanadium (V)	2017/02/03		90	%	80 - 120
			Total Zinc (Zn)	2017/02/03		98	%	80 - 120
4850234	BAN	Spiked Blank	Total Aluminum (AI)	2017/02/03		104	%	80 - 120
		·	Total Antimony (Sb)	2017/02/03		98	%	80 - 120
			Total Arsenic (As)	2017/02/03		97	%	80 - 120
			Total Barium (Ba)	2017/02/03		93	%	80 - 120
			Total Beryllium (Be)	2017/02/03		92	%	80 - 120
			Total Bismuth (Bi)	2017/02/03		100	%	80 - 120
			Total Boron (B)	2017/02/03		94	%	80 - 120
			Total Cadmium (Cd)	2017/02/03		99	%	80 - 120
			Total Calcium (Ca)	2017/02/03		99	%	80 - 120
			Total Chromium (Cr)	2017/02/03		98	%	80 - 120
			Total Cobalt (Co)	2017/02/03		98	%	80 - 120
			Total Copper (Cu)	2017/02/03		98	%	80 - 120
			Total Iron (Fe)	2017/02/03		100	%	80 - 120
			Total Lead (Pb)	2017/02/03		96	%	80 - 120
			Total Magnesium (Mg)	2017/02/03		102	%	80 - 120
			Total Manganese (Mn)	2017/02/03		100	%	80 - 120
			Total Molybdenum (Mo)	2017/02/03		99	%	80 - 120

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08304 Sampler Initials: LL

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			Total Nickel (Ni)	2017/02/03		102	%	80 - 120
			Total Phosphorus (P)	2017/02/03		102	%	80 - 120
			Total Potassium (K)	2017/02/03		104	%	80 - 120
			Total Selenium (Se)	2017/02/03		99	%	80 - 120
			Total Silver (Ag)	2017/02/03		99	%	80 - 120
			Total Sodium (Na)	2017/02/03		99	%	80 - 120
			Total Strontium (Sr)	2017/02/03		99	%	80 - 120
			Total Thallium (TI)	2017/02/03		99	%	80 - 120
			Total Tin (Sn)	2017/02/03		99	%	80 - 120
			Total Titanium (Ti)	2017/02/03		98	%	80 - 120
			Total Uranium (U)	2017/02/03		106	%	80 - 120
			Total Vanadium (V)	2017/02/03		96	%	80 - 120
			Total Zinc (Zn)	2017/02/03		100	%	80 - 120
4850234	BAN	Method Blank	Total Aluminum (Al)	2017/02/03	5.2,		ug/L	
					RDL=5.0			
			Total Antimony (Sb)	2017/02/03	<1.0		ug/L	
			Total Arsenic (As)	2017/02/03	<1.0		ug/L	
			Total Barium (Ba)	2017/02/03	<1.0		ug/L	
			Total Beryllium (Be)	2017/02/03	<1.0		ug/L	
			Total Bismuth (Bi)	2017/02/03	<2.0		ug/L	
			Total Boron (B)	2017/02/03	<50		ug/L	
			Total Cadmium (Cd)	2017/02/03	< 0.010		ug/L	
			Total Calcium (Ca)	2017/02/03	<100		ug/L	
			Total Chromium (Cr)	2017/02/03	<1.0		ug/L	
			Total Cobalt (Co)	2017/02/03	< 0.40		ug/L	
			Total Copper (Cu)	2017/02/03	<2.0		ug/L	
			Total Iron (Fe)	2017/02/03	<50		ug/L	
			Total Lead (Pb)	2017/02/03	<0.50		ug/L	
			Total Magnesium (Mg)	2017/02/03	<100		ug/L	
			Total Manganese (Mn)	2017/02/03	<2.0		ug/L	
			Total Molybdenum (Mo)	2017/02/03	<2.0		ug/L	
			Total Nickel (Ni)	2017/02/03	<2.0		ug/L	
			Total Phosphorus (P)	2017/02/03	<100		ug/L	
			Total Potassium (K)	2017/02/03	<100		ug/L	
			Total Selenium (Se)	2017/02/03	<1.0		ug/L	
			Total Silver (Ag)	2017/02/03	< 0.10		ug/L	
			Total Sodium (Na)	2017/02/03	<100		ug/L	
			Total Strontium (Sr)	2017/02/03	<2.0		ug/L	
			Total Thallium (TI)	2017/02/03	< 0.10		ug/L	
			Total Tin (Sn)	2017/02/03	<2.0		ug/L	
			Total Titanium (Ti)	2017/02/03	<2.0		ug/L	
			Total Uranium (U)	2017/02/03	< 0.10		ug/L	
			Total Vanadium (V)	2017/02/03	<2.0		ug/L	
			Total Zinc (Zn)	2017/02/03	<5.0		ug/L	
4850234	BAN	RPD - Sample/Sample Dup	Total Aluminum (Al)	2017/02/03	8.6		%	20
			Total Antimony (Sb)	2017/02/03	NC		%	20
			Total Arsenic (As)	2017/02/03	NC		%	20
			Total Barium (Ba)	2017/02/03	NC		%	20
			Total Beryllium (Be)	2017/02/03	NC		%	20
			Total Bismuth (Bi)	2017/02/03	NC		%	20
			Total Boron (B)	2017/02/03	NC		%	20

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08304 Sampler Initials: LL

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			Total Cadmium (Cd)	2017/02/03	NC	·	%	20
			Total Calcium (Ca)	2017/02/03	1.8		%	20
			Total Chromium (Cr)	2017/02/03	NC		%	20
			Total Cobalt (Co)	2017/02/03	NC		%	20
			Total Copper (Cu)	2017/02/03	NC		%	20
			Total Iron (Fe)	2017/02/03	NC		%	20
			Total Lead (Pb)	2017/02/03	NC		%	20
			Total Magnesium (Mg)	2017/02/03	1.4		%	20
			Total Manganese (Mn)	2017/02/03	NC		%	20
			Total Molybdenum (Mo)	2017/02/03	NC		%	20
			Total Nickel (Ni)	2017/02/03	NC		%	20
			Total Phosphorus (P)	2017/02/03	NC		%	20
			Total Potassium (K)	2017/02/03	NC		%	20
			Total Selenium (Se)	2017/02/03	NC		%	20
			Total Silver (Ag)	2017/02/03	NC		%	20
			Total Sodium (Na)	2017/02/03	4.3		%	20
			Total Strontium (Sr)	2017/02/03	NC		%	20
			Total Thallium (TI)	2017/02/03	NC		%	20
			Total Tin (Sn)	2017/02/03	NC		%	20
			Total Titanium (Ti)	2017/02/03	NC		%	20
			Total Uranium (U)	2017/02/03	NC		%	20
			Total Vanadium (V)	2017/02/03	NC		%	20
			Total Zinc (Zn)	2017/02/03	NC		%	20
4850237	JMV	QC Standard	рН	2017/02/03		100	%	97 - 103
4850237	JMV	RPD - Sample/Sample Dup	рН	2017/02/03	0.021		%	N/A
4850238	JMV	Spiked Blank	Conductivity	2017/02/03		103	%	80 - 120
4850238	JMV	Method Blank	Conductivity	2017/02/03	1.2,		uS/cm	
					RDL=1.0			
4850238	JMV	RPD - Sample/Sample Dup	Conductivity	2017/02/03	0.0022		%	25
4850249	JMV	QC Standard	Turbidity	2017/02/03		97	%	80 - 120
4850249	JMV	Spiked Blank	Turbidity	2017/02/03		92	%	80 - 120
4850249	JMV	Method Blank	Turbidity	2017/02/03	< 0.10		NTU	
4850249	JMV	RPD - Sample/Sample Dup	Turbidity	2017/02/03	NC		%	20
4850252	JMV	QC Standard	Turbidity	2017/02/03		97	%	80 - 120
4850252	JMV	Spiked Blank	Turbidity	2017/02/03		92	%	80 - 120
4850252	JMV	Method Blank	Turbidity	2017/02/03	<0.10		NTU	
4850252	JMV	RPD - Sample/Sample Dup	•	2017/02/03	NC		%	20
4850280	MLB	Matrix Spike	Total Aluminum (AI)	2017/02/03		99	%	80 - 120
			Total Antimony (Sb)	2017/02/03		98	%	80 - 120
			Total Arsenic (As)	2017/02/03		90	%	80 - 120
			Total Barium (Ba)	2017/02/03		89	%	80 - 120
			Total Beryllium (Be)	2017/02/03		86	%	80 - 120
			Total Bismuth (Bi)	2017/02/03		100	%	80 - 120
			Total Boron (B)	2017/02/03		92	%	80 - 120
			Total Cadmium (Cd)	2017/02/03		93	%	80 - 120
			Total Calcium (Ca)	2017/02/03		99	%	80 - 120
			Total Chromium (Cr)	2017/02/03		91	%	80 - 120
			Total Cobalt (Co)	2017/02/03		92	%	80 - 120
			Total Copper (Cu)	2017/02/03		92	%	80 - 120
			Total Iron (Fe)	2017/02/03		95	%	80 - 120
			Total Lead (Pb)	2017/02/03		90	%	80 - 120

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08304 Sampler Initials: LL

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			Total Magnesium (Mg)	2017/02/03		99	%	80 - 120
			Total Manganese (Mn)	2017/02/03		NC	%	80 - 120
			Total Molybdenum (Mo)	2017/02/03		99	%	80 - 120
			Total Nickel (Ni)	2017/02/03		93	%	80 - 120
			Total Phosphorus (P)	2017/02/03		99	%	80 - 120
			Total Potassium (K)	2017/02/03		102	%	80 - 120
			Total Selenium (Se)	2017/02/03		94	%	80 - 120
			Total Silver (Ag)	2017/02/03		92	%	80 - 120
			Total Sodium (Na)	2017/02/03		95	%	80 - 120
			Total Strontium (Sr)	2017/02/03		90	%	80 - 120
			Total Thallium (TI)	2017/02/03		100	%	80 - 120
			Total Tin (Sn)	2017/02/03		100	%	80 - 120
			Total Titanium (Ti)	2017/02/03		92	%	80 - 120
			Total Uranium (U)	2017/02/03		99	%	80 - 120
			Total Vanadium (V)	2017/02/03		91	%	80 - 120
			Total Zinc (Zn)	2017/02/03		97	%	80 - 120
4850280	MLB	Spiked Blank	Total Aluminum (Al)	2017/02/03		102	%	80 - 120
			Total Antimony (Sb)	2017/02/03		101	%	80 - 120
			Total Arsenic (As)	2017/02/03		98	%	80 - 120
			Total Barium (Ba)	2017/02/03		95	%	80 - 120
			Total Beryllium (Be)	2017/02/03		93	%	80 - 120
			Total Bismuth (Bi)	2017/02/03		103	%	80 - 120
			Total Boron (B)	2017/02/03		95	%	80 - 120
			Total Cadmium (Cd)	2017/02/03		101	%	80 - 120
			Total Calcium (Ca)	2017/02/03		102	%	80 - 120
			Total Chromium (Cr)	2017/02/03		100	%	80 - 120
			Total Cobalt (Co)	2017/02/03		101	%	80 - 120
			Total Copper (Cu)	2017/02/03		100	%	80 - 120
			Total Iron (Fe)	2017/02/03		102	%	80 - 120
			Total Lead (Pb)	2017/02/03		98	%	80 - 120
			Total Magnesium (Mg)	2017/02/03		103	%	80 - 120
			Total Manganese (Mn)	2017/02/03		102	%	80 - 120
			Total Molybdenum (Mo)	2017/02/03		103	%	80 - 120
			Total Nickel (Ni)	2017/02/03		103	%	80 - 120
			Total Phosphorus (P)	2017/02/03		102	%	80 - 120
			Total Potassium (K)	2017/02/03		106	%	80 - 120
			Total Selenium (Se)	2017/02/03		100	%	80 - 120
			Total Silver (Ag)	2017/02/03		99	%	80 - 120
			Total Sodium (Na)	2017/02/03		100	%	80 - 120
			Total Strontium (Sr)	2017/02/03		101	%	80 - 120
			Total Thallium (TI)	2017/02/03		101	%	80 - 120
			Total Thailidin (11)	2017/02/03		102	%	80 - 120
			Total Till (311) Total Titanium (Ti)	2017/02/03		104	% %	80 - 120
			Total Tranium (U)	2017/02/03		101	% %	80 - 120
			Total Vanadium (V)	2017/02/03		98	% %	80 - 120
			Total Variadidiff (V) Total Zinc (Zn)	2017/02/03		102	% %	80 - 120
4850280	MID	Method Blank	Total Aluminum (Al)	2017/02/03	7.6,	102	∞ ug/L	00 - 120
4030200	IVILD	IVICUIOU DIGIIK	Total Aluminum (Al)	2017/02/03	7.6, RDL=5.0		ug/L	
			Total Autinopa (CL)	2047/02/02				
			Total Antimony (Sb)	2017/02/03	<1.0		ug/L	
			Total Arsenic (As)	2017/02/03	<1.0		ug/L	
			Total Barium (Ba)	2017/02/03	<1.0		ug/L	

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08304 Sampler Initials: LL

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC				Date	· · · · · · · · · · · · · · · · · · ·	%	
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery UNITS Q	C Limits
			Total Beryllium (Be)	2017/02/03	<1.0	ug/L	
			Total Bismuth (Bi)	2017/02/03	<2.0	ug/L	
			Total Boron (B)	2017/02/03	<50	ug/L	
			Total Cadmium (Cd)	2017/02/03	< 0.010	ug/L	
			Total Calcium (Ca)	2017/02/03	<100	ug/L	
			Total Chromium (Cr)	2017/02/03	<1.0	ug/L	
			Total Cobalt (Co)	2017/02/03	< 0.40	ug/L	
			Total Copper (Cu)	2017/02/03	<2.0	ug/L	
			Total Iron (Fe)	2017/02/03	<50	ug/L	
			Total Lead (Pb)	2017/02/03	<0.50	ug/L	
			Total Magnesium (Mg)	2017/02/03	<100	ug/L	
			Total Manganese (Mn)	2017/02/03	<2.0	ug/L	
			Total Molybdenum (Mo)	2017/02/03	<2.0	ug/L	
			Total Nickel (Ni)	2017/02/03	<2.0	ug/L	
			Total Phosphorus (P)	2017/02/03	<100	ug/L	
			Total Potassium (K)	2017/02/03	<100	ug/L	
			Total Selenium (Se)	2017/02/03	<1.0	ug/L	
			Total Silver (Ag)	2017/02/03	<0.10	ug/L ug/L	
				2017/02/03	<100		
			Total Sodium (Na) Total Strontium (Sr)	2017/02/03	<2.0	ug/L	
			Total Thallium (TI)			ug/L	
			` '	2017/02/03	<0.10	ug/L	
			Total Tito nives (Ti)	2017/02/03	<2.0	ug/L	
			Total Titanium (Ti)	2017/02/03	<2.0	ug/L	
			Total Uranium (U)	2017/02/03	<0.10	ug/L	
			Total Vanadium (V)	2017/02/03	<2.0	ug/L	
.=			Total Zinc (Zn)	2017/02/03	<5.0	ug/L	•
850280	MLB	RPD - Sample/Sample Dup		2017/02/06	NC	%	20
			Total Antimony (Sb)	2017/02/06	NC	%	20
			Total Arsenic (As)	2017/02/06	NC	%	20
			Total Barium (Ba)	2017/02/06	NC	%	20
			Total Beryllium (Be)	2017/02/06	NC	%	20
			Total Bismuth (Bi)	2017/02/06	NC	%	20
			Total Boron (B)	2017/02/06	NC	%	20
			Total Cadmium (Cd)	2017/02/06	NC	%	20
			Total Calcium (Ca)	2017/02/06	NC	%	20
			Total Chromium (Cr)	2017/02/06	NC	%	20
			Total Cobalt (Co)	2017/02/06	NC	%	20
			Total Copper (Cu)	2017/02/06	NC	%	20
			Total Iron (Fe)	2017/02/06	NC	%	20
			Total Lead (Pb)	2017/02/06	NC	%	20
			Total Magnesium (Mg)	2017/02/06	NC	%	20
			Total Manganese (Mn)	2017/02/06	NC	%	20
			Total Molybdenum (Mo)	2017/02/06	NC	%	20
			Total Nickel (Ni)	2017/02/06	NC	%	20
			Total Phosphorus (P)	2017/02/06	NC	%	20
			Total Potassium (K)	2017/02/06	NC	%	20
			Total Selenium (Se)	2017/02/06	NC	%	20
			Total Silver (Ag)	2017/02/06	NC	%	20
			Total Sodium (Na)	2017/02/06	NC	%	20
			Total Strontium (Sr)	2017/02/06	NC	%	20
			Total Thallium (TI)	2017/02/06	NC	%	20

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08304 Sampler Initials: LL

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			Total Tin (Sn)	2017/02/06	NC		%	20
			Total Titanium (Ti)	2017/02/06	NC		%	20
			Total Uranium (U)	2017/02/06	NC		%	20
			Total Vanadium (V)	2017/02/06	NC		%	20
			Total Zinc (Zn)	2017/02/06	NC		%	20
4850350	NRG	Matrix Spike	Total Alkalinity (Total as CaCO3)	2017/02/06		NC	%	80 - 120
4850350	NRG	Spiked Blank	Total Alkalinity (Total as CaCO3)	2017/02/06		109	%	80 - 120
4850350	NRG	Method Blank	Total Alkalinity (Total as CaCO3)	2017/02/06	<5.0		mg/L	
4850350	NRG	RPD - Sample/Sample Dup	Total Alkalinity (Total as CaCO3)	2017/02/06	NC		%	25
4850359	MCN	Matrix Spike	Dissolved Chloride (Cl)	2017/02/06		NC	%	80 - 120
4850359	MCN	QC Standard	Dissolved Chloride (CI)	2017/02/06		108	%	80 - 120
4850359	MCN	Spiked Blank	Dissolved Chloride (CI)	2017/02/06		106	%	80 - 120
4850359	MCN	Method Blank	Dissolved Chloride (CI)	2017/02/06	<1.0		mg/L	
4850359	MCN	RPD - Sample/Sample Dup	Dissolved Chloride (CI)	2017/02/06	6.0		%	25
4850366	MCN	Matrix Spike	Dissolved Sulphate (SO4)	2017/02/06		110	%	80 - 120
4850366	MCN	Spiked Blank	Dissolved Sulphate (SO4)	2017/02/06		100	%	80 - 120
4850366	MCN	Method Blank	Dissolved Sulphate (SO4)	2017/02/06	<2.0		mg/L	
4850366	MCN	RPD - Sample/Sample Dup	Dissolved Sulphate (SO4)	2017/02/06	NC		%	25
4850377	NRG	Matrix Spike	Reactive Silica (SiO2)	2017/02/06		NC	%	80 - 120
4850377	NRG	Spiked Blank	Reactive Silica (SiO2)	2017/02/06		104	%	80 - 120
4850377	NRG	Method Blank	Reactive Silica (SiO2)	2017/02/06	< 0.50		mg/L	
4850377	NRG	RPD - Sample/Sample Dup	Reactive Silica (SiO2)	2017/02/06	0.47		%	25
4850388	MCN	Spiked Blank	Colour	2017/02/06		99	%	80 - 120
4850388	MCN	Method Blank	Colour	2017/02/06	<5.0		TCU	
4850388	MCN	RPD - Sample/Sample Dup	Colour	2017/02/06	NC		%	20
4850390	NRG	Matrix Spike	Orthophosphate (P)	2017/02/06		91	%	80 - 120
4850390	NRG	Spiked Blank	Orthophosphate (P)	2017/02/06		96	%	80 - 120
4850390	NRG	Method Blank	Orthophosphate (P)	2017/02/06	< 0.010		mg/L	
4850390	NRG	RPD - Sample/Sample Dup	Orthophosphate (P)	2017/02/06	NC		%	25
4850394	NRG	Matrix Spike	Nitrate + Nitrite (N)	2017/02/03		92	%	80 - 120
4850394	NRG	Spiked Blank	Nitrate + Nitrite (N)	2017/02/03		100	%	80 - 120
4850394	NRG	Method Blank	Nitrate + Nitrite (N)	2017/02/03	< 0.050		mg/L	
4850394	NRG	RPD - Sample/Sample Dup	Nitrate + Nitrite (N)	2017/02/03	NC		%	25
4850395	NRG	Matrix Spike	Nitrite (N)	2017/02/03		84	%	80 - 120
4850395	NRG	Spiked Blank	Nitrite (N)	2017/02/03		85	%	80 - 120
4850395	NRG	Method Blank	Nitrite (N)	2017/02/03	< 0.010		mg/L	
4850395	NRG	RPD - Sample/Sample Dup	` '	2017/02/03	NC		%	25
4854231	SSI	Matrix Spike	Total Organic Carbon (C)	2017/02/07		95	%	80 - 120
4854231	SSI	Spiked Blank	Total Organic Carbon (C)	2017/02/07		95	%	80 - 120
4854231	SSI	Method Blank	Total Organic Carbon (C)	2017/02/07	< 0.50		mg/L	

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08304 Sampler Initials: LL

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
4854231	SSI	RPD - Sample/Sample Dup	Total Organic Carbon (C)	2017/02/07	NC		%	20

N/A = Not Applicable

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than 2x that of the native sample concentration).

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08304 Sampler Initials: LL

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Ak Liaisman
Eric Dearman, Scientific Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Maxxam Analytics International Corporation o's Maxxam Analytics

Your P.O. #: A08305 Your Project #: P-0010903 Site Location: LAKE GEORGE

Attention:Aven Cole

Englobe Corp.
97 Troop Ave
Dartmouth, NS
CANADA B3B 2A7

Your C.O.C. #: 595824-01-01, 595824-02-01, 595824-03-01

Report Date: 2017/02/08

Report #: R4353067 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B721953 Received: 2017/02/01, 11:56

Sample Matrix: Water # Samples Received: 23

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Carbonate, Bicarbonate and Hydroxide	22	N/A	2017/02/03	N/A	SM 22 4500-CO2 D
Carbonate, Bicarbonate and Hydroxide	1	N/A	2017/02/06	N/A	SM 22 4500-CO2 D
Alkalinity	23	N/A	2017/02/06	ATL SOP 00013	EPA 310.2 R1974 m
Chloride	23	N/A	2017/02/06	ATL SOP 00014	SM 22 4500-Cl- E m
Colour	23	N/A	2017/02/06	ATL SOP 00020	SM 22 2120C m
Conductance - water	22	N/A	2017/02/03	ATL SOP 00004	SM 22 2510B m
Conductance - water	1	N/A	2017/02/06	ATL SOP 00004	SM 22 2510B m
Hardness (calculated as CaCO3)	13	N/A	2017/02/06	ATL SOP 00048	SM 22 2340 B
Hardness (calculated as CaCO3)	10	N/A	2017/02/07	ATL SOP 00048	SM 22 2340 B
Mercury - Total (CVAA,LL)	18	2017/02/03	2017/02/06	ATL SOP 00026	EPA 245.1 R3 m
Mercury - Total (CVAA,LL)	5	2017/02/06	2017/02/07	ATL SOP 00026	EPA 245.1 R3 m
Metals Water Diss. MS (as rec'd)	6	N/A	2017/02/04	ATL SOP 00058	EPA 6020A R1 m
Metals Water Total MS	10	2017/02/03	2017/02/03	ATL SOP 00058	EPA 6020A R1 m
Metals Water Total MS	13	2017/02/03	2017/02/06	ATL SOP 00058	EPA 6020A R1 m
Ion Balance (% Difference)	23	N/A	2017/02/07	N/A	Auto Calc.
Anion and Cation Sum	23	N/A	2017/02/07	N/A	Auto Calc.
Nitrogen Ammonia - water	23	N/A	2017/02/06	ATL SOP 00015	EPA 350.1 R2 m
Nitrogen - Nitrate + Nitrite	23	N/A	2017/02/03	ATL SOP 00016	USGS SOPINCF0452.2 m
Nitrogen - Nitrite	23	N/A	2017/02/03	ATL SOP 00017	SM 22 4500-NO2- B m
Nitrogen - Nitrate (as N)	23	N/A	2017/02/07	ATL SOP 00018	ASTM D3867-16
pH (1)	22	N/A	2017/02/03	ATL SOP 00003	SM 22 4500-H+ B m
pH (1)	1	N/A	2017/02/06	ATL SOP 00003	SM 22 4500-H+ B m
Phosphorus - ortho	23	N/A	2017/02/06	ATL SOP 00021	EPA 365.2 m
Sat. pH and Langelier Index (@ 20C)	23	N/A	2017/02/07	ATL SOP 00049	Auto Calc.
Sat. pH and Langelier Index (@ 4C)	23	N/A	2017/02/07	ATL SOP 00049	Auto Calc.
Reactive Silica	23	N/A	2017/02/06	ATL SOP 00022	EPA 366.0 m
Sulphate	23	N/A	2017/02/06	ATL SOP 00023	ASTMD516-11 m
Total Dissolved Solids (TDS calc)	23	N/A	2017/02/07	N/A	Auto Calc.

Your P.O. #: A08305 Your Project #: P-0010903 Site Location: LAKE GEORGE

Attention:Aven Cole

Englobe Corp.
97 Troop Ave
Dartmouth, NS
CANADA B3B 2A7

Your C.O.C. #: 595824-01-01, 595824-02-01, 595824-03-01

Report Date: 2017/02/08

Report #: R4353067 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B721953 Received: 2017/02/01, 11:56

Sample Matrix: Water # Samples Received: 23

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Organic carbon - Total (TOC) (2)	23	N/A	2017/02/07	ATL SOP 00037	SM 22 5310C m
Total Suspended Solids	1	2017/02/03	2017/02/07	ATL SOP 00007	SM 22 2540D m
Total Suspended Solids	5	2017/02/03	2017/02/08	ATL SOP 00007	SM 22 2540D m
Turbidity	23	N/A	2017/02/03	ATL SOP 00011	EPA 180.1 R2 m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported: unless indicated otherwise, associated sample data are not blank corrected.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods. Results relate to samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) The APHA Standard Method require pH to be analyzed within 15 minutes of sampling and therefore field analysis is required for compliance. All Laboratory pH analyses in this report are reported past the APHA Standard Method holding time.
- (2) TOC / DOC present in the sample should be considered as non-purgeable TOC / DOC.

Your P.O. #: A08305 Your Project #: P-0010903 Site Location: LAKE GEORGE

Attention:Aven Cole

Englobe Corp.
97 Troop Ave
Dartmouth, NS
CANADA B3B 2A7

Your C.O.C. #: 595824-01-01, 595824-02-01, 595824-03-01

Report Date: 2017/02/08

Report #: R4353067 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B721953 Received: 2017/02/01, 11:56

Encryption Key

Maxxam 08 Feb 2017 11:40:12

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Avery Withrow, Project Manager Email: AWithrow@maxxam.ca Phone# (902)420-0203 Ext:233

This report has been generated and distributed using a secure automated process.

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08305 Sampler Initials: AS

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Sys824-01-01 Sys8	Maxxam ID		DVS397			DVS398			DVS399			
No. Calculated Parameters	Sampling Date		' '									
Calculated Parameters Anion Sum me/L 0.420 N/A 4848533 0.380 N/A 4848533 1.01 N/A 4848533	COC Number		595824-01-01			595824-01-01			595824-01-01			
Anion Sum me/L 0.420 N/A 4848533 0.380 N/A 4848533 1.01 N/A 4848533 N/A		UNITS	SW1	RDL	QC Batch	SW2	RDL	QC Batch	SW3	RDL	QC Batch	MDL
Bicarb. Alkalinity (calc. as CaCO3) mg/L < 1.0	Calculated Parameters											
Calculated TDS	Anion Sum	me/L	0.420	N/A	4848533	0.380	N/A	4848533	1.01	N/A	4848533	N/A
Carb. Alkalinity (calc. as CaCO3)	Bicarb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	4848529	<1.0	1.0	4848529	24	1.0	4848529	0.20
Cation Sum me/L 0.620 N/A 4848533 0.530 N/A 4848533 1.20 N/A 4848533 N/A Hardness (CaCO3) mg/L 3.9 1.0 4848531 7.2 1.0 4848531 24 1.0 4848531 1.0 Ion Balance (% Difference) % 19.2 N/A 4848532 16.5 N/A 4848532 8.60 N/A 4848532 N/A Langelier Index (@ 2OC) N/A NC 4848536 NC 4848536 -2.62 4848536 I.angelier Index (@ 4C) N/A NC 4848537 NC 4848537 -2.87 4848537 NC 4848537 -2.87 4848537 NC 4848536 NC 4848536 -2.62 4848536 NC 4848537 NC 4848537 NC 4848536 NC 4848536 NC 4848537 NC 4858537 NC 4848537 NC 4858537	Calculated TDS	mg/L	35	1.0	4848538	30	1.0	4848538	70	1.0	4848538	0.20
Hardness (CaCO3)	Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	4848529	<1.0	1.0	4848529	<1.0	1.0	4848529	0.20
Indicate March M	Cation Sum	me/L	0.620	N/A	4848533	0.530	N/A	4848533	1.20	N/A	4848533	N/A
Langelier Index (@ 20C)	Hardness (CaCO3)	mg/L	3.9	1.0	4848531	7.2	1.0	4848531	24	1.0	4848531	1.0
Langelier Index (@ 4C) N/A NC 4848537 NC 4848537 -2.87 4848537 NITATE (N) mg/L <0.050 0.050 4848534 <0.050 0.050 4848534 0.087 0.050 4848534 N/A Saturation pH (@ 20C) N/A NC 4848536 NC 4848536 9.15 4848536 NC 4848537 9.40 4848537 NC 4850359 NC 4850350 N	Ion Balance (% Difference)	%	19.2	N/A	4848532	16.5	N/A	4848532	8.60	N/A	4848532	N/A
Nitrate (N)	Langelier Index (@ 20C)	N/A	NC		4848536	NC		4848536	-2.62		4848536	
Saturation pH (@ 20C) N/A NC 4848536 NC 4848536 9.15 4848536 Saturation pH (@ 4C) N/A NC 4848537 NC 4848537 9.40 4848537 NC 4848537 9.40 4848537 NC 4848537 NC 4848537 9.40 4848537 NC 4850380 NC 4850	Langelier Index (@ 4C)	N/A	NC		4848537	NC		4848537	-2.87		4848537	
Saturation pH (@ 4C) N/A NC 4848537 NC 4848537 9.40 4848537	Nitrate (N)	mg/L	<0.050	0.050	4848534	<0.050	0.050	4848534	0.087	0.050	4848534	N/A
Note	Saturation pH (@ 20C)	N/A	NC		4848536	NC		4848536	9.15		4848536	
Total Alkalinity (Total as CaCO3) mg/L	Saturation pH (@ 4C)	N/A	NC		4848537	NC		4848537	9.40		4848537	
Dissolved Chloride (Cl)	Inorganics	•		•			•					
Colour TCU 400 100 4850388 180 25 4850388 330 100 4850388 N/A Nitrate + Nitrite (N) mg/L <0.050 0.050 4850394 <0.050 0.050 4850394 0.087 0.050 4850394 N/A Nitrite (N) mg/L <0.010 0.010 4850395 <0.010 0.010 4850395 <0.010 0.010 4850395 N/A Nitrogen (Ammonia Nitrogen) mg/L <0.050 0.050 4849179 <0.050 0.050 4849179 0.091 0.050 4849179 N/A Total Organic Carbon (C) mg/L 19 (1) 5.0 4854231 12 (1) 5.0 4854231 18 (1) 5.0 4854231 N/A Orthophosphate (P) mg/L 0.017 0.010 4850390 0.013 0.010 4850390 0.026 0.010 4850390 N/A Reactive Silica (SiO2) mg/L 4.7 0.50 4850377 4.4 0.50 4850377 7.8 0.50 4850377 N/A Dissolved Sulphate (SO4) mg/L <2.0 2.0 4850366 <2.0 2.0 4850366 2.8 2.0 4850366 N/A Turbidity NTU 1.8 0.10 4850250 1.6 0.10 4850252 5.3 0.10 4850250 0.10 Conductivity us/cm 75 1.0 4850238 65 1.0 4850280 810 5.0 4850238 N/A Metals Total Aluminum (Al) ug/L 580 5.0 4850280 440 5.0 4850280 <1.0 1.0 4850280 N/A Total Antimony (Sb) ug/L <1.0 1.0 4850280 <1.0 1.0 4850280 <1.0 1.0 4850280 N/A Total Arsenic (As) ug/L <1.0 1.0 4850280 <1.0 1.0 4850280 2.3 1.0 4850280 N/A	Total Alkalinity (Total as CaCO3)	mg/L	<5.0	5.0	4850350	<5.0	5.0	4850350	24	5.0	4850350	N/A
Nitrate + Nitrite (N)	Dissolved Chloride (CI)	mg/L	15	1.0	4850359	13	1.0	4850359	16	1.0	4850359	N/A
Nitrite (N)	Colour	TCU	400	100	4850388	180	25	4850388	330	100	4850388	N/A
Nitrogen (Ammonia Nitrogen) mg/L	Nitrate + Nitrite (N)	mg/L	<0.050	0.050	4850394	<0.050	0.050	4850394	0.087	0.050	4850394	N/A
Total Organic Carbon (C) mg/L 19 (1) 5.0 4854231 12 (1) 5.0 4854231 18 (1) 5.0 4854231 N/A Orthophosphate (P) mg/L 0.017 0.010 4850390 0.013 0.010 4850390 0.026 0.010 4850390 N/A pH pH 5.05 N/A 4850237 5.08 N/A 4852494 6.53 N/A 4850237 N/A Reactive Silica (SiO2) mg/L 4.7 0.50 4850377 4.4 0.50 4850377 7.8 0.50 4850377 N/A Dissolved Sulphate (SO4) mg/L <2.0 2.0 4850366 <2.0 2.0 4850366 2.8 2.0 4850366 N/A Turbidity NTU 1.8 0.10 4850250 1.6 0.10 4850252 5.3 0.10 4850250 0.10 Conductivity us/cm 75 1.0 4850238 65 1.0 4852495 110 1.0 4850238 N/A Metals Total Aluminum (Al) ug/L 580 5.0 4850280 440 5.0 4850280 810 5.0 4850280 N/A Total Antimony (Sb) ug/L <1.0 1.0 4850280 <1.0 1.0 4850280 <1.0 1.0 4850280 N/A Total Arsenic (As) ug/L <1.0 1.0 4850280 <1.0 1.0 4850280 2.3 1.0 4850280 N/A	Nitrite (N)	mg/L	<0.010	0.010	4850395	<0.010	0.010	4850395	<0.010	0.010	4850395	N/A
Orthophosphate (P) mg/L 0.017 0.010 4850390 0.013 0.010 4850390 0.026 0.010 4850390 N/A pH pH 5.05 N/A 4850237 5.08 N/A 4852494 6.53 N/A 4850237 N/A Reactive Silica (SiO2) mg/L 4.7 0.50 4850377 4.4 0.50 4850377 7.8 0.50 4850377 N/A Dissolved Sulphate (SO4) mg/L <2.0 2.0 4850366 <2.0 2.0 4850366 2.8 2.0 4850366 N/A Turbidity NTU 1.8 0.10 4850250 1.6 0.10 4850252 5.3 0.10 4850250 0.10 Conductivity us/cm 75 1.0 4850238 65 1.0 4852495 110 1.0 4850238 N/A Metals Total Aluminum (Al) ug/L 580 5.0 4850280 440 5.0 4850280 810 5.0 4850280 N/A Total Antimony (Sb) ug/L <1.0 1.0 4850280 <1.0 1.0 4850280 <2.3 1.0 4850280 N/A Total Arsenic (As) ug/L <1.0 1.0 4850280 <1.0 1.0 4850280 2.3 1.0 4850280 N/A	Nitrogen (Ammonia Nitrogen)	mg/L	<0.050	0.050	4849179	<0.050	0.050	4849179	0.091	0.050	4849179	N/A
pH pH 5.05 N/A 4850237 5.08 N/A 4852494 6.53 N/A 4850237 N/A Reactive Silica (SiO2) mg/L 4.7 0.50 4850377 4.4 0.50 4850377 7.8 0.50 4850377 N/A Dissolved Sulphate (SO4) mg/L <2.0 2.0 4850366 <2.0 2.0 4850366 2.8 2.0 4850366 N/A Turbidity NTU 1.8 0.10 4850250 1.6 0.10 4850252 5.3 0.10 4850250 0.10 Conductivity uS/cm 75 1.0 4850238 65 1.0 4852495 110 1.0 4850238 N/A Metals Total Aluminum (Al) ug/L 580 5.0 4850280 440 5.0 4850280 810 5.0 4850280 N/A Total Antimony (Sb) ug/L <1.0 1.0 4850280 <1.0 1.0 4850280 <1.0 1.0 4850280 <1.0 1.0 4850280 N/A Total Arsenic (As) ug/L <1.0 1.0 4850280 <1.0 1.0 4850280 2.3 1.0 4850280 N/A	Total Organic Carbon (C)	mg/L	19 (1)	5.0	4854231	12 (1)	5.0	4854231	18 (1)	5.0	4854231	N/A
Reactive Silica (SiO2) mg/L 4.7 0.50 4850377 4.4 0.50 4850377 7.8 0.50 4850377 N/A Dissolved Sulphate (SO4) mg/L <2.0 2.0 4850366 <2.0 2.0 4850366 2.8 2.0 4850366 N/A Turbidity NTU 1.8 0.10 4850250 1.6 0.10 4850252 5.3 0.10 4850250 0.10 Conductivity uS/cm 75 1.0 4850238 65 1.0 4852495 110 1.0 4850238 N/A Metals Total Aluminum (Al) ug/L 580 5.0 4850280 440 5.0 4850280 810 5.0 4850280 N/A Total Antimony (Sb) ug/L <1.0 1.0 4850280 <1.0 1.0 4850280 <1.0 1.0 4850280 N/A Total Arsenic (As) ug/L <1.0 1.0 4850280 <1.0 1.0 4850280 2.3 1.0 4850280 N/A	Orthophosphate (P)	mg/L	0.017	0.010	4850390	0.013	0.010	4850390	0.026	0.010	4850390	N/A
Dissolved Sulphate (SO4) mg/L <2.0 2.0 4850366 <2.0 2.0 4850366 2.8 2.0 4850366 N/A Turbidity NTU 1.8 0.10 4850250 1.6 0.10 4850252 5.3 0.10 4850250 0.10 Conductivity us/cm 75 1.0 4850238 65 1.0 4852495 110 1.0 4850238 N/A Metals Total Aluminum (AI) ug/L 580 5.0 4850280 440 5.0 4850280 810 5.0 4850280 N/A Total Antimony (Sb) ug/L <1.0 1.0 4850280 <1.0 1.0 4850280 <1.0 1.0 4850280 N/A Total Arsenic (As) ug/L <1.0 1.0 4850280 <1.0 1.0 4850280 2.3 1.0 4850280 N/A	рН	рН	5.05	N/A	4850237	5.08	N/A	4852494	6.53	N/A	4850237	N/A
Turbidity NTU 1.8 0.10 4850250 1.6 0.10 4850252 5.3 0.10 4850250 0.10 Conductivity uS/cm 75 1.0 4850238 65 1.0 4852495 110 1.0 4850238 N/A Metals Total Aluminum (Al) ug/L 580 5.0 4850280 440 5.0 4850280 810 5.0 4850280 N/A Total Antimony (Sb) ug/L <1.0 1.0 4850280 <1.0 1.0 4850280 <1.0 1.0 4850280 N/A Total Arsenic (As) ug/L <1.0 1.0 4850280 <1.0 1.0 4850280 2.3 1.0 4850280 N/A	Reactive Silica (SiO2)	mg/L	4.7	0.50	4850377	4.4	0.50	4850377	7.8	0.50	4850377	N/A
Conductivity uS/cm 75 1.0 4850238 65 1.0 4852495 110 1.0 4850238 N/A Metals Total Aluminum (Al) ug/L 580 5.0 4850280 440 5.0 4850280 810 5.0 4850280 N/A Total Antimony (Sb) ug/L <1.0 1.0 4850280 <1.0 1.0 4850280 <1.0 1.0 4850280 N/A Total Arsenic (As) ug/L <1.0 1.0 4850280 <1.0 1.0 4850280 2.3 1.0 4850280 N/A	Dissolved Sulphate (SO4)	mg/L	<2.0	2.0	4850366	<2.0	2.0	4850366	2.8	2.0	4850366	N/A
Metals Total Aluminum (Al) ug/L 580 5.0 4850280 440 5.0 4850280 810 5.0 4850280 N/A Total Antimony (Sb) ug/L <1.0	Turbidity	NTU	1.8	0.10	4850250	1.6	0.10	4850252	5.3	0.10	4850250	0.10
Total Aluminum (Al)	Conductivity	uS/cm	75	1.0	4850238	65	1.0	4852495	110	1.0	4850238	N/A
Total Antimony (Sb)	Metals											
Total Arsenic (As) ug/L <1.0 1.0 4850280 <1.0 1.0 4850280 2.3 1.0 4850280 N/A	Total Aluminum (Al)	ug/L	580	5.0	4850280	440	5.0	4850280	810	5.0	4850280	N/A
	Total Antimony (Sb)	ug/L	<1.0	1.0	4850280	<1.0	1.0	4850280	<1.0	1.0	4850280	N/A
Total Barium (Ba) ug/L 2.1 1.0 4850280 2.7 1.0 4850280 9.2 1.0 4850280 N/A	Total Arsenic (As)	ug/L	<1.0	1.0	4850280	<1.0	1.0	4850280	2.3	1.0	4850280	N/A
	Total Barium (Ba)	ug/L	2.1	1.0	4850280	2.7	1.0	4850280	9.2	1.0	4850280	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08305 Sampler Initials: AS

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Maxxam ID		DVS397			DVS398			DVS399			
Sampling Date		2017/01/31			2017/01/30			2017/01/30			
		13:00			09:25			11:50			
COC Number		595824-01-01			595824-01-01			595824-01-01			<u> </u>
	UNITS	SW1	RDL	QC Batch	SW2	RDL	QC Batch	SW3	RDL	QC Batch	MDL
Total Beryllium (Be)	ug/L	<1.0	1.0	4850280	<1.0	1.0	4850280	<1.0	1.0	4850280	N/A
Total Bismuth (Bi)	ug/L	<2.0	2.0	4850280	<2.0	2.0	4850280	<2.0	2.0	4850280	N/A
Total Boron (B)	ug/L	<50	50	4850280	<50	50	4850280	<50	50	4850280	N/A
Total Cadmium (Cd)	ug/L	0.036	0.010	4850280	0.026	0.010	4850280	0.041	0.010	4850280	N/A
Total Calcium (Ca)	ug/L	810	100	4850280	1300	100	4850280	6400	100	4850280	N/A
Total Chromium (Cr)	ug/L	1.1	1.0	4850280	<1.0	1.0	4850280	1.9	1.0	4850280	N/A
Total Cobalt (Co)	ug/L	<0.40	0.40	4850280	<0.40	0.40	4850280	0.78	0.40	4850280	N/A
Total Copper (Cu)	ug/L	<2.0	2.0	4850280	<2.0	2.0	4850280	3.8	2.0	4850280	N/A
Total Iron (Fe)	ug/L	590	50	4850280	370	50	4850280	2700	50	4850280	N/A
Total Lead (Pb)	ug/L	2.8	0.50	4850280	1.5	0.50	4850280	1.7	0.50	4850280	N/A
Total Magnesium (Mg)	ug/L	460	100	4850280	970	100	4850280	2000	100	4850280	N/A
Total Manganese (Mn)	ug/L	11	2.0	4850280	15	2.0	4850280	120	2.0	4850280	N/A
Total Molybdenum (Mo)	ug/L	<2.0	2.0	4850280	<2.0	2.0	4850280	<2.0	2.0	4850280	N/A
Total Nickel (Ni)	ug/L	<2.0	2.0	4850280	<2.0	2.0	4850280	3.1	2.0	4850280	N/A
Total Phosphorus (P)	ug/L	<100	100	4850280	<100	100	4850280	<100	100	4850280	N/A
Total Potassium (K)	ug/L	3900	100	4850280	1900	100	4850280	7100	100	4850280	N/A
Total Selenium (Se)	ug/L	<1.0	1.0	4850280	<1.0	1.0	4850280	<1.0	1.0	4850280	N/A
Total Silver (Ag)	ug/L	<0.10	0.10	4850280	<0.10	0.10	4850280	<0.10	0.10	4850280	N/A
Total Sodium (Na)	ug/L	9600	100	4850280	7600	100	4850280	11000	100	4850280	N/A
Total Strontium (Sr)	ug/L	5.6	2.0	4850280	8.7	2.0	4850280	29	2.0	4850280	N/A
Total Thallium (TI)	ug/L	<0.10	0.10	4850280	<0.10	0.10	4850280	<0.10	0.10	4850280	N/A
Total Tin (Sn)	ug/L	<2.0	2.0	4850280	<2.0	2.0	4850280	<2.0	2.0	4850280	N/A
Total Titanium (Ti)	ug/L	11	2.0	4850280	5.1	2.0	4850280	15	2.0	4850280	N/A
Total Uranium (U)	ug/L	<0.10	0.10	4850280	<0.10	0.10	4850280	<0.10	0.10	4850280	N/A
Total Vanadium (V)	ug/L	<2.0	2.0	4850280	<2.0	2.0	4850280	<2.0	2.0	4850280	N/A
Total Zinc (Zn)	ug/L	<5.0	5.0	4850280	<5.0	5.0	4850280	36	5.0	4850280	N/A

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08305 Sampler Initials: AS

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Maxxam ID		DVS400			DVS401			DVS402			
Sampling Date		2017/01/31 13:30			2017/01/30 11:55			2017/01/31 13:37			
COC Number		595824-01-01			595824-01-01			595824-01-01			
	UNITS	SW4	RDL	QC Batch	SW5	RDL	QC Batch	SW6	RDL	QC Batch	MDL
Calculated Parameters											
Anion Sum	me/L	0.870	N/A	4848533	0.830	N/A	4848533	1.05	N/A	4848533	N/A
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	4848529	19	1.0	4848529	16	1.0	4848529	0.20
Calculated TDS	mg/L	60	1.0	4848538	59	1.0	4848538	70	1.0	4848538	0.20
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	4848529	<1.0	1.0	4848529	<1.0	1.0	4848529	0.20
Cation Sum	me/L	1.05	N/A	4848533	1.05	N/A	4848533	1.22	N/A	4848533	N/A
Hardness (CaCO3)	mg/L	11	1.0	4848531	21	1.0	4848531	21	1.0	4848531	1.0
Ion Balance (% Difference)	%	9.38	N/A	4848532	11.7	N/A	4848532	7.49	N/A	4848532	N/A
Langelier Index (@ 20C)	N/A	NC		4848536	-2.76		4848536	-2.46		4848536	
Langelier Index (@ 4C)	N/A	NC		4848537	-3.02		4848537	-2.71		4848537	
Nitrate (N)	mg/L	0.41	0.050	4848534	0.19	0.050	4848534	0.21	0.050	4848534	N/A
Saturation pH (@ 20C)	N/A	NC		4848536	9.32		4848536	9.39		4848536	
Saturation pH (@ 4C)	N/A	NC		4848537	9.57		4848537	9.64		4848537	
Inorganics										-	
Total Alkalinity (Total as CaCO3)	mg/L	<5.0	5.0	4850350	19	5.0	4850399	16	5.0	4850350	N/A
Dissolved Chloride (CI)	mg/L	30	1.0	4850359	16	1.0	4850402	25	1.0	4850359	N/A
Colour	TCU	230	25	4850388	270	50	4850410	160	25	4850388	N/A
Nitrate + Nitrite (N)	mg/L	0.41	0.050	4850394	0.19	0.050	4850416	0.21	0.050	4850394	N/A
Nitrite (N)	mg/L	<0.010	0.010	4850395	<0.010	0.010	4850417	<0.010	0.010	4850395	N/A
Nitrogen (Ammonia Nitrogen)	mg/L	<0.050	0.050	4849179	<0.050	0.050	4849179	<0.050	0.050	4849179	N/A
Total Organic Carbon (C)	mg/L	11 (1)	5.0	4854231	22 (1)	5.0	4854231	14 (1)	5.0	4854231	N/A
Orthophosphate (P)	mg/L	0.013	0.010	4850390	0.020	0.010	4850415	0.018	0.010	4850390	N/A
рН	рН	5.82	N/A	4850241	6.55	N/A	4850237	6.93	N/A	4850237	N/A
Reactive Silica (SiO2)	mg/L	4.7	0.50	4850377	7.1	0.50	4850406	6.4	0.50	4850377	N/A
Dissolved Sulphate (SO4)	mg/L	<2.0	2.0	4850366	<2.0	2.0	4850405	<2.0	2.0	4850366	N/A
Turbidity	NTU	1.3	0.10	4850250	6.2	0.10	4850250	1.6	0.10	4850250	0.10
Conductivity	uS/cm	130	1.0	4850242	100	1.0	4850238	130	1.0	4850238	N/A
Metals											
Total Aluminum (AI)	ug/L	460	5.0	4850280	570	5.0	4850280	400	5.0	4850280	N/A
Total Antimony (Sb)	ug/L	<1.0	1.0	4850280	<1.0	1.0	4850280	<1.0	1.0	4850280	N/A
Total Arsenic (As)	ug/L	<1.0	1.0	4850280	1.4	1.0	4850280	<1.0	1.0	4850280	N/A
Total Barium (Ba)	ug/L	3.8	1.0	4850280	6.6	1.0	4850280	5.7	1.0	4850280	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08305 Sampler Initials: AS

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Maxxam ID		DVS400			DVS401			DVS402			
Sampling Date		2017/01/31			2017/01/30			2017/01/31			
		13:30			11:55			13:37			
COC Number		595824-01-01			595824-01-01			595824-01-01			
	UNITS	SW4	RDL	QC Batch	SW5	RDL	QC Batch	SW6	RDL	QC Batch	MDL
Total Beryllium (Be)	ug/L	<1.0	1.0	4850280	<1.0	1.0	4850280	<1.0	1.0	4850280	N/A
Total Bismuth (Bi)	ug/L	<2.0	2.0	4850280	<2.0	2.0	4850280	<2.0	2.0	4850280	N/A
Total Boron (B)	ug/L	<50	50	4850280	<50	50	4850280	<50	50	4850280	N/A
Total Cadmium (Cd)	ug/L	0.023	0.010	4850280	0.030	0.010	4850280	0.019	0.010	4850280	N/A
Total Calcium (Ca)	ug/L	2500	100	4850280	5300	100	4850280	5300	100	4850280	N/A
Total Chromium (Cr)	ug/L	4.2	1.0	4850280	1.5	1.0	4850280	1.1	1.0	4850280	N/A
Total Cobalt (Co)	ug/L	<0.40	0.40	4850280	0.45	0.40	4850280	<0.40	0.40	4850280	N/A
Total Copper (Cu)	ug/L	2.2	2.0	4850280	3.4	2.0	4850280	3.1	2.0	4850280	N/A
Total Iron (Fe)	ug/L	660	50	4850280	1600	50	4850280	810	50	4850280	N/A
Total Lead (Pb)	ug/L	1.3	0.50	4850280	0.80	0.50	4850280	<0.50	0.50	4850280	N/A
Total Magnesium (Mg)	ug/L	1200	100	4850280	1800	100	4850280	1800	100	4850280	N/A
Total Manganese (Mn)	ug/L	15	2.0	4850280	46	2.0	4850280	11	2.0	4850280	N/A
Total Molybdenum (Mo)	ug/L	<2.0	2.0	4850280	<2.0	2.0	4850280	<2.0	2.0	4850280	N/A
Total Nickel (Ni)	ug/L	2.1	2.0	4850280	2.2	2.0	4850280	<2.0	2.0	4850280	N/A
Total Phosphorus (P)	ug/L	<100	100	4850280	<100	100	4850280	<100	100	4850280	N/A
Total Potassium (K)	ug/L	2700	100	4850280	5500	100	4850280	4500	100	4850280	N/A
Total Selenium (Se)	ug/L	<1.0	1.0	4850280	<1.0	1.0	4850280	<1.0	1.0	4850280	N/A
Total Silver (Ag)	ug/L	<0.10	0.10	4850280	<0.10	0.10	4850280	<0.10	0.10	4850280	N/A
Total Sodium (Na)	ug/L	17000	100	4850280	10000	100	4850280	15000	100	4850280	N/A
Total Strontium (Sr)	ug/L	16	2.0	4850280	26	2.0	4850280	27	2.0	4850280	N/A
Total Thallium (TI)	ug/L	<0.10	0.10	4850280	<0.10	0.10	4850280	<0.10	0.10	4850280	N/A
Total Tin (Sn)	ug/L	<2.0	2.0	4850280	<2.0	2.0	4850280	<2.0	2.0	4850280	N/A
Total Titanium (Ti)	ug/L	6.5	2.0	4850280	11	2.0	4850280	6.4	2.0	4850280	N/A
Total Uranium (U)	ug/L	<0.10	0.10	4850280	<0.10	0.10	4850280	<0.10	0.10	4850280	N/A
Total Vanadium (V)	ug/L	<2.0	2.0	4850280	<2.0	2.0	4850280	<2.0	2.0	4850280	N/A
Total Zinc (Zn)	ug/L	<5.0	5.0	4850280	21	5.0	4850280	15	5.0	4850280	N/A

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08305 Sampler Initials: AS

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Maxxam ID		DVS403		DVS404			DVS405			
Sampling Date		2017/01/30 09:10		2017/01/30 10:05			2017/01/30 10:10			
COC Number		595824-01-01		595824-01-01			595824-01-01			
	UNITS	SW7	QC Batch	SW8	RDL	QC Batch	SW9	RDL	QC Batch	MDL
Calculated Parameters										
Anion Sum	me/L	0.380	4848790	0.360	N/A	4848790	0.810	N/A	4848790	N/A
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	4848529	<1.0	1.0	4848529	25	1.0	4848786	0.20
Calculated TDS	mg/L	29	4848794	29	1.0	4848794	50	1.0	4848794	0.20
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	4848529	<1.0	1.0	4848529	<1.0	1.0	4848786	0.20
Cation Sum	me/L	0.510	4848790	0.640	N/A	4848790	0.940	N/A	4848790	N/A
Hardness (CaCO3)	mg/L	7.0	4848788	15	1.0	4848788	20	1.0	4848788	1.0
Ion Balance (% Difference)	%	14.6	4848789	28.0	N/A	4848789	7.43	N/A	4848789	N/A
Langelier Index (@ 20C)	N/A	NC	4848536	NC		4848536	-2.11		4848792	
Langelier Index (@ 4C)	N/A	NC	4848537	NC		4848537	-2.36		4848793	
Nitrate (N)	mg/L	<0.050	4848791	<0.050	0.050	4848791	<0.050	0.050	4848791	N/A
Saturation pH (@ 20C)	N/A	NC	4848536	NC		4848536	9.16		4848792	
Saturation pH (@ 4C)	N/A	NC	4848537	NC		4848537	9.41		4848793	
Inorganics	•				•					•
Total Alkalinity (Total as CaCO3)	mg/L	<5.0	4850350	<5.0	5.0	4850350	25	5.0	4850350	N/A
Dissolved Chloride (Cl)	mg/L	13	4850359	13	1.0	4850359	9.1	1.0	4850359	N/A
Colour	TCU	180	4850388	190	25	4850388	150	25	4850388	N/A
Nitrate + Nitrite (N)	mg/L	<0.050	4850394	<0.050	0.050	4850394	<0.050	0.050	4850394	N/A
Nitrite (N)	mg/L	<0.010	4850395	<0.010	0.010	4850395	<0.010	0.010	4850395	N/A
Nitrogen (Ammonia Nitrogen)	mg/L	<0.050	4849179	<0.050	0.050	4849179	<0.050	0.050	4849179	N/A
Total Organic Carbon (C)	mg/L	13	4854231	19	0.50	4854231	18 (1)	5.0	4854231	N/A
Orthophosphate (P)	mg/L	0.011	4850390	0.012	0.010	4850390	0.040	0.010	4850390	N/A
рН	рН	5.54	4850237	5.58	N/A	4850237	7.05	N/A	4850241	N/A
Reactive Silica (SiO2)	mg/L	4.5	4850377	2.4	0.50	4850377	1.1	0.50	4850377	N/A
Dissolved Sulphate (SO4)	mg/L	<2.0	4850366	<2.0	2.0	4850366	2.1	2.0	4850366	N/A
Turbidity	NTU	1.1	4850249	2.5	0.10	4850250	13	0.10	4850250	0.10
Conductivity	uS/cm	64	4850238	66	1.0	4850238	94	1.0	4850242	N/A
Metals										
Total Aluminum (Al)	ug/L	380	4850280	850	5.0	4850497	760	5.0	4850497	N/A
Total Antimony (Sb)	ug/L	<1.0	4850280	<1.0	1.0	4850497	<1.0	1.0	4850497	N/A
Total Arsenic (As)	ug/L	<1.0	4850280	<1.0	1.0	4850497	1.9	1.0	4850497	N/A
Total Barium (Ba)	ug/L	2.3	4850280	6.0	1.0	4850497	5.5	1.0	4850497	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08305 Sampler Initials: AS

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Maxxam ID		DVS403		DVS404			DVS405			
Sampling Date		2017/01/30		2017/01/30			2017/01/30			
. 0		09:10		10:05			10:10			ļ
COC Number		595824-01-01		595824-01-01			595824-01-01			
	UNITS	SW7	QC Batch	SW8	RDL	QC Batch	SW9	RDL	QC Batch	MDL
Total Beryllium (Be)	ug/L	<1.0	4850280	<1.0	1.0	4850497	<1.0	1.0	4850497	N/A
Total Bismuth (Bi)	ug/L	<2.0	4850280	<2.0	2.0	4850497	<2.0	2.0	4850497	N/A
Total Boron (B)	ug/L	<50	4850280	<50	50	4850497	<50	50	4850497	N/A
Total Cadmium (Cd)	ug/L	0.016	4850280	0.054	0.010	4850497	0.038	0.010	4850497	N/A
Total Calcium (Ca)	ug/L	1200	4850280	3600	100	4850497	5600	100	4850497	N/A
Total Chromium (Cr)	ug/L	<1.0	4850280	1.1	1.0	4850497	1.5	1.0	4850497	N/A
Total Cobalt (Co)	ug/L	<0.40	4850280	1.3	0.40	4850497	0.94	0.40	4850497	N/A
Total Copper (Cu)	ug/L	<2.0	4850280	<2.0	2.0	4850497	6.5	2.0	4850497	N/A
Total Iron (Fe)	ug/L	320	4850280	750	50	4850497	1300	50	4850497	N/A
Total Lead (Pb)	ug/L	1.1	4850280	0.62	0.50	4850497	1.3	0.50	4850497	N/A
Total Magnesium (Mg)	ug/L	970	4850280	1400	100	4850497	1500	100	4850497	N/A
Total Manganese (Mn)	ug/L	15	4850280	64	2.0	4850497	84	2.0	4850497	N/A
Total Molybdenum (Mo)	ug/L	<2.0	4850280	<2.0	2.0	4850497	<2.0	2.0	4850497	N/A
Total Nickel (Ni)	ug/L	<2.0	4850280	2.6	2.0	4850497	2.4	2.0	4850497	N/A
Total Phosphorus (P)	ug/L	<100	4850280	<100	100	4850497	150	100	4850497	N/A
Total Potassium (K)	ug/L	1600	4850280	670	100	4850497	6100	100	4850497	N/A
Total Selenium (Se)	ug/L	<1.0	4850280	<1.0	1.0	4850497	<1.0	1.0	4850497	N/A
Total Silver (Ag)	ug/L	<0.10	4850280	<0.10	0.10	4850497	<0.10	0.10	4850497	N/A
Total Sodium (Na)	ug/L	7200	4850280	6900	100	4850497	7700	100	4850497	N/A
Total Strontium (Sr)	ug/L	8.0	4850280	21	2.0	4850497	25	2.0	4850497	N/A
Total Thallium (TI)	ug/L	<0.10	4850280	<0.10	0.10	4850497	<0.10	0.10	4850497	N/A
Total Tin (Sn)	ug/L	<2.0	4850280	<2.0	2.0	4850497	<2.0	2.0	4850497	N/A
Total Titanium (Ti)	ug/L	4.2	4850280	7.4	2.0	4850497	22	2.0	4850497	N/A
Total Uranium (U)	ug/L	<0.10	4850280	<0.10	0.10	4850497	<0.10	0.10	4850497	N/A
Total Vanadium (V)	ug/L	<2.0	4850280	<2.0	2.0	4850497	<2.0	2.0	4850497	N/A
Total Zinc (Zn)	ug/L	<5.0	4850280	10	5.0	4850497	6.9	5.0	4850497	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08305 Sampler Initials: AS

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Maxxam ID		DVS405		DVS406			DVS419			
Sampling Date		2017/01/30 10:10		2017/01/30 09:45			2017/01/30 10:25			
COC Number		595824-01-01		595824-01-01			595824-02-01			
	UNITS	SW9 Lab-Dup	QC Batch	SW10	RDL	QC Batch	SW11	RDL	QC Batch	MDL
Calculated Parameters										
Anion Sum	me/L		4848790	0.350	N/A	4848790	0.380	N/A	4848790	N/A
Bicarb. Alkalinity (calc. as CaCO3)	mg/L		4848786	<1.0	1.0	4848786	<1.0	1.0	4848786	0.20
Calculated TDS	mg/L		4848794	25	1.0	4848794	32	1.0	4848794	0.20
Carb. Alkalinity (calc. as CaCO3)	mg/L		4848786	<1.0	1.0	4848786	<1.0	1.0	4848786	0.20
Cation Sum	me/L		4848790	0.490	N/A	4848790	0.580	N/A	4848790	N/A
Hardness (CaCO3)	mg/L		4848788	5.3	1.0	4848788	2.3	1.0	4848788	1.0
Ion Balance (% Difference)	%		4848789	16.7	N/A	4848789	20.8	N/A	4848789	N/A
Langelier Index (@ 20C)	N/A		4848792	NC		4848792	NC		4848792	
Langelier Index (@ 4C)	N/A		4848793	NC		4848793	NC		4848793	
Nitrate (N)	mg/L		4848791	<0.050	0.050	4848791	<0.050	0.050	4848791	N/A
Saturation pH (@ 20C)	N/A		4848792	NC		4848792	NC		4848792	
Saturation pH (@ 4C)	N/A		4848793	NC		4848793	NC		4848793	
Inorganics										
Total Alkalinity (Total as CaCO3)	mg/L		4850350	<5.0	5.0	4850350	<5.0	5.0	4850350	N/A
Dissolved Chloride (CI)	mg/L		4850359	12	1.0	4850359	14	1.0	4850359	N/A
Colour	TCU		4850388	220	25	4850388	440	100	4850388	N/A
Nitrate + Nitrite (N)	mg/L		4850394	<0.050	0.050	4850394	<0.050	0.050	4850394	N/A
Nitrite (N)	mg/L		4850395	<0.010	0.010	4850395	<0.010	0.010	4850395	N/A
Nitrogen (Ammonia Nitrogen)	mg/L	<0.050	4849179	<0.050	0.050	4849179	<0.050	0.050	4849192	N/A
Total Organic Carbon (C)	mg/L		4854231	22 (1)	5.0	4854231	20 (1)	5.0	4854231	N/A
Orthophosphate (P)	mg/L		4850390	0.010	0.010	4850390	0.016	0.010	4850390	N/A
рН	рН		4850241	4.10	N/A	4850237	5.12	N/A	4850237	N/A
Reactive Silica (SiO2)	mg/L		4850377	3.9	0.50	4850377	3.7	0.50	4850377	N/A
Dissolved Sulphate (SO4)	mg/L		4850366	<2.0	2.0	4850366	<2.0	2.0	4850366	N/A
Turbidity	NTU		4850250	1.4	0.10	4850250	2.0	0.10	4850250	0.10
Conductivity	uS/cm		4850242	77	1.0	4850238	72	1.0	4850238	N/A
Metals										
Total Aluminum (AI)	ug/L		4850497	810	5.0	4850497	560	5.0	4850234	N/A
Total Antimony (Sb)	ug/L		4850497	<1.0	1.0	4850497	<1.0	1.0	4850234	N/A
Total Arsenic (As)	ug/L		4850497	<1.0	1.0	4850497	<1.0	1.0	4850234	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08305 Sampler Initials: AS

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Maxxam ID		DVS405		DVS406			DVS419			
Sampling Date		2017/01/30 10:10		2017/01/30 09:45			2017/01/30 10:25			
COC Number		595824-01-01		595824-01-01			595824-02-01			
	UNITS	SW9 Lab-Dup	QC Batch	SW10	RDL	QC Batch	SW11	RDL	QC Batch	MDL
Total Barium (Ba)	ug/L		4850497	3.9	1.0	4850497	1.4	1.0	4850234	N/A
Total Beryllium (Be)	ug/L		4850497	<1.0	1.0	4850497	<1.0	1.0	4850234	N/A
Total Bismuth (Bi)	ug/L		4850497	<2.0	2.0	4850497	<2.0	2.0	4850234	N/A
Total Boron (B)	ug/L		4850497	<50	50	4850497	<50	50	4850234	N/A
Total Cadmium (Cd)	ug/L		4850497	0.054	0.010	4850497	0.035	0.010	4850234	N/A
Total Calcium (Ca)	ug/L		4850497	660	100	4850497	460	100	4850234	N/A
Total Chromium (Cr)	ug/L		4850497	<1.0	1.0	4850497	2.1	1.0	4850234	N/A
Total Cobalt (Co)	ug/L		4850497	0.86	0.40	4850497	<0.40	0.40	4850234	N/A
Total Copper (Cu)	ug/L		4850497	<2.0	2.0	4850497	<2.0	2.0	4850234	N/A
Total Iron (Fe)	ug/L		4850497	580	50	4850497	550	50	4850234	N/A
Total Lead (Pb)	ug/L		4850497	1.7	0.50	4850497	3.0	0.50	4850234	N/A
Total Magnesium (Mg)	ug/L		4850497	880	100	4850497	290	100	4850234	N/A
Total Manganese (Mn)	ug/L		4850497	19	2.0	4850497	5.7	2.0	4850234	N/A
Total Molybdenum (Mo)	ug/L		4850497	<2.0	2.0	4850497	<2.0	2.0	4850234	N/A
Total Nickel (Ni)	ug/L		4850497	<2.0	2.0	4850497	<2.0	2.0	4850234	N/A
Total Phosphorus (P)	ug/L		4850497	<100	100	4850497	<100	100	4850234	N/A
Total Potassium (K)	ug/L		4850497	180	100	4850497	4400	100	4850234	N/A
Total Selenium (Se)	ug/L		4850497	<1.0	1.0	4850497	<1.0	1.0	4850234	N/A
Total Silver (Ag)	ug/L		4850497	<0.10	0.10	4850497	<0.10	0.10	4850234	N/A
Total Sodium (Na)	ug/L		4850497	6500	100	4850497	9000	100	4850234	N/A
Total Strontium (Sr)	ug/L		4850497	8.5	2.0	4850497	3.3	2.0	4850234	N/A
Total Thallium (TI)	ug/L		4850497	<0.10	0.10	4850497	<0.10	0.10	4850234	N/A
Total Tin (Sn)	ug/L		4850497	<2.0	2.0	4850497	<2.0	2.0	4850234	N/A
Total Titanium (Ti)	ug/L		4850497	6.0	2.0	4850497	9.0	2.0	4850234	N/A
Total Uranium (U)	ug/L		4850497	<0.10	0.10	4850497	<0.10	0.10	4850234	N/A
Total Vanadium (V)	ug/L		4850497	<2.0	2.0	4850497	2.4	2.0	4850234	N/A
Total Zinc (Zn)	ug/L		4850497	7.6	5.0	4850497	<5.0	5.0	4850234	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08305 Sampler Initials: AS

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Maxxam ID		DVS420	DVS420			DVS421			
Sampling Date		2017/01/30 08:50	2017/01/30 08:50			2017/01/31 13:15			
COC Number		595824-02-01	595824-02-01			595824-02-01			
	UNITS	SW13	SW13 Lab-Dup	RDL	QC Batch	SW14	RDL	QC Batch	MDL
Calculated Parameters									
Anion Sum	me/L	0.270		N/A	4848790	0.770	N/A	4848790	N/A
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	<1.0		1.0	4848786	<1.0	1.0	4848786	0.20
Calculated TDS	mg/L	17		1.0	4848794	55	1.0	4848794	0.20
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0		1.0	4848786	<1.0	1.0	4848786	0.20
Cation Sum	me/L	0.370		N/A	4848790	0.960	N/A	4848790	N/A
Hardness (CaCO3)	mg/L	5.6		1.0	4848788	9.6	1.0	4848788	1.0
Ion Balance (% Difference)	%	15.6		N/A	4848789	11.0	N/A	4848789	N/A
Langelier Index (@ 20C)	N/A	NC			4848792	NC		4848792	
Langelier Index (@ 4C)	N/A	NC			4848793	NC		4848793	
Nitrate (N)	mg/L	<0.050		0.050	4848791	0.29	0.050	4848791	N/A
Saturation pH (@ 20C)	N/A	NC			4848792	NC		4848792	
Saturation pH (@ 4C)	N/A	NC			4848793	NC		4848793	
Inorganics	•				•		•	•	
Total Alkalinity (Total as CaCO3)	mg/L	<5.0		5.0	4850399	<5.0	5.0	4850399	N/A
Dissolved Chloride (CI)	mg/L	9.5		1.0	4850402	26	1.0	4850402	N/A
Colour	TCU	19		5.0	4850410	190	25	4850410	N/A
Nitrate + Nitrite (N)	mg/L	<0.050		0.050	4850416	0.29	0.050	4850416	N/A
Nitrite (N)	mg/L	<0.010		0.010	4850417	<0.010	0.010	4850417	N/A
Nitrogen (Ammonia Nitrogen)	mg/L	<0.050		0.050	4849192	<0.050	0.050	4849192	N/A
Total Organic Carbon (C)	mg/L	3.3		0.50	4854231	11 (1)	5.0	4854231	N/A
Orthophosphate (P)	mg/L	<0.010		0.010	4850415	0.011	0.010	4850415	N/A
рН	рН	6.05		N/A	4850241	5.93	N/A	4850241	N/A
Reactive Silica (SiO2)	mg/L	<0.50		0.50	4850406	4.9	0.50	4850406	N/A
Dissolved Sulphate (SO4)	mg/L	<2.0		2.0	4850405	<2.0	2.0	4850405	N/A
Turbidity	NTU	0.50		0.10	4850250	0.85	0.10	4850252	0.10
Conductivity	uS/cm	45		1.0	4850242	120	1.0	4850242	N/A
Metals									
Total Aluminum (AI)	ug/L	71	66	5.0	4850234	520	5.0	4850497	N/A
Total Antimony (Sb)	ug/L	<1.0	<1.0	1.0	4850234	<1.0	1.0	4850497	N/A
Total Arsenic (As)	ug/L	<1.0	<1.0	1.0	4850234	<1.0	1.0	4850497	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08305 Sampler Initials: AS

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Maxxam ID		DVS420	DVS420			DVS421			
Sampling Date		2017/01/30	2017/01/30			2017/01/31			
Jamping Date		08:50	08:50			13:15			
COC Number		595824-02-01	595824-02-01			595824-02-01			
	UNITS	SW13	SW13 Lab-Dup	RDL	QC Batch	SW14	RDL	QC Batch	MDL
Total Barium (Ba)	ug/L	2.3	2.3	1.0	4850234	3.9	1.0	4850497	N/A
Total Beryllium (Be)	ug/L	<1.0	<1.0	1.0	4850234	<1.0	1.0	4850497	N/A
Total Bismuth (Bi)	ug/L	<2.0	<2.0	2.0	4850234	<2.0	2.0	4850497	N/A
Total Boron (B)	ug/L	<50	<50	50	4850234	<50	50	4850497	N/A
Total Cadmium (Cd)	ug/L	<0.010	<0.010	0.010	4850234	0.034	0.010	4850497	N/A
Total Calcium (Ca)	ug/L	900	880	100	4850234	2100	100	4850497	N/A
Total Chromium (Cr)	ug/L	<1.0	<1.0	1.0	4850234	<1.0	1.0	4850497	N/A
Total Cobalt (Co)	ug/L	<0.40	<0.40	0.40	4850234	<0.40	0.40	4850497	N/A
Total Copper (Cu)	ug/L	<2.0	<2.0	2.0	4850234	2.2	2.0	4850497	N/A
Total Iron (Fe)	ug/L	78	86	50	4850234	600	50	4850497	N/A
Total Lead (Pb)	ug/L	<0.50	<0.50	0.50	4850234	0.92	0.50	4850497	N/A
Total Magnesium (Mg)	ug/L	820	800	100	4850234	1100	100	4850497	N/A
Total Manganese (Mn)	ug/L	6.3	6.1	2.0	4850234	14	2.0	4850497	N/A
Total Molybdenum (Mo)	ug/L	<2.0	<2.0	2.0	4850234	<2.0	2.0	4850497	N/A
Total Nickel (Ni)	ug/L	<2.0	<2.0	2.0	4850234	<2.0	2.0	4850497	N/A
Total Phosphorus (P)	ug/L	<100	<100	100	4850234	<100	100	4850497	N/A
Total Potassium (K)	ug/L	400	380	100	4850234	2800	100	4850497	N/A
Total Selenium (Se)	ug/L	<1.0	<1.0	1.0	4850234	<1.0	1.0	4850497	N/A
Total Silver (Ag)	ug/L	<0.10	<0.10	0.10	4850234	<0.10	0.10	4850497	N/A
Total Sodium (Na)	ug/L	5700	5500	100	4850234	17000	100	4850497	N/A
Total Strontium (Sr)	ug/L	7.5	7.2	2.0	4850234	13	2.0	4850497	N/A
Total Thallium (TI)	ug/L	<0.10	<0.10	0.10	4850234	<0.10	0.10	4850497	N/A
Total Tin (Sn)	ug/L	<2.0	<2.0	2.0	4850234	<2.0	2.0	4850497	N/A
Total Titanium (Ti)	ug/L	<2.0	<2.0	2.0	4850234	5.7	2.0	4850497	N/A
Total Uranium (U)	ug/L	<0.10	<0.10	0.10	4850234	<0.10	0.10	4850497	N/A
Total Vanadium (V)	ug/L	<2.0	<2.0	2.0	4850234	<2.0	2.0	4850497	N/A
Total Zinc (Zn)	ug/L	<5.0	<5.0	5.0	4850234	<5.0	5.0	4850497	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08305 Sampler Initials: AS

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Maxxam ID		DVS422			DVS423	DVS423			
Sampling Date		2017/01/31 13:45			2017/01/31 14:00	2017/01/31 14:00			
COC Number		595824-02-01			595824-02-01	595824-02-01			
	UNITS	SW15	RDL	QC Batch	SW16	SW16 Lab-Dup	RDL	QC Batch	MDL
Calculated Parameters									
Anion Sum	me/L	1.19	N/A	4848790	0.540		N/A	4848790	N/A
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	4848786	<1.0		1.0	4848786	0.20
Calculated TDS	mg/L	75	1.0	4848794	40		1.0	4848794	0.20
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	4848786	<1.0		1.0	4848786	0.20
Cation Sum	me/L	1.26	N/A	4848790	0.740		N/A	4848790	N/A
Hardness (CaCO3)	mg/L	18	1.0	4848788	12		1.0	4848788	1.0
Ion Balance (% Difference)	%	2.86	N/A	4848789	15.6		N/A	4848789	N/A
Langelier Index (@ 20C)	N/A	NC		4848792	NC			4848792	
Langelier Index (@ 4C)	N/A	NC		4848793	NC			4848793	
Nitrate (N)	mg/L	<0.050	0.050	4848791	<0.050		0.050	4848791	N/A
Saturation pH (@ 20C)	N/A	NC		4848792	NC			4848792	
Saturation pH (@ 4C)	N/A	NC		4848793	NC			4848793	
Inorganics		1			•	•			
Total Alkalinity (Total as CaCO3)	mg/L	<5.0	5.0	4850399	<5.0		5.0	4850399	N/A
Dissolved Chloride (Cl)	mg/L	39	1.0	4850402	19		1.0	4850402	N/A
Colour	TCU	10	5.0	4850410	110		25	4850410	N/A
Nitrate + Nitrite (N)	mg/L	<0.050	0.050	4850416	<0.050		0.050	4850416	N/A
Nitrite (N)	mg/L	<0.010	0.010	4850417	<0.010		0.010	4850417	N/A
Nitrogen (Ammonia Nitrogen)	mg/L	<0.050	0.050	4849192	<0.050		0.050	4849192	N/A
Total Organic Carbon (C)	mg/L	3.0	0.50	4854231	10		0.50	4854231	N/A
Orthophosphate (P)	mg/L	<0.010	0.010	4850415	0.011		0.010	4850415	N/A
рН	рН	5.87	N/A	4850237	5.63	5.63	N/A	4850237	N/A
Reactive Silica (SiO2)	mg/L	4.6	0.50	4850406	4.5		0.50	4850406	N/A
Dissolved Sulphate (SO4)	mg/L	4.6	2.0	4850405	<2.0		2.0	4850405	N/A
Turbidity	NTU	0.29	0.10	4850250	0.54		0.10	4850249	0.10
Conductivity	uS/cm	150	1.0	4850238	83	83	1.0	4850238	N/A
Metals		•	•		•	•	•	•	
Total Aluminum (AI)	ug/L	210	5.0	4850234	200		5.0	4850497	N/A
Total Antimony (Sb)	ug/L	<1.0	1.0	4850234	<1.0		1.0	4850497	N/A
Total Arsenic (As)	ug/L	<1.0	1.0	4850234	<1.0		1.0	4850497	N/A
Total Barium (Ba)	ug/L	6.4	1.0	4850234	2.7		1.0	4850497	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08305 Sampler Initials: AS

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Maxxam ID		DVS422			DVS423	DVS423			
Sampling Date		2017/01/31			2017/01/31	2017/01/31			
Sampling Date		13:45			14:00	14:00			
COC Number		595824-02-01			595824-02-01	595824-02-01			
	UNITS	SW15	RDL	QC Batch	SW16	SW16 Lab-Dup	RDL	QC Batch	MDL
Total Beryllium (Be)	ug/L	<1.0	1.0	4850234	<1.0		1.0	4850497	N/A
Total Bismuth (Bi)	ug/L	<2.0	2.0	4850234	<2.0		2.0	4850497	N/A
Total Boron (B)	ug/L	<50	50	4850234	<50		50	4850497	N/A
Total Cadmium (Cd)	ug/L	0.026	0.010	4850234	0.010		0.010	4850497	N/A
Total Calcium (Ca)	ug/L	3800	100	4850234	2400		100	4850497	N/A
Total Chromium (Cr)	ug/L	<1.0	1.0	4850234	<1.0		1.0	4850497	N/A
Total Cobalt (Co)	ug/L	0.71	0.40	4850234	<0.40		0.40	4850497	N/A
Total Copper (Cu)	ug/L	<2.0	2.0	4850234	<2.0		2.0	4850497	N/A
Total Iron (Fe)	ug/L	190	50	4850234	210		50	4850497	N/A
Total Lead (Pb)	ug/L	<0.50	0.50	4850234	<0.50		0.50	4850497	N/A
Total Magnesium (Mg)	ug/L	2100	100	4850234	1400		100	4850497	N/A
Total Manganese (Mn)	ug/L	43	2.0	4850234	11		2.0	4850497	N/A
Total Molybdenum (Mo)	ug/L	<2.0	2.0	4850234	<2.0		2.0	4850497	N/A
Total Nickel (Ni)	ug/L	<2.0	2.0	4850234	<2.0		2.0	4850497	N/A
Total Phosphorus (P)	ug/L	<100	100	4850234	<100		100	4850497	N/A
Total Potassium (K)	ug/L	630	100	4850234	1200		100	4850497	N/A
Total Selenium (Se)	ug/L	<1.0	1.0	4850234	<1.0		1.0	4850497	N/A
Total Silver (Ag)	ug/L	<0.10	0.10	4850234	<0.10		0.10	4850497	N/A
Total Sodium (Na)	ug/L	20000	100	4850234	11000		100	4850497	N/A
Total Strontium (Sr)	ug/L	27	2.0	4850234	17		2.0	4850497	N/A
Total Thallium (TI)	ug/L	<0.10	0.10	4850234	<0.10		0.10	4850497	N/A
Total Tin (Sn)	ug/L	<2.0	2.0	4850234	<2.0		2.0	4850497	N/A
Total Titanium (Ti)	ug/L	<2.0	2.0	4850234	<2.0		2.0	4850497	N/A
Total Uranium (U)	ug/L	<0.10	0.10	4850234	<0.10		0.10	4850497	N/A
Total Vanadium (V)	ug/L	<2.0	2.0	4850234	<2.0		2.0	4850497	N/A
Total Zinc (Zn)	ug/L	<5.0	5.0	4850234	<5.0		5.0	4850497	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08305 Sampler Initials: AS

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Maxxam ID		DVS424	DVS424			DVS425	DVS425			
Sampling Date		2017/01/30 14:00	2017/01/30 14:00			2017/01/30 14:00	2017/01/30 14:00			
COC Number		595824-02-01	595824-02-01			595824-02-01	595824-02-01			
	UNITS	SW-DUP1	SW-DUP1 Lab-Dup	RDL	QC Batch	SW-DUP2	SW-DUP2 Lab-Dup	RDL	QC Batch	MDL
Calculated Parameters										
Anion Sum	me/L	0.750		N/A	4848790	0.510		N/A	4848790	N/A
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	25		1.0	4848786	<1.0		1.0	4848786	0.20
Calculated TDS	mg/L	48		1.0	4848794	38		1.0	4848794	0.20
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0		1.0	4848786	<1.0		1.0	4848786	0.20
Cation Sum	me/L	0.970		N/A	4848790	0.620		N/A	4848790	N/A
Hardness (CaCO3)	mg/L	21		1.0	4848788	9.5		1.0	4848788	1.0
Ion Balance (% Difference)	%	12.8		N/A	4848789	9.73		N/A	4848789	N/A
Langelier Index (@ 20C)	N/A	-2.25			4848792	NC			4848792	
Langelier Index (@ 4C)	N/A	-2.50			4848793	NC			4848793	
Nitrate (N)	mg/L	<0.050		0.050	4848791	0.11		0.050	4848791	N/A
Saturation pH (@ 20C)	N/A	9.15			4848792	NC			4848792	
Saturation pH (@ 4C)	N/A	9.40			4848793	NC			4848793	
Inorganics				•						
Total Alkalinity (Total as CaCO3)	mg/L	25		5.0	4850399	<5.0	<5.0	5.0	4850399	N/A
Dissolved Chloride (Cl)	mg/L	8.7		1.0	4850402	18	18	1.0	4850402	N/A
Colour	TCU	150		25	4850410	89	93	25	4850410	N/A
Nitrate + Nitrite (N)	mg/L	<0.050		0.050	4850416	0.11	0.061	0.050	4850416	N/A
Nitrite (N)	mg/L	<0.010		0.010	4850417	<0.010	<0.010	0.010	4850417	N/A
Nitrogen (Ammonia Nitrogen)	mg/L	<0.050		0.050	4849192	<0.050		0.050	4849192	N/A
Total Organic Carbon (C)	mg/L	13 (1)	13 (1)	5.0	4854545	8.7		0.50	4854545	N/A
Orthophosphate (P)	mg/L	0.041		0.010	4850415	0.011	<0.010	0.010	4850415	N/A
рН	рН	6.90		N/A	4850237	5.32		N/A	4850241	N/A
Reactive Silica (SiO2)	mg/L	1.1		0.50	4850406	6.0	6.0	0.50	4850406	N/A
Dissolved Sulphate (SO4)	mg/L	<2.0		2.0	4850405	<2.0	<2.0	2.0	4850405	N/A
Turbidity	NTU	33		0.10	4850249	1.1		0.10	4850250	0.10
Conductivity	uS/cm	91		1.0	4850238	77		1.0	4850242	N/A
Metals	•			•					,	
Total Aluminum (AI)	ug/L	790		5.0	4850497	360		5.0	4850497	N/A
Total Antimony (Sb)	ug/L	<1.0		1.0	4850497	<1.0		1.0	4850497	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

(1) Reporting limit was increased due to turbidity.

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08305 Sampler Initials: AS

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Maxxam ID		DVS424	DVS424			DVS425	DVS425			
Sampling Date		2017/01/30 14:00	2017/01/30 14:00			2017/01/30 14:00	2017/01/30 14:00			
COC Number		595824-02-01	595824-02-01			595824-02-01	595824-02-01			
	UNITS	SW-DUP1	SW-DUP1 Lab-Dup	RDL	QC Batch	SW-DUP2	SW-DUP2 Lab-Dup	RDL	QC Batch	MDL
Total Barium (Ba)	ug/L	5.8		1.0	4850497	7.1		1.0	4850497	N/A
Total Beryllium (Be)	ug/L	<1.0		1.0	4850497	<1.0		1.0	4850497	N/A
Total Bismuth (Bi)	ug/L	<2.0		2.0	4850497	<2.0		2.0	4850497	N/A
Total Boron (B)	ug/L	<50		50	4850497	<50		50	4850497	N/A
Total Cadmium (Cd)	ug/L	0.038		0.010	4850497	0.028		0.010	4850497	N/A
Total Calcium (Ca)	ug/L	5800		100	4850497	1700		100	4850497	N/A
Total Chromium (Cr)	ug/L	1.5		1.0	4850497	<1.0		1.0	4850497	N/A
Total Cobalt (Co)	ug/L	1.1		0.40	4850497	0.60		0.40	4850497	N/A
Total Copper (Cu)	ug/L	7.0		2.0	4850497	<2.0		2.0	4850497	N/A
Total Iron (Fe)	ug/L	1300		50	4850497	320		50	4850497	N/A
Total Lead (Pb)	ug/L	1.3		0.50	4850497	<0.50		0.50	4850497	N/A
Total Magnesium (Mg)	ug/L	1600		100	4850497	1300		100	4850497	N/A
Total Manganese (Mn)	ug/L	98		2.0	4850497	31		2.0	4850497	N/A
Total Molybdenum (Mo)	ug/L	<2.0		2.0	4850497	<2.0		2.0	4850497	N/A
Total Nickel (Ni)	ug/L	2.7		2.0	4850497	<2.0		2.0	4850497	N/A
Total Phosphorus (P)	ug/L	150		100	4850497	<100		100	4850497	N/A
Total Potassium (K)	ug/L	6300		100	4850497	730		100	4850497	N/A
Total Selenium (Se)	ug/L	<1.0		1.0	4850497	<1.0		1.0	4850497	N/A
Total Silver (Ag)	ug/L	<0.10		0.10	4850497	<0.10		0.10	4850497	N/A
Total Sodium (Na)	ug/L	7900		100	4850497	9500		100	4850497	N/A
Total Strontium (Sr)	ug/L	25		2.0	4850497	12		2.0	4850497	N/A
Total Thallium (Tl)	ug/L	<0.10		0.10	4850497	<0.10		0.10	4850497	N/A
Total Tin (Sn)	ug/L	<2.0		2.0	4850497	<2.0		2.0	4850497	N/A
Total Titanium (Ti)	ug/L	23		2.0	4850497	4.4		2.0	4850497	N/A
Total Uranium (U)	ug/L	0.10		0.10	4850497	<0.10		0.10	4850497	N/A
Total Vanadium (V)	ug/L	<2.0		2.0	4850497	<2.0		2.0	4850497	N/A
Total Zinc (Zn)	ug/L	7.4		5.0	4850497	6.0		5.0	4850497	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08305 Sampler Initials: AS

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

	_									
Maxxam ID		DVS426			DVS427	DVS427	DVS430			
Sampling Date		2017/01/30 11:35			2017/01/30 11:20	2017/01/30 11:20	2017/01/30 11:05			
COC Number		595824-02-01			595824-02-01	595824-02-01	595824-03-01			
	UNITS	P1A	RDL	QC Batch	P1B	P1B Lab-Dup	P2A	RDL	QC Batch	MDL
Calculated Parameters										
Anion Sum	me/L	0.900	N/A	4848790	0.610		1.21	N/A	4848790	N/A
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	19	1.0	4848786	<1.0		37	1.0	4848786	0.20
Calculated TDS	mg/L	61	1.0	4848794	43		75	1.0	4848794	0.20
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	4848786	<1.0		<1.0	1.0	4848786	0.20
Cation Sum	me/L	0.980	N/A	4848790	0.700		1.38	N/A	4848790	N/A
Hardness (CaCO3)	mg/L	17	1.0	4848788	9.4		30	1.0	4848788	1.0
Ion Balance (% Difference)	%	4.26	N/A	4848789	6.87		6.56	N/A	4848789	N/A
Langelier Index (@ 20C)	N/A	-3.17		4848792	NC		-1.98		4848792	
Langelier Index (@ 4C)	N/A	-3.42		4848793	NC		-2.24		4848793	
Nitrate (N)	mg/L	<0.050	0.050	4848791	0.050		<0.050	0.050	4848791	N/A
Saturation pH (@ 20C)	N/A	9.41		4848792	NC		8.85		4848792	
Saturation pH (@ 4C)	N/A	9.66		4848793	NC		9.10		4848793	
Inorganics	•							•	•	•
Total Alkalinity (Total as CaCO3)	mg/L	19	5.0	4850399	<5.0		37	5.0	4850399	N/A
Dissolved Chloride (CI)	mg/L	16	1.0	4850402	21		17	1.0	4850402	N/A
Colour	TCU	400	100	4850410	210		190	25	4850410	N/A
Nitrate + Nitrite (N)	mg/L	<0.050	0.050	4850416	0.050		<0.050	0.050	4850416	N/A
Nitrite (N)	mg/L	<0.010	0.010	4850417	<0.010		<0.010	0.010	4850417	N/A
Nitrogen (Ammonia Nitrogen)	mg/L	0.18	0.050	4849192	0.46	0.47	<0.050	0.050	4849192	N/A
Total Organic Carbon (C)	mg/L	34 (1)	5.0	4854545	16 (1)		15 (1)	5.0	4854545	N/A
Orthophosphate (P)	mg/L	0.026	0.010	4850415	0.014		0.044	0.010	4850415	N/A
рН	рН	6.24	N/A	4850237	4.87		6.87	N/A	4850237	N/A
Reactive Silica (SiO2)	mg/L	7.8	0.50	4850406	7.0		3.7	0.50	4850406	N/A
Dissolved Sulphate (SO4)	mg/L	2.5	2.0	4850405	<2.0		<2.0	2.0	4850405	N/A
Turbidity	NTU	7.6	0.10	4850250	65		2.7	0.10	4850249	0.10
Conductivity	uS/cm	100	1.0	4850238	89		140	1.0	4850238	N/A
Metals										
Total Aluminum (Al)	ug/L	640	5.0	4850497	550		390	5.0	4850497	N/A
Total Antimony (Sb)	ug/L	<1.0	1.0	4850497	<1.0		<1.0	1.0	4850497	N/A
	46/ -			1000						

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08305 Sampler Initials: AS

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Maxxam ID		DVS426			DVS427	DVS427	DVS430			
Sampling Date		2017/01/30			2017/01/30	2017/01/30	2017/01/30			
Sampling Date		11:35			11:20	11:20	11:05			
COC Number		595824-02-01			595824-02-01	595824-02-01	595824-03-01			
	UNITS	P1A	RDL	QC Batch	P1B	P1B Lab-Dup	P2A	RDL	QC Batch	MDL
Total Barium (Ba)	ug/L	8.2	1.0	4850497	5.7		5.1	1.0	4850497	N/A
Total Beryllium (Be)	ug/L	<1.0	1.0	4850497	<1.0		<1.0	1.0	4850497	N/A
Total Bismuth (Bi)	ug/L	<2.0	2.0	4850497	<2.0		<2.0	2.0	4850497	N/A
Total Boron (B)	ug/L	<50	50	4850497	<50		<50	50	4850497	N/A
Total Cadmium (Cd)	ug/L	0.040	0.010	4850497	0.049		0.041	0.010	4850497	N/A
Total Calcium (Ca)	ug/L	4300	100	4850497	1200		8100	100	4850497	N/A
Total Chromium (Cr)	ug/L	1.5	1.0	4850497	<1.0		<1.0	1.0	4850497	N/A
Total Cobalt (Co)	ug/L	1.1	0.40	4850497	1.0		0.75	0.40	4850497	N/A
Total Copper (Cu)	ug/L	2.0	2.0	4850497	<2.0		3.6	2.0	4850497	N/A
Total Iron (Fe)	ug/L	2300	50	4850497	840		1000	50	4850497	N/A
Total Lead (Pb)	ug/L	1.1	0.50	4850497	0.67		0.64	0.50	4850497	N/A
Total Magnesium (Mg)	ug/L	1600	100	4850497	1500		2400	100	4850497	N/A
Total Manganese (Mn)	ug/L	210	2.0	4850497	36		86	2.0	4850497	N/A
Total Molybdenum (Mo)	ug/L	<2.0	2.0	4850497	<2.0		2.4	2.0	4850497	N/A
Total Nickel (Ni)	ug/L	2.1	2.0	4850497	<2.0		<2.0	2.0	4850497	N/A
Total Phosphorus (P)	ug/L	<100	100	4850497	100		<100	100	4850497	N/A
Total Potassium (K)	ug/L	4800	100	4850497	1100		7700	100	4850497	N/A
Total Selenium (Se)	ug/L	<1.0	1.0	4850497	<1.0		<1.0	1.0	4850497	N/A
Total Silver (Ag)	ug/L	<0.10	0.10	4850497	<0.10		<0.10	0.10	4850497	N/A
Total Sodium (Na)	ug/L	9500	100	4850497	9300		13000	100	4850497	N/A
Total Strontium (Sr)	ug/L	21	2.0	4850497	12		33	2.0	4850497	N/A
Total Thallium (TI)	ug/L	<0.10	0.10	4850497	<0.10		<0.10	0.10	4850497	N/A
Total Tin (Sn)	ug/L	<2.0	2.0	4850497	<2.0		<2.0	2.0	4850497	N/A
Total Titanium (Ti)	ug/L	7.7	2.0	4850497	3.1		7.9	2.0	4850497	N/A
Total Uranium (U)	ug/L	<0.10	0.10	4850497	<0.10		<0.10	0.10	4850497	N/A
Total Vanadium (V)	ug/L	<2.0	2.0	4850497	<2.0		<2.0	2.0	4850497	N/A
Total Zinc (Zn)	ug/L	22	5.0	4850497	<5.0		8.5	5.0	4850497	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08305 Sampler Initials: AS

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Maxxam ID		DVS431		DVS432			DVS433			
Sampling Date		2017/01/30		2017/01/30			2017/01/30			
		10:55		10:45			14:20			
COC Number		595824-03-01		595824-03-01			595824-03-01			
	UNITS	P2B	RDL	Р3	RDL	QC Batch	BACK2	RDL	QC Batch	MDL
Calculated Parameters										
Anion Sum	me/L	0.460	N/A	0.550	N/A	4848790	0.520	N/A	4848790	N/A
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	7.7	1.0	7.4	1.0	4848786	<1.0	1.0	4848786	0.20
Calculated TDS	mg/L	32	1.0	45	1.0	4848794	37	1.0	4848794	0.20
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	<1.0	1.0	4848786	<1.0	1.0	4848786	0.20
Cation Sum	me/L	0.620	N/A	1.01	N/A	4848790	0.610	N/A	4848790	N/A
Hardness (CaCO3)	mg/L	12	1.0	21	1.0	4848788	9.4	1.0	4848788	1.0
Ion Balance (% Difference)	%	14.8	N/A	29.5	N/A	4848789	7.96	N/A	4848789	N/A
Langelier Index (@ 20C)	N/A	-3.96		-3.85		4848792	NC		4848792	
Langelier Index (@ 4C)	N/A	-4.21		-4.10		4848793	NC		4848793	
Nitrate (N)	mg/L	<0.050	0.050	<0.050	0.050	4848791	0.084	0.050	4848791	N/A
Saturation pH (@ 20C)	N/A	9.98		9.68		4848792	NC		4848792	
Saturation pH (@ 4C)	N/A	10.2		9.93		4848793	NC		4848793	
Inorganics			•		•	•				•
Total Alkalinity (Total as CaCO3)	mg/L	7.7	5.0	7.4	5.0	4850399	<5.0	5.0	4850399	N/A
Dissolved Chloride (Cl)	mg/L	11	1.0	14	1.0	4850402	18	1.0	4850402	N/A
Colour	TCU	160	25	220	25	4850410	90	25	4850410	N/A
Nitrate + Nitrite (N)	mg/L	<0.050	0.050	<0.050	0.050	4850416	0.084	0.050	4850416	N/A
Nitrite (N)	mg/L	<0.010	0.010	<0.010	0.010	4850417	<0.010	0.010	4850417	N/A
Nitrogen (Ammonia Nitrogen)	mg/L	<0.050	0.050	0.39	0.050	4849192	<0.050	0.050	4849192	N/A
Total Organic Carbon (C)	mg/L	15	0.50	<250 (1)	250	4854545	7.4	0.50	4854545	N/A
Orthophosphate (P)	mg/L	0.022	0.010	0.022	0.010	4850415	0.011	0.010	4850415	N/A
рН	рН	6.02	N/A	5.84	N/A	4850237	5.49	N/A	4850241	N/A
Reactive Silica (SiO2)	mg/L	2.2	0.50	3.5	0.50	4850406	6.0	0.50	4850406	N/A
Dissolved Sulphate (SO4)	mg/L	<2.0	2.0	<2.0	2.0	4850405	<2.0	2.0	4850405	N/A
Turbidity	NTU	3.6	0.10	550	1.0	4850249	1.2	0.10	4850250	0.10
Conductivity	uS/cm	59	1.0	79	1.0	4850238	78	1.0	4850242	N/A
Metals										
Total Aluminum (AI)	ug/L	380	5.0	1100	5.0	4850497	360	5.0	4850234	N/A
Total Antimony (Sb)	ug/L	<1.0	1.0	<1.0	1.0	4850497	<1.0	1.0	4850234	N/A
Total Arsenic (As)	ug/L	<1.0	1.0	1.1	1.0	4850497	<1.0	1.0	4850234	N/A
Total Barium (Ba)	ug/L	6.3	1.0	6.8	1.0	4850497	7.0	1.0	4850234	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08305 Sampler Initials: AS

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Maxxam ID		DVS431		DVS432			DVS433			
Sampling Date		2017/01/30		2017/01/30			2017/01/30			
. 0		10:55		10:45			14:20			
COC Number		595824-03-01		595824-03-01			595824-03-01			
	UNITS	P2B	RDL	Р3	RDL	QC Batch	BACK2	RDL	QC Batch	MDL
Total Beryllium (Be)	ug/L	<1.0	1.0	<1.0	1.0	4850497	<1.0	1.0	4850234	N/A
Total Bismuth (Bi)	ug/L	<2.0	2.0	<2.0	2.0	4850497	<2.0	2.0	4850234	N/A
Total Boron (B)	ug/L	<50	50	<50	50	4850497	<50	50	4850234	N/A
Total Cadmium (Cd)	ug/L	0.038	0.010	0.044	0.010	4850497	0.034	0.010	4850234	N/A
Total Calcium (Ca)	ug/L	2700	100	5700	100	4850497	1700	100	4850234	N/A
Total Chromium (Cr)	ug/L	1.2	1.0	1.4	1.0	4850497	<1.0	1.0	4850234	N/A
Total Cobalt (Co)	ug/L	0.66	0.40	0.53	0.40	4850497	0.60	0.40	4850234	N/A
Total Copper (Cu)	ug/L	4.6	2.0	3.2	2.0	4850497	<2.0	2.0	4850234	N/A
Total Iron (Fe)	ug/L	1200	50	930	50	4850497	380	50	4850234	N/A
Total Lead (Pb)	ug/L	0.68	0.50	3.7	0.50	4850497	0.61	0.50	4850234	N/A
Total Magnesium (Mg)	ug/L	1300	100	1700	100	4850497	1300	100	4850234	N/A
Total Manganese (Mn)	ug/L	140	2.0	33	2.0	4850497	32	2.0	4850234	N/A
Total Molybdenum (Mo)	ug/L	<2.0	2.0	<2.0	2.0	4850497	<2.0	2.0	4850234	N/A
Total Nickel (Ni)	ug/L	<2.0	2.0	2.4	2.0	4850497	<2.0	2.0	4850234	N/A
Total Phosphorus (P)	ug/L	240	100	250	100	4850497	<100	100	4850234	N/A
Total Potassium (K)	ug/L	2400	100	3900	100	4850497	730	100	4850234	N/A
Total Selenium (Se)	ug/L	<1.0	1.0	<1.0	1.0	4850497	<1.0	1.0	4850234	N/A
Total Silver (Ag)	ug/L	<0.10	0.10	<0.10	0.10	4850497	<0.10	0.10	4850234	N/A
Total Sodium (Na)	ug/L	6300	100	9900	100	4850497	9200	100	4850234	N/A
Total Strontium (Sr)	ug/L	15	2.0	23	2.0	4850497	12	2.0	4850234	N/A
Total Thallium (TI)	ug/L	<0.10	0.10	<0.10	0.10	4850497	<0.10	0.10	4850234	N/A
Total Tin (Sn)	ug/L	<2.0	2.0	2.3	2.0	4850497	<2.0	2.0	4850234	N/A
Total Titanium (Ti)	ug/L	9.5	2.0	17	2.0	4850497	5.5	2.0	4850234	N/A
Total Uranium (U)	ug/L	<0.10	0.10	0.10	0.10	4850497	<0.10	0.10	4850234	N/A
Total Vanadium (V)	ug/L	<2.0	2.0	<2.0	2.0	4850497	<2.0	2.0	4850234	N/A
Total Zinc (Zn)	ug/L	12	5.0	11	5.0	4850497	6.4	5.0	4850234	N/A

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08305 Sampler Initials: AS

RESULTS OF ANALYSES OF WATER

Maxxam ID		DVS397	DVS398		DVS399		DVS421	DVS425			
Sampling Date		2017/01/31 13:00	2017/01/30 09:25		2017/01/30 11:50		2017/01/31 13:15	2017/01/30 14:00			
COC Number		595824-01-01	595824-01-01		595824-01-01		595824-02-01	595824-02-01			
	UNITS	SW1	SW2	RDL	SW3	RDL	SW14	SW-DUP2	RDL	QC Batch	MDL
Inorganics											
Total Suspended Solids	mg/L	3.8	3.2	1.0	13	2.0	<1.0	<1.0	1.0	4850267	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Maxxam ID		DVS433						
Sampling Date		2017/01/30 14:20						
COC Number		595824-03-01						
UNITS BACK2 RDL QC Batch M								
Inorganics								
Inorganics								
Inorganics Total Suspended Solids	mg/L	2.2	1.0	4850467	N/A			

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08305 Sampler Initials: AS

MERCURY BY COLD VAPOUR AA (WATER)

Maxxam ID		DVS397	DVS398	DVS399	DVS400	DVS401	DVS402			
Sampling Date		2017/01/31 13:00	2017/01/30 09:25	2017/01/30 11:50	2017/01/31 13:30	2017/01/30 11:55	2017/01/31 13:37			
COC Number		595824-01-01	595824-01-01	595824-01-01	595824-01-01	595824-01-01	595824-01-01			
	UNITS	SW1	SW2	SW3	SW4	SW5	SW6	RDL	QC Batch	MDL
Metals		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		·	
Total Mercury (Hg)	ug/L	0.028	0.018	0.023	0.018	0.017	0.015	0.013	4850869	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Maxxam ID		DVS402	DVS403	DVS404	DVS405	DVS406	DVS419			
Sampling Date		2017/01/31 13:37	2017/01/30 09:10	2017/01/30 10:05	2017/01/30 10:10	2017/01/30 09:45	2017/01/30 10:25			
COC Number		595824-01-01	595824-01-01	595824-01-01	595824-01-01	595824-01-01	595824-02-01			
	UNITS	SW6 Lab-Dup	SW7	SW8	SW9	SW10	SW11	RDL	QC Batch	MDL
Metals										
Total Mercury (Hg)	ug/L	0.015	0.015	0.015	0.020	0.018	0.032	0.013	4850869	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

Maxxam ID		DVS420	DVS421	DVS422	DVS423	DVS424	DVS425			
Sampling Date		2017/01/30	2017/01/31	2017/01/31	2017/01/31	2017/01/30	2017/01/30			
		08:50	13:15	13:45	14:00	14:00	14:00			
COC Number		595824-02-01	595824-02-01	595824-02-01	595824-02-01	595824-02-01	595824-02-01			
	UNITS	SW13	SW14	SW15	SW16	SW-DUP1	SW-DUP2	RDL	QC Batch	MDL
Metals										
Total Mercury (Hg)	ug/L	<0.013	0.017	<0.013	< 0.013	0.023	< 0.013	0.013	4850869	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08305 Sampler Initials: AS

MERCURY BY COLD VAPOUR AA (WATER)

Maxxam ID		DVS426		DVS427	DVS430	DVS431	DVS432			
Sampling Date		2017/01/30 11:35		2017/01/30 11:20	2017/01/30 11:05	2017/01/30 10:55	2017/01/30 10:45			
COC Number		595824-02-01		595824-02-01	595824-03-01	595824-03-01	595824-03-01			
	UNITS	P1A	QC Batch	P1B	P2A	P2B	Р3	RDL	QC Batch	MDL
Metals										
Total Mercury (Hg)	ug/L	0.018	4850869	0.030	0.022	0.018	0.79	0.013	4853060	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Maxxam ID		DVS433					
Sampling Date		2017/01/30 14:20					
COC Number		595824-03-01					
	UNITS	BACK2	RDL	QC Batch	MDL		
Metals							
Metals							
Metals Total Mercury (Hg)	ug/L	<0.013	0.013	4853060	N/A		
	<u> </u>	<0.013	0.013	4853060	N/A		
Total Mercury (Hg)	imit	<0.013	0.013	4853060	N/A		

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08305 Sampler Initials: AS

ELEMENTS BY ICP/MS (WATER)

Metals Dissolved Aluminum (Al) ug/L 540 380 Dissolved Antimony (Sb) ug/L <1.0 <1.0 Dissolved Arsenic (As) ug/L <1.0 <1.0 Dissolved Barium (Ba) ug/L 2.0 2.4 Dissolved Beryllium (Be) ug/L <1.0 <1.0 Dissolved Bismuth (Bi) ug/L <2.0 <2.0 Dissolved Boron (B) ug/L <50 <50 Dissolved Cadmium (Cd) ug/L <50 <50 Dissolved Cadmium (Ca) ug/L 810 1300 Dissolved Chromium (Cr) ug/L <1.0 <1.0 Dissolved Cobalt (Co) ug/L <0.40 <0.40 Dissolved Copper (Cu) ug/L <2.0 <2.0 Dissolved Iron (Fe) ug/L 520 300 Dissolved Magnesium (Mg) ug/L 3.1 1.1 Dissolved Magnesium (Mg) ug/L <2.0 <2.0 Dissolved Molybdenum (Mo) ug/L <2.0 <2.0	2017/01/30 11:50 595824-01-01 SW3 600 <1.0 1.6 7.6 <1.0 <2.0 <50 0.033 6200 1.4 0.75 3.1 2000 0.87 2000	2017/01/31 13:15 595824-02-01 SW14 460 <1.0 <1.0 3.9 <1.0 <2.0 <50 0.028 2100 1.5 <0.40 <2.0 520 1.1	320 <1.0 320 <1.0 <1.0 <1.0 <2.0 <50 0.028 1700 <1.0 0.56 <2.0	5.0 1.0 1.0 2.0 50 0.010 1.0 0.40 2.0	4850625 4850625 4850625 4850625 4850625 4850625 4850625 4850625 4850625 4850625	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
Metals Dissolved Aluminum (Al) ug/L 540 380 Dissolved Antimony (Sb) ug/L <1.0	\$W3 600 <1.0 1.6 7.6 <1.0 <2.0 <50 0.033 6200 1.4 0.75 3.1 2000 0.87	\$W14 460 <1.0 <1.0 3.9 <1.0 <2.0 <50 0.028 2100 1.5 <0.40 <2.0 520 1.1	\$W-DUP2 320 <1.0 <1.0 <6.8 <1.0 <2.0 <50 0.028 1700 <1.0 0.56 <2.0 280	5.0 1.0 1.0 1.0 2.0 50 0.010 100 1.0 0.40 2.0	4850625 4850625 4850625 4850625 4850625 4850625 4850625 4850625 4850625 4850625	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
Metals Dissolved Aluminum (Al) ug/L 540 380 Dissolved Antimony (Sb) ug/L <1.0 <1.0 Dissolved Arsenic (As) ug/L <1.0 <1.0 Dissolved Barium (Ba) ug/L 2.0 2.4 Dissolved Beryllium (Be) ug/L <1.0 <1.0 Dissolved Bismuth (Bi) ug/L <2.0 <2.0 Dissolved Boron (B) ug/L <50 <50 Dissolved Boron (B) ug/L <50 <50 Dissolved Cadmium (Cd) ug/L 0.032 0.020 Dissolved Cadmium (Ca) ug/L 810 1300 Dissolved Chromium (Cr) ug/L <1.0 <1.0 Dissolved Cobalt (Co) ug/L <0.40 <0.40 Dissolved Copper (Cu) ug/L <0.40 <0.40 Dissolved Iron (Fe) ug/L 520 300 Dissolved Magnesium (Mg) ug/L 3.1 1.1 Dissolved Magnesium (Mg) ug/L <2.0 <2.0	600 <1.0 1.6 7.6 <1.0 <2.0 <50 0.033 6200 1.4 0.75 3.1 2000 0.87	460 <1.0 <1.0 3.9 <1.0 <2.0 <50 0.028 2100 1.5 <0.40 <2.0 520 1.1	320 <1.0 <1.0 6.8 <1.0 <2.0 <50 0.028 1700 <1.0 0.56 <2.0 280	5.0 1.0 1.0 1.0 2.0 50 0.010 100 1.0 0.40 2.0	4850625 4850625 4850625 4850625 4850625 4850625 4850625 4850625 4850625 4850625	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
Dissolved Aluminum (Al) ug/L 540 380 Dissolved Antimony (Sb) ug/L <1.0 <1.0 Dissolved Arsenic (As) ug/L <1.0 <1.0 Dissolved Barium (Ba) ug/L 2.0 2.4 Dissolved Beryllium (Be) ug/L <1.0 <1.0 Dissolved Beryllium (Be) ug/L <2.0 <2.0 Dissolved Bismuth (Bi) ug/L <2.0 <2.0 Dissolved Boron (B) ug/L <50 <50 Dissolved Boron (B) ug/L <50 <50 Dissolved Cadmium (Cd) ug/L <50 <50 Dissolved Cadmium (Ca) ug/L 810 1300 Dissolved Chromium (Cr) ug/L <1.0 <1.0 Dissolved Chromium (Cr) ug/L <1.0 <1.0 Dissolved Cobalt (Co) ug/L <2.0 <2.0 Dissolved Cobalt (Co) ug/L <2.0 <2.0 Dissolved Iron (Fe) ug/L 3.1 1.1 Dissolved Magnesium (Mg) <t< th=""><th><1.0 1.6 7.6 <1.0 <2.0 <50 0.033 6200 1.4 0.75 3.1 2000 0.87</th><th><1.0 <1.0 3.9 <1.0 <2.0 <50 0.028 2100 1.5 <0.40 <2.0 520 1.1</th><th><1.0 <1.0 6.8 <1.0 <2.0 <50 0.028 1700 <1.0 0.56 <2.0 280</th><th>1.0 1.0 1.0 2.0 50 0.010 100 1.0 0.40 2.0</th><th>4850625 4850625 4850625 4850625 4850625 4850625 4850625 4850625 4850625</th><th>N/A N/A N/A N/A N/A N/A N/A N/A N/A</th></t<>	<1.0 1.6 7.6 <1.0 <2.0 <50 0.033 6200 1.4 0.75 3.1 2000 0.87	<1.0 <1.0 3.9 <1.0 <2.0 <50 0.028 2100 1.5 <0.40 <2.0 520 1.1	<1.0 <1.0 6.8 <1.0 <2.0 <50 0.028 1700 <1.0 0.56 <2.0 280	1.0 1.0 1.0 2.0 50 0.010 100 1.0 0.40 2.0	4850625 4850625 4850625 4850625 4850625 4850625 4850625 4850625 4850625	N/A N/A N/A N/A N/A N/A N/A N/A N/A
Dissolved Antimony (Sb) ug/L <1.0 <1.0 Dissolved Arsenic (As) ug/L <1.0	<1.0 1.6 7.6 <1.0 <2.0 <50 0.033 6200 1.4 0.75 3.1 2000 0.87	<1.0 <1.0 3.9 <1.0 <2.0 <50 0.028 2100 1.5 <0.40 <2.0 520 1.1	<1.0 <1.0 6.8 <1.0 <2.0 <50 0.028 1700 <1.0 0.56 <2.0 280	1.0 1.0 1.0 2.0 50 0.010 100 1.0 0.40 2.0	4850625 4850625 4850625 4850625 4850625 4850625 4850625 4850625 4850625	N/A N/A N/A N/A N/A N/A N/A N/A N/A
Dissolved Arsenic (As) ug/L <1.0 <1.0 Dissolved Barium (Ba) ug/L 2.0 2.4 Dissolved Beryllium (Be) ug/L <1.0	1.6 7.6 <1.0 <2.0 <50 0.033 6200 1.4 0.75 3.1 2000 0.87	<1.0 3.9 <1.0 <2.0 <50 0.028 2100 1.5 <0.40 <2.0 520 1.1	<1.0 6.8 <1.0 <2.0 <50 0.028 1700 <1.0 0.56 <2.0 280	1.0 1.0 2.0 50 0.010 1.0 0.40 2.0	4850625 4850625 4850625 4850625 4850625 4850625 4850625 4850625	N/A N/A N/A N/A N/A N/A N/A N/A
Dissolved Barium (Ba) ug/L 2.0 2.4 Dissolved Beryllium (Be) ug/L <1.0	7.6 <1.0 <2.0 <50 0.033 6200 1.4 0.75 3.1 2000 0.87	3.9 <1.0 <2.0 <50 0.028 2100 1.5 <0.40 <2.0 520 1.1	6.8 <1.0 <2.0 <50 0.028 1700 <1.0 0.56 <2.0 280	1.0 1.0 2.0 50 0.010 100 1.0 0.40 2.0	4850625 4850625 4850625 4850625 4850625 4850625 4850625 4850625	N/A N/A N/A N/A N/A N/A N/A
Dissolved Beryllium (Be) ug/L <1.0 <1.0 Dissolved Bismuth (Bi) ug/L <2.0	<1.0 <2.0 <50 0.033 6200 1.4 0.75 3.1 2000 0.87	<1.0 <2.0 <50 0.028 2100 1.5 <0.40 <2.0 520 1.1	<1.0 <2.0 <50 0.028 1700 <1.0 0.56 <2.0 280	1.0 2.0 50 0.010 100 1.0 0.40 2.0	4850625 4850625 4850625 4850625 4850625 4850625 4850625	N/A N/A N/A N/A N/A N/A
Dissolved Bismuth (Bi) ug/L <2.0	<2.0 <50 0.033 6200 1.4 0.75 3.1 2000 0.87	<2.0 <50 0.028 2100 1.5 <0.40 <2.0 520 1.1	<2.0 <50 0.028 1700 <1.0 0.56 <2.0 280	2.0 50 0.010 100 1.0 0.40 2.0	4850625 4850625 4850625 4850625 4850625 4850625	N/A N/A N/A N/A N/A
Dissolved Boron (B) ug/L <50 <50 Dissolved Cadmium (Cd) ug/L 0.032 0.020 Dissolved Calcium (Ca) ug/L 810 1300 Dissolved Chromium (Cr) ug/L <1.0	<50 0.033 6200 1.4 0.75 3.1 2000 0.87	<50 0.028 2100 1.5 <0.40 <2.0 520 1.1	<50 0.028 1700 <1.0 0.56 <2.0 280	50 0.010 100 1.0 0.40 2.0	4850625 4850625 4850625 4850625 4850625	N/A N/A N/A N/A
Dissolved Cadmium (Cd) ug/L 0.032 0.020 Dissolved Calcium (Ca) ug/L 810 1300 Dissolved Chromium (Cr) ug/L <1.0	0.033 6200 1.4 0.75 3.1 2000 0.87	0.028 2100 1.5 <0.40 <2.0 520 1.1	0.028 1700 <1.0 0.56 <2.0 280	0.010 100 1.0 0.40 2.0	4850625 4850625 4850625 4850625	N/A N/A N/A
Dissolved Calcium (Ca) ug/L 810 1300 Dissolved Chromium (Cr) ug/L <1.0	6200 1.4 0.75 3.1 2000 0.87	2100 1.5 <0.40 <2.0 520 1.1	1700 <1.0 0.56 <2.0 280	100 1.0 0.40 2.0	4850625 4850625 4850625 4850625	N/A N/A N/A
Dissolved Chromium (Cr) ug/L <1.0	1.4 0.75 3.1 2000 0.87	1.5 <0.40 <2.0 520 1.1	<1.0 0.56 <2.0 280	1.0 0.40 2.0	4850625 4850625 4850625	N/A N/A
Dissolved Cobalt (Co) ug/L <0.40 <0.40 Dissolved Copper (Cu) ug/L <2.0	0.75 3.1 2000 0.87	<0.40 <2.0 520 1.1	0.56 <2.0 280	0.40 2.0	4850625 4850625	N/A
Dissolved Copper (Cu) ug/L <2.0	3.1 2000 0.87	<2.0 520 1.1	<2.0 280	2.0	4850625	
Dissolved Iron (Fe) ug/L 520 300 Dissolved Lead (Pb) ug/L 3.1 1.1 Dissolved Magnesium (Mg) ug/L 460 980 Dissolved Manganese (Mn) ug/L 10 14 Dissolved Molybdenum (Mo) ug/L <2.0	2000 0.87	520 1.1	280			N/A
Dissolved Lead (Pb) ug/L 3.1 1.1 Dissolved Magnesium (Mg) ug/L 460 980 Dissolved Manganese (Mn) ug/L 10 14 Dissolved Molybdenum (Mo) ug/L <2.0	0.87	1.1		50	4050635	
Dissolved Magnesium (Mg) ug/L 460 980 Dissolved Manganese (Mn) ug/L 10 14 Dissolved Molybdenum (Mo) ug/L <2.0			0.50		4850625	N/A
Dissolved Manganese (Mn) ug/L 10 14 Dissolved Molybdenum (Mo) ug/L <2.0	2000	4400	<0.50	0.50	4850625	N/A
Dissolved Molybdenum (Mo) ug/L <2.0		1100	1300	100	4850625	N/A
Dissolved Nickel (Ni) ug/L <2.0 <2.0 Dissolved Phosphorus (P) ug/L <100	110	12	30	2.0	4850625	N/A
Dissolved Phosphorus (P) ug/L <100 <100 Dissolved Potassium (K) ug/L 3800 1800 Dissolved Selenium (Se) ug/L <1.0	<2.0	<2.0	<2.0	2.0	4850625	N/A
Dissolved Potassium (K) ug/L 3800 1800 Dissolved Selenium (Se) ug/L <1.0	2.8	<2.0	<2.0	2.0	4850625	N/A
Dissolved Selenium (Se) ug/L <1.0 <1.0 Dissolved Silver (Ag) ug/L <0.10	<100	<100	<100	100	4850625	N/A
Dissolved Silver (Ag) ug/L <0.10 <0.10	6900	2700	710	100	4850625	N/A
	<1.0	<1.0	<1.0	1.0	4850625	N/A
D: 1 (C): (N)	<0.10	<0.10	<0.10	0.10	4850625	N/A
Dissolved Sodium (Na) ug/L 9500 7500	11000	16000	9000	100	4850625	N/A
Dissolved Strontium (Sr) ug/L 5.7 8.5	28	14	11	2.0	4850625	N/A
Dissolved Thallium (TI) ug/L <0.10 <0.10	<0.10	<0.10	<0.10	0.10	4850625	N/A
Dissolved Tin (Sn) ug/L <2.0 <2.0	<2.0	<2.0	<2.0	2.0	4850625	N/A
Dissolved Titanium (Ti) ug/L 7.6 3.2	9.7	5.5	3.4	2.0	4850625	N/A
Dissolved Uranium (U) ug/L <0.10 <0.10				0.10	4850625	N/A
Dissolved Vanadium (V) ug/L <2.0 <2.0	<0.10	<0.10	<0.10	0.10	4030023	
Dissolved Zinc (Zn) ug/L 5.9 6.9	<0.10 <2.0	<0.10 <2.0	<0.10 <2.0	2.0	4850625	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08305 Sampler Initials: AS

ELEMENTS BY ICP/MS (WATER)

Maxxam ID		DVS433			
Sampling Date		2017/01/30 14:20			
COC Number		595824-03-01			
	UNITS	ВАСК2	RDL	QC Batch	MDI
Metals					
Dissolved Aluminum (Al)	ug/L	320	5.0	4850625	N/A
Dissolved Antimony (Sb)	ug/L	<1.0	1.0	4850625	N/A
Dissolved Arsenic (As)	ug/L	<1.0	1.0	4850625	N/A
Dissolved Barium (Ba)	ug/L	6.9	1.0	4850625	N/A
Dissolved Beryllium (Be)	ug/L	<1.0	1.0	4850625	N/A
Dissolved Bismuth (Bi)	ug/L	<2.0	2.0	4850625	N/A
Dissolved Boron (B)	ug/L	<50	50	4850625	N/A
Dissolved Cadmium (Cd)	ug/L	0.021	0.010	4850625	N/A
Dissolved Calcium (Ca)	ug/L	1700	100	4850625	N/A
Dissolved Chromium (Cr)	ug/L	<1.0	1.0	4850625	N/A
Dissolved Cobalt (Co)	ug/L	0.54	0.40	4850625	N/A
Dissolved Copper (Cu)	ug/L	<2.0	2.0	4850625	N/A
Dissolved Iron (Fe)	ug/L	290	50	4850625	N/A
Dissolved Lead (Pb)	ug/L	<0.50	0.50	4850625	N/A
Dissolved Magnesium (Mg)	ug/L	1300	100	4850625	N/A
Dissolved Manganese (Mn)	ug/L	31	2.0	4850625	N/A
Dissolved Molybdenum (Mo)	ug/L	<2.0	2.0	4850625	N/A
Dissolved Nickel (Ni)	ug/L	<2.0	2.0	4850625	N/A
Dissolved Phosphorus (P)	ug/L	<100	100	4850625	N/A
Dissolved Potassium (K)	ug/L	710	100	4850625	N/A
Dissolved Selenium (Se)	ug/L	<1.0	1.0	4850625	N/A
Dissolved Silver (Ag)	ug/L	<0.10	0.10	4850625	N/A
Dissolved Sodium (Na)	ug/L	9000	100	4850625	N/A
Dissolved Strontium (Sr)	ug/L	12	2.0	4850625	N/A
Dissolved Thallium (TI)	ug/L	<0.10	0.10	4850625	N/A
Dissolved Tin (Sn)	ug/L	<2.0	2.0	4850625	N/A
Dissolved Titanium (Ti)	ug/L	3.5	2.0	4850625	N/A
Dissolved Uranium (U)	ug/L	<0.10	0.10	4850625	N/A
Dissolved Vanadium (V)	ug/L	<2.0	2.0	4850625	N/A
Dissolved Zinc (Zn)	ug/L	7.9	5.0	4850625	N/A
RDL = Reportable Detection Li	mit		•	•	•

QC Batch = Quality Control Batch

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08305 Sampler Initials: AS

TEST SUMMARY

Maxxam ID: DVS397 Sample ID: SW1 Matrix: Water Collected:

2017/01/31

Shipped:

Received: 2017/02/01

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4848529	N/A	2017/02/03	Automated Statchk
Alkalinity	KONE	4850350	N/A	2017/02/06	Nancy Rogers
Chloride	KONE	4850359	N/A	2017/02/06	Mary Clancey
Colour	KONE	4850388	N/A	2017/02/06	Mary Clancey
Conductance - water	AT	4850238	N/A	2017/02/03	Julia McGovern
Hardness (calculated as CaCO3)		4848531	N/A	2017/02/06	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4850869	2017/02/03	2017/02/06	Arlene Rossiter
Metals Water Diss. MS (as rec'd)	CICP/MS	4850625	N/A	2017/02/04	Bryon Angevine
Metals Water Total MS	CICP/MS	4850280	2017/02/03	2017/02/03	Mike Leblanc
Ion Balance (% Difference)	CALC	4848532	N/A	2017/02/07	Automated Statchk
Anion and Cation Sum	CALC	4848533	N/A	2017/02/07	Automated Statchk
Nitrogen Ammonia - water	KONE	4849179	N/A	2017/02/06	Mary Clancey
Nitrogen - Nitrate + Nitrite	KONE	4850394	N/A	2017/02/03	Nancy Rogers
Nitrogen - Nitrite	KONE	4850395	N/A	2017/02/03	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4848534	N/A	2017/02/07	Automated Statchk
рН	AT	4850237	N/A	2017/02/03	Julia McGovern
Phosphorus - ortho	KONE	4850390	N/A	2017/02/06	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4848536	N/A	2017/02/07	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4848537	N/A	2017/02/07	Automated Statchk
Reactive Silica	KONE	4850377	N/A	2017/02/06	Nancy Rogers
Sulphate	KONE	4850366	N/A	2017/02/06	Mary Clancey
Total Dissolved Solids (TDS calc)	CALC	4848538	N/A	2017/02/07	Automated Statchk
Organic carbon - Total (TOC)	TECH	4854231	N/A	2017/02/07	Steven Smith
Total Suspended Solids	BAL	4850267	2017/02/03	2017/02/08	Leslie Power
Turbidity	TURB	4850250	N/A	2017/02/03	Julia McGovern

Maxxam ID: DVS398 Sample ID: SW2 Matrix: Water **Collected:** 2017/01/30

Shipped:

Received: 2017/02/01

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4848529	N/A	2017/02/06	Automated Statchk
Alkalinity	KONE	4850350	N/A	2017/02/06	Nancy Rogers
Chloride	KONE	4850359	N/A	2017/02/06	Mary Clancey
Colour	KONE	4850388	N/A	2017/02/06	Mary Clancey
Conductance - water	AT	4852495	N/A	2017/02/06	Julia McGovern
Hardness (calculated as CaCO3)		4848531	N/A	2017/02/06	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4850869	2017/02/03	2017/02/06	Arlene Rossiter
Metals Water Diss. MS (as rec'd)	CICP/MS	4850625	N/A	2017/02/04	Bryon Angevine
Metals Water Total MS	CICP/MS	4850280	2017/02/03	2017/02/03	Mike Leblanc
Ion Balance (% Difference)	CALC	4848532	N/A	2017/02/07	Automated Statchk
Anion and Cation Sum	CALC	4848533	N/A	2017/02/07	Automated Statchk
Nitrogen Ammonia - water	KONE	4849179	N/A	2017/02/06	Mary Clancey

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08305 Sampler Initials: AS

TEST SUMMARY

Maxxam ID: DVS398 Sample ID: SW2 Matrix: Water

Collected: 2017/01/30

Shipped:

Received: 2017/02/01

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Nitrogen - Nitrate + Nitrite	KONE	4850394	N/A	2017/02/03	Nancy Rogers
Nitrogen - Nitrite	KONE	4850395	N/A	2017/02/03	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4848534	N/A	2017/02/07	Automated Statchk
рН	AT	4852494	N/A	2017/02/06	Julia McGovern
Phosphorus - ortho	KONE	4850390	N/A	2017/02/06	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4848536	N/A	2017/02/07	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4848537	N/A	2017/02/07	Automated Statchk
Reactive Silica	KONE	4850377	N/A	2017/02/06	Nancy Rogers
Sulphate	KONE	4850366	N/A	2017/02/06	Mary Clancey
Total Dissolved Solids (TDS calc)	CALC	4848538	N/A	2017/02/07	Automated Statchk
Organic carbon - Total (TOC)	TECH	4854231	N/A	2017/02/07	Steven Smith
Total Suspended Solids	BAL	4850267	2017/02/03	2017/02/08	Leslie Power
Turbidity	TURB	4850252	N/A	2017/02/03	Julia McGovern

Maxxam ID: DVS399 Sample ID: SW3 Matrix: Water

Collected: Shipped:

2017/01/30

Received: 2017/02/01

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4848529	N/A	2017/02/03	Automated Statchk
Alkalinity	KONE	4850350	N/A	2017/02/06	Nancy Rogers
Chloride	KONE	4850359	N/A	2017/02/06	Mary Clancey
Colour	KONE	4850388	N/A	2017/02/06	Mary Clancey
Conductance - water	AT	4850238	N/A	2017/02/03	Julia McGovern
Hardness (calculated as CaCO3)		4848531	N/A	2017/02/06	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4850869	2017/02/03	2017/02/06	Arlene Rossiter
Metals Water Diss. MS (as rec'd)	CICP/MS	4850625	N/A	2017/02/04	Bryon Angevine
Metals Water Total MS	CICP/MS	4850280	2017/02/03	2017/02/06	Mike Leblanc
Ion Balance (% Difference)	CALC	4848532	N/A	2017/02/07	Automated Statchk
Anion and Cation Sum	CALC	4848533	N/A	2017/02/07	Automated Statchk
Nitrogen Ammonia - water	KONE	4849179	N/A	2017/02/06	Mary Clancey
Nitrogen - Nitrate + Nitrite	KONE	4850394	N/A	2017/02/03	Nancy Rogers
Nitrogen - Nitrite	KONE	4850395	N/A	2017/02/03	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4848534	N/A	2017/02/07	Automated Statchk
рН	AT	4850237	N/A	2017/02/03	Julia McGovern
Phosphorus - ortho	KONE	4850390	N/A	2017/02/06	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4848536	N/A	2017/02/07	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4848537	N/A	2017/02/07	Automated Statchk
Reactive Silica	KONE	4850377	N/A	2017/02/06	Nancy Rogers
Sulphate	KONE	4850366	N/A	2017/02/06	Mary Clancey
Total Dissolved Solids (TDS calc)	CALC	4848538	N/A	2017/02/07	Automated Statchk
Organic carbon - Total (TOC)	TECH	4854231	N/A	2017/02/07	Steven Smith
Total Suspended Solids	BAL	4850267	2017/02/03	2017/02/08	Leslie Power

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08305 Sampler Initials: AS

TEST SUMMARY

Maxxam ID: DVS399

Collected: 2

2017/01/30

Sample ID: SW3 Matrix: Water Shipped: Received:

2017/02/01

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Turbidity	TURB	4850250	N/A	2017/02/03	Julia McGovern

Maxxam ID: DVS400

Collected: 201

2017/01/31

Sample ID: SW4 Matrix: Water Shipped:

Received: 2017/02/01

Alkalinity	Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Chloride KONE	Carbonate, Bicarbonate and Hydroxide	CALC	4848529	N/A	2017/02/03	Automated Statchk
Colour KONE 4850388 N/A 2017/02/06 Mary Clancey Conductance - water AT 4850242 N/A 2017/02/03 Julia McGovern Hardness (calculated as CaCO3) 4848531 N/A 2017/02/06 Automated Statchk Mercury - Total (CVAA,LL) CV/AA 4850869 2017/02/03 2017/02/06 Arlene Rossiter Metals Water Total MS CICP/MS 4850280 2017/02/03 2017/02/03 Mike Leblanc Ion Balance (% Difference) CALC 4848532 N/A 2017/02/07 Automated Statchk Anion and Cation Sum CALC 4848533 N/A 2017/02/07 Automated Statchk Nitrogen Ammonia - water KONE 4849179 N/A 2017/02/06 Mary Clancey Nitrogen - Nitrate + Nitrite KONE 4850394 N/A 2017/02/03 Nancy Rogers Nitrogen - Nitrate (as N) CALC 4848534 N/A 2017/02/03 Nancy Rogers Nitrogen - Nitrate (as N) CALC 4848534 N/A 2017/02/07 Automated Statch	Alkalinity	KONE	4850350	N/A	2017/02/06	Nancy Rogers
Conductance - water AT 4850242 N/A 2017/02/03 Julia McGovern Hardness (calculated as CaCO3) 4848531 N/A 2017/02/06 Automated Statchk Mercury - Total (CVAA,LL) CV/AA 4850869 2017/02/03 2017/02/06 Arlene Rossiter Metals Water Total MS CICP/MS 4850280 2017/02/03 2017/02/03 Mike Leblanc Ion Balance (% Difference) CALC 4848532 N/A 2017/02/07 Automated Statchk Anion and Cation Sum CALC 4848533 N/A 2017/02/07 Automated Statchk Nitrogen Ammonia - water KONE 4849179 N/A 2017/02/06 Mary Clancey Nitrogen - Nitrate + Nitrite KONE 4850394 N/A 2017/02/03 Nancy Rogers Nitrogen - Nitrate (as N) CALC 4848534 N/A 2017/02/03 Nancy Rogers Nitrogen - Nitrate (as N) CALC 4848534 N/A 2017/02/07 Automated Statchk pH AT 4850241 N/A 2017/02/03 Julia McGovern <td>Chloride</td> <td>KONE</td> <td>4850359</td> <td>N/A</td> <td>2017/02/06</td> <td>Mary Clancey</td>	Chloride	KONE	4850359	N/A	2017/02/06	Mary Clancey
Hardness (calculated as CaCO3)	Colour	KONE	4850388	N/A	2017/02/06	Mary Clancey
Mercury - Total (CVAA,LL) CV/AA 4850869 2017/02/03 2017/02/06 Arlene Rossiter Metals Water Total MS CICP/MS 4850280 2017/02/03 2017/02/03 Mike Leblanc Ion Balance (% Difference) CALC 4848532 N/A 2017/02/07 Automated Statchk Anion and Cation Sum CALC 4848533 N/A 2017/02/07 Automated Statchk Nitrogen Ammonia - water KONE 4849179 N/A 2017/02/06 Mary Clancey Nitrogen - Nitrate + Nitrite KONE 4850394 N/A 2017/02/03 Nancy Rogers Nitrogen - Nitrate (as N) CALC 4848534 N/A 2017/02/03 Nancy Rogers Nitrogen - Nitrate (as N) CALC 4848534 N/A 2017/02/07 Automated Statchk pH AT 4850241 N/A 2017/02/07 Automated Statchk Phosphorus - ortho KONE 4850390 N/A 2017/02/03 Julia McGovern Phosphorus - ortho KONE 4850390 N/A 2017/02/06 Nancy	Conductance - water	AT	4850242	N/A	2017/02/03	Julia McGovern
Metals Water Total MS CICP/MS 4850280 2017/02/03 2017/02/03 Mike Leblanc Ion Balance (% Difference) CALC 4848532 N/A 2017/02/07 Automated Statchk Anion and Cation Sum CALC 4848533 N/A 2017/02/07 Automated Statchk Nitrogen Ammonia - water KONE 4849179 N/A 2017/02/06 Mary Clancey Nitrogen - Nitriate + Nitrite KONE 4850394 N/A 2017/02/03 Nancy Rogers Nitrogen - Nitrate (as N) CALC 4848534 N/A 2017/02/07 Automated Statchk Nitrogen - Nitrate (as N) CALC 4848534 N/A 2017/02/07 Automated Statchk PH AT 4850241 N/A 2017/02/07 Julia McGovern Phosphorus - ortho KONE 4850390 N/A 2017/02/06 Nancy Rogers Sat. pH and Langelier Index (@ 20C) CALC 4848536 N/A 2017/02/07 Automated Statchk Sat. pH and Langelier Index (@ 4C) CALC 4848537 N/A 2017/02/06 <td>Hardness (calculated as CaCO3)</td> <td></td> <td>4848531</td> <td>N/A</td> <td>2017/02/06</td> <td>Automated Statchk</td>	Hardness (calculated as CaCO3)		4848531	N/A	2017/02/06	Automated Statchk
CALC 4848532 N/A 2017/02/07 Automated Statchk	Mercury - Total (CVAA,LL)	CV/AA	4850869	2017/02/03	2017/02/06	Arlene Rossiter
Anion and Cation Sum CALC 4848533 N/A 2017/02/07 Automated Statchk Nitrogen Ammonia - water KONE 4849179 N/A 2017/02/06 Mary Clancey Nitrogen - Nitrate + Nitrite KONE 4850394 N/A 2017/02/03 Nancy Rogers Nitrogen - Nitrate (as N) CALC 4848534 N/A 2017/02/07 Automated Statchk Nancy Rogers Nitrogen - Nitrate (as N) CALC 4848534 N/A 2017/02/07 Automated Statchk Phosphorus - ortho KONE 4850390 N/A 2017/02/06 Nancy Rogers Sat. pH and Langelier Index (@ 20C) CALC 4848536 N/A 2017/02/07 Automated Statchk Sat. pH and Langelier Index (@ 4C) CALC 4848537 N/A 2017/02/07 Automated Statchk Reactive Silica KONE 4850377 N/A 2017/02/06 Nancy Rogers Sulphate KONE 4850366 N/A 2017/02/06 Mary Clancey Total Dissolved Solids (TDS calc) CALC 4848538 N/A 2017/02/07 Automated Statchk Organic carbon - Total (TOC) TECH 4854231 N/A 2017/02/07 Steven Smith	Metals Water Total MS	CICP/MS	4850280	2017/02/03	2017/02/03	Mike Leblanc
Nitrogen Ammonia - water KONE 4849179 N/A 2017/02/06 Mary Clancey Nitrogen - Nitrate + Nitrite KONE 4850394 N/A 2017/02/03 Nancy Rogers Nitrogen - Nitrate + Nitrite KONE 4850395 N/A 2017/02/03 Nancy Rogers Nitrogen - Nitrate (as N) CALC 4848534 N/A 2017/02/07 Automated Statchk Phosphorus - ortho KONE 4850390 N/A 2017/02/06 Nancy Rogers Sat. pH and Langelier Index (@ 20C) CALC 4848536 N/A 2017/02/07 Automated Statchk Sat. pH and Langelier Index (@ 4C) CALC 4848537 N/A 2017/02/07 Automated Statchk Reactive Silica KONE 4850377 N/A 2017/02/07 Automated Statchk Sulphate KONE 4850366 N/A 2017/02/06 Nancy Rogers Sulphate KONE 4850366 N/A 2017/02/06 Nancy Rogers Total Dissolved Solids (TDS calc) CALC 4848538 N/A 2017/02/07 Automated Statchk Organic carbon - Total (TOC) TECH 4854231 N/A 2017/02/07 Steven Smith	Ion Balance (% Difference)	CALC	4848532	N/A	2017/02/07	Automated Statchk
Nitrogen - Nitrate + Nitrite	Anion and Cation Sum	CALC	4848533	N/A	2017/02/07	Automated Statchk
Nitrogen - Nitrite KONE 4850395 N/A 2017/02/03 Nancy Rogers Nitrogen - Nitrate (as N) CALC 4848534 N/A 2017/02/07 Automated Statchk Ph AT 4850241 N/A 2017/02/03 Julia McGovern Phosphorus - ortho KONE 4850390 N/A 2017/02/06 Nancy Rogers Sat. pH and Langelier Index (@ 20C) CALC 4848536 N/A 2017/02/07 Automated Statchk Sat. pH and Langelier Index (@ 4C) CALC 4848537 N/A 2017/02/07 Automated Statchk Reactive Silica KONE 4850377 N/A 2017/02/06 Nancy Rogers Sulphate KONE 4850366 N/A 2017/02/06 Nancy Rogers Total Dissolved Solids (TDS calc) CALC 4848538 N/A 2017/02/07 Automated Statchk Organic carbon - Total (TOC) TECH 4854231 N/A 2017/02/07 Steven Smith	Nitrogen Ammonia - water	KONE	4849179	N/A	2017/02/06	Mary Clancey
Nitrogen - Nitrate (as N) CALC 4848534 N/A 2017/02/07 Automated Statchk pH AT 4850241 N/A 2017/02/03 Julia McGovern Phosphorus - ortho KONE 4850390 N/A 2017/02/06 Nancy Rogers Sat. pH and Langelier Index (@ 20C) CALC 4848536 N/A 2017/02/07 Automated Statchk Sat. pH and Langelier Index (@ 4C) CALC 4848537 N/A 2017/02/07 Automated Statchk Reactive Silica KONE 4850377 N/A 2017/02/06 Nancy Rogers Sulphate KONE 4850366 N/A 2017/02/06 Mary Clancey Total Dissolved Solids (TDS calc) CALC 4848538 N/A 2017/02/07 Automated Statchk Organic carbon - Total (TOC) TECH 4854231 N/A 2017/02/07 Steven Smith	Nitrogen - Nitrate + Nitrite	KONE	4850394	N/A	2017/02/03	Nancy Rogers
Phosphorus - ortho KONE 4850390 N/A 2017/02/06 Nancy Rogers Sat. pH and Langelier Index (@ 20C) CALC 4848536 N/A 2017/02/07 Automated Statchk Sat. pH and Langelier Index (@ 4C) CALC 4848537 N/A 2017/02/07 Automated Statchk Reactive Silica KONE 4850377 N/A 2017/02/06 Nancy Rogers Sulphate KONE 4850366 N/A 2017/02/06 Nancy Rogers Total Dissolved Solids (TDS calc) CALC 4848538 N/A 2017/02/07 Automated Statchk Organic carbon - Total (TOC) TECH 4854231 N/A 2017/02/07 Steven Smith	Nitrogen - Nitrite	KONE	4850395	N/A	2017/02/03	Nancy Rogers
Phosphorus - ortho KONE 4850390 N/A 2017/02/06 Nancy Rogers Sat. pH and Langelier Index (@ 20C) CALC 4848536 N/A 2017/02/07 Automated Statchk Sat. pH and Langelier Index (@ 4C) CALC 4848537 N/A 2017/02/07 Automated Statchk Reactive Silica KONE 4850377 N/A 2017/02/06 Nancy Rogers Sulphate KONE 4850366 N/A 2017/02/06 Mary Clancey Total Dissolved Solids (TDS calc) CALC 4848538 N/A 2017/02/07 Automated Statchk Organic carbon - Total (TOC) TECH 4854231 N/A 2017/02/07 Steven Smith	Nitrogen - Nitrate (as N)	CALC	4848534	N/A	2017/02/07	Automated Statchk
Sat. pH and Langelier Index (@ 20C) CALC 4848536 N/A 2017/02/07 Automated Statchk Sat. pH and Langelier Index (@ 4C) CALC 4848537 N/A 2017/02/07 Automated Statchk Reactive Silica KONE 4850377 N/A 2017/02/06 Nancy Rogers Sulphate KONE 4850366 N/A 2017/02/06 Mary Clancey Total Dissolved Solids (TDS calc) CALC 4848538 N/A 2017/02/07 Automated Statchk Organic carbon - Total (TOC) TECH 4854231 N/A 2017/02/07 Steven Smith	рН	AT	4850241	N/A	2017/02/03	Julia McGovern
Sat. pH and Langelier Index (@ 4C) CALC 4848537 N/A 2017/02/07 Automated Statchk Reactive Silica KONE 4850377 N/A 2017/02/06 Nancy Rogers Sulphate KONE 4850366 N/A 2017/02/06 Mary Clancey Total Dissolved Solids (TDS calc) CALC 4848538 N/A 2017/02/07 Automated Statchk Organic carbon - Total (TOC) TECH 4854231 N/A 2017/02/07 Steven Smith	Phosphorus - ortho	KONE	4850390	N/A	2017/02/06	Nancy Rogers
Reactive Silica KONE 4850377 N/A 2017/02/06 Nancy Rogers Sulphate KONE 4850366 N/A 2017/02/06 Mary Clancey Total Dissolved Solids (TDS calc) CALC 4848538 N/A 2017/02/07 Automated Statchk Organic carbon - Total (TOC) TECH 4854231 N/A 2017/02/07 Steven Smith	Sat. pH and Langelier Index (@ 20C)	CALC	4848536	N/A	2017/02/07	Automated Statchk
Sulphate KONE 4850366 N/A 2017/02/06 Mary Clancey Total Dissolved Solids (TDS calc) CALC 4848538 N/A 2017/02/07 Automated Statchk Organic carbon - Total (TOC) TECH 4854231 N/A 2017/02/07 Steven Smith	Sat. pH and Langelier Index (@ 4C)	CALC	4848537	N/A	2017/02/07	Automated Statchk
Total Dissolved Solids (TDS calc) CALC 4848538 N/A 2017/02/07 Automated Statchk Organic carbon - Total (TOC) TECH 4854231 N/A 2017/02/07 Steven Smith	Reactive Silica	KONE	4850377	N/A	2017/02/06	Nancy Rogers
Organic carbon - Total (TOC) TECH 4854231 N/A 2017/02/07 Steven Smith	Sulphate	KONE	4850366	N/A	2017/02/06	Mary Clancey
	Total Dissolved Solids (TDS calc)	CALC	4848538	N/A	2017/02/07	Automated Statchk
Turbidity TURB 4850250 N/A 2017/02/03 Julia McGovern	Organic carbon - Total (TOC)	TECH	4854231	N/A	2017/02/07	Steven Smith
	Turbidity	TURB	4850250	N/A	2017/02/03	Julia McGovern

Maxxam ID: DVS401 Sample ID: SW5 Matrix: Water Collected: 20

2017/01/30

Shipped: Received:

: 2017/02/01

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4848529	N/A	2017/02/03	Automated Statchk
Alkalinity	KONE	4850399	N/A	2017/02/06	Nancy Rogers
Chloride	KONE	4850402	N/A	2017/02/06	Mary Clancey
Colour	KONE	4850410	N/A	2017/02/06	Mary Clancey
Conductance - water	AT	4850238	N/A	2017/02/03	Julia McGovern
Hardness (calculated as CaCO3)		4848531	N/A	2017/02/06	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4850869	2017/02/03	2017/02/06	Arlene Rossiter

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08305 Sampler Initials: AS

TEST SUMMARY

Maxxam ID: DVS401 Sample ID: SW5 Matrix: Water Collected:

2017/01/30

Shipped: Received:

ed: 2017/02/01

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Metals Water Total MS	CICP/MS	4850280	2017/02/03	2017/02/03	Mike Leblanc
Ion Balance (% Difference)	CALC	4848532	N/A	2017/02/07	Automated Statchk
Anion and Cation Sum	CALC	4848533	N/A	2017/02/07	Automated Statchk
Nitrogen Ammonia - water	KONE	4849179	N/A	2017/02/06	Mary Clancey
Nitrogen - Nitrate + Nitrite	KONE	4850416	N/A	2017/02/03	Nancy Rogers
Nitrogen - Nitrite	KONE	4850417	N/A	2017/02/03	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4848534	N/A	2017/02/07	Automated Statchk
рН	AT	4850237	N/A	2017/02/03	Julia McGovern
Phosphorus - ortho	KONE	4850415	N/A	2017/02/06	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4848536	N/A	2017/02/07	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4848537	N/A	2017/02/07	Automated Statchk
Reactive Silica	KONE	4850406	N/A	2017/02/06	Nancy Rogers
Sulphate	KONE	4850405	N/A	2017/02/06	Mary Clancey
Total Dissolved Solids (TDS calc)	CALC	4848538	N/A	2017/02/07	Automated Statchk
Organic carbon - Total (TOC)	TECH	4854231	N/A	2017/02/07	Steven Smith
Turbidity	TURB	4850250	N/A	2017/02/03	Julia McGovern

Maxxam ID: DVS402 Sample ID: SW6 Matrix: Water Collected: 201

2017/01/31

Shipped:

Received: 2017/02/01

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4848529	N/A	2017/02/03	Automated Statchk
Alkalinity	KONE	4850350	N/A	2017/02/06	Nancy Rogers
Chloride	KONE	4850359	N/A	2017/02/06	Mary Clancey
Colour	KONE	4850388	N/A	2017/02/06	Mary Clancey
Conductance - water	AT	4850238	N/A	2017/02/03	Julia McGovern
Hardness (calculated as CaCO3)		4848531	N/A	2017/02/06	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4850869	2017/02/03	2017/02/06	Arlene Rossiter
Metals Water Total MS	CICP/MS	4850280	2017/02/03	2017/02/03	Mike Leblanc
Ion Balance (% Difference)	CALC	4848532	N/A	2017/02/07	Automated Statchk
Anion and Cation Sum	CALC	4848533	N/A	2017/02/07	Automated Statchk
Nitrogen Ammonia - water	KONE	4849179	N/A	2017/02/06	Mary Clancey
Nitrogen - Nitrate + Nitrite	KONE	4850394	N/A	2017/02/03	Nancy Rogers
Nitrogen - Nitrite	KONE	4850395	N/A	2017/02/03	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4848534	N/A	2017/02/07	Automated Statchk
pH	AT	4850237	N/A	2017/02/03	Julia McGovern
Phosphorus - ortho	KONE	4850390	N/A	2017/02/06	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4848536	N/A	2017/02/07	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4848537	N/A	2017/02/07	Automated Statchk
Reactive Silica	KONE	4850377	N/A	2017/02/06	Nancy Rogers
Sulphate	KONE	4850366	N/A	2017/02/06	Mary Clancey
Total Dissolved Solids (TDS calc)	CALC	4848538	N/A	2017/02/07	Automated Statchk

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08305 Sampler Initials: AS

TEST SUMMARY

Maxxam ID: DVS402 Sample ID: SW6

Collected:

2017/01/31

Matrix: Water

Shipped: Received: 2017/02/01

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Organic carbon - Total (TOC)	TECH	4854231	N/A	2017/02/07	Steven Smith
Turbidity	TURB	4850250	N/A	2017/02/03	Julia McGovern

Maxxam ID: DVS402 Dup Sample ID: SW6

Collected: 2017/01/31

Shipped:

Matrix: Water

Received: 2017/02/01

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Mercury - Total (CVAA,LL)	CV/AA	4850869	2017/02/03	2017/02/06	Arlene Rossiter

Maxxam ID: DVS403 Sample ID: SW7

Collected: 2017/01/30

Shipped:

Matrix: Water

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4848529	N/A	2017/02/03	Automated Statchk
Alkalinity	KONE	4850350	N/A	2017/02/06	Nancy Rogers
Chloride	KONE	4850359	N/A	2017/02/06	Mary Clancey
Colour	KONE	4850388	N/A	2017/02/06	Mary Clancey
Conductance - water	AT	4850238	N/A	2017/02/03	Julia McGovern
Hardness (calculated as CaCO3)		4848788	N/A	2017/02/06	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4850869	2017/02/03	2017/02/06	Arlene Rossiter
Metals Water Total MS	CICP/MS	4850280	2017/02/03	2017/02/03	Mike Leblanc
Ion Balance (% Difference)	CALC	4848789	N/A	2017/02/07	Automated Statchk
Anion and Cation Sum	CALC	4848790	N/A	2017/02/07	Automated Statchk
Nitrogen Ammonia - water	KONE	4849179	N/A	2017/02/06	Mary Clancey
Nitrogen - Nitrate + Nitrite	KONE	4850394	N/A	2017/02/03	Nancy Rogers
Nitrogen - Nitrite	KONE	4850395	N/A	2017/02/03	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4848791	N/A	2017/02/07	Automated Statchk
рН	AT	4850237	N/A	2017/02/03	Julia McGovern
Phosphorus - ortho	KONE	4850390	N/A	2017/02/06	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4848536	N/A	2017/02/07	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4848537	N/A	2017/02/07	Automated Statchk
Reactive Silica	KONE	4850377	N/A	2017/02/06	Nancy Rogers
Sulphate	KONE	4850366	N/A	2017/02/06	Mary Clancey
Total Dissolved Solids (TDS calc)	CALC	4848794	N/A	2017/02/07	Automated Statchk
Organic carbon - Total (TOC)	TECH	4854231	N/A	2017/02/07	Steven Smith
Turbidity	TURB	4850249	N/A	2017/02/03	Julia McGovern

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08305 Sampler Initials: AS

TEST SUMMARY

Maxxam ID: DVS404 Sample ID: SW8 Matrix: Water

Collected:

2017/01/30

Shipped: Received:

2017/02/01

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4848529	N/A	2017/02/03	Automated Statchk
Alkalinity	KONE	4850350	N/A	2017/02/06	Nancy Rogers
Chloride	KONE	4850359	N/A	2017/02/06	Mary Clancey
Colour	KONE	4850388	N/A	2017/02/06	Mary Clancey
Conductance - water	AT	4850238	N/A	2017/02/03	Julia McGovern
Hardness (calculated as CaCO3)		4848788	N/A	2017/02/07	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4850869	2017/02/03	2017/02/06	Arlene Rossiter
Metals Water Total MS	CICP/MS	4850497	2017/02/03	2017/02/06	Bryon Angevine
Ion Balance (% Difference)	CALC	4848789	N/A	2017/02/07	Automated Statchk
Anion and Cation Sum	CALC	4848790	N/A	2017/02/07	Automated Statchk
Nitrogen Ammonia - water	KONE	4849179	N/A	2017/02/06	Mary Clancey
Nitrogen - Nitrate + Nitrite	KONE	4850394	N/A	2017/02/03	Nancy Rogers
Nitrogen - Nitrite	KONE	4850395	N/A	2017/02/03	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4848791	N/A	2017/02/07	Automated Statchk
рН	AT	4850237	N/A	2017/02/03	Julia McGovern
Phosphorus - ortho	KONE	4850390	N/A	2017/02/06	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4848536	N/A	2017/02/07	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4848537	N/A	2017/02/07	Automated Statchk
Reactive Silica	KONE	4850377	N/A	2017/02/06	Nancy Rogers
Sulphate	KONE	4850366	N/A	2017/02/06	Mary Clancey
Total Dissolved Solids (TDS calc)	CALC	4848794	N/A	2017/02/07	Automated Statchk
Organic carbon - Total (TOC)	TECH	4854231	N/A	2017/02/07	Steven Smith
Turbidity	TURB	4850250	N/A	2017/02/03	Julia McGovern

Maxxam ID: DVS405 Sample ID: SW9

. Matrix: Water

Collected: Shipped:

2017/01/30

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4848786	N/A	2017/02/03	Automated Statchk
Alkalinity	KONE	4850350	N/A	2017/02/06	Nancy Rogers
Chloride	KONE	4850359	N/A	2017/02/06	Mary Clancey
Colour	KONE	4850388	N/A	2017/02/06	Mary Clancey
Conductance - water	AT	4850242	N/A	2017/02/03	Julia McGovern
Hardness (calculated as CaCO3)		4848788	N/A	2017/02/07	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4850869	2017/02/03	2017/02/06	Arlene Rossiter
Metals Water Total MS	CICP/MS	4850497	2017/02/03	2017/02/06	Bryon Angevine
Ion Balance (% Difference)	CALC	4848789	N/A	2017/02/07	Automated Statchk
Anion and Cation Sum	CALC	4848790	N/A	2017/02/07	Automated Statchk
Nitrogen Ammonia - water	KONE	4849179	N/A	2017/02/06	Mary Clancey
Nitrogen - Nitrate + Nitrite	KONE	4850394	N/A	2017/02/03	Nancy Rogers
Nitrogen - Nitrite	KONE	4850395	N/A	2017/02/03	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4848791	N/A	2017/02/07	Automated Statchk

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08305 Sampler Initials: AS

TEST SUMMARY

Maxxam ID: DVS405 Sample ID: SW9 Matrix: Water Collected:

2017/01/30

Shipped: Received:

2017/02/01

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
pH	AT	4850241	N/A	2017/02/03	Julia McGovern
Phosphorus - ortho	KONE	4850390	N/A	2017/02/06	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4848792	N/A	2017/02/07	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4848793	N/A	2017/02/07	Automated Statchk
Reactive Silica	KONE	4850377	N/A	2017/02/06	Nancy Rogers
Sulphate	KONE	4850366	N/A	2017/02/06	Mary Clancey
Total Dissolved Solids (TDS calc)	CALC	4848794	N/A	2017/02/07	Automated Statchk
Organic carbon - Total (TOC)	TECH	4854231	N/A	2017/02/07	Steven Smith
Turbidity	TURB	4850250	N/A	2017/02/03	Julia McGovern

Maxxam ID: DVS405 Dup Sample ID: SW9 Matrix: Water **Collected:** 2017/01/30

Shipped:

Received: 2017/02/01

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Nitrogen Ammonia - water	KONE	4849179	N/A	2017/02/06	Mary Clancey

Maxxam ID: DVS406 Sample ID: SW10 Matrix: Water **Collected:** 2017/01/30

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4848786	N/A	2017/02/03	Automated Statchk
Alkalinity	KONE	4850350	N/A	2017/02/06	Nancy Rogers
Chloride	KONE	4850359	N/A	2017/02/06	Mary Clancey
Colour	KONE	4850388	N/A	2017/02/06	Mary Clancey
Conductance - water	AT	4850238	N/A	2017/02/03	Julia McGovern
Hardness (calculated as CaCO3)		4848788	N/A	2017/02/07	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4850869	2017/02/03	2017/02/06	Arlene Rossiter
Metals Water Total MS	CICP/MS	4850497	2017/02/03	2017/02/06	Bryon Angevine
Ion Balance (% Difference)	CALC	4848789	N/A	2017/02/07	Automated Statchk
Anion and Cation Sum	CALC	4848790	N/A	2017/02/07	Automated Statchk
Nitrogen Ammonia - water	KONE	4849179	N/A	2017/02/06	Mary Clancey
Nitrogen - Nitrate + Nitrite	KONE	4850394	N/A	2017/02/03	Nancy Rogers
Nitrogen - Nitrite	KONE	4850395	N/A	2017/02/03	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4848791	N/A	2017/02/07	Automated Statchk
рН	AT	4850237	N/A	2017/02/03	Julia McGovern
Phosphorus - ortho	KONE	4850390	N/A	2017/02/06	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4848792	N/A	2017/02/07	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4848793	N/A	2017/02/07	Automated Statchk
Reactive Silica	KONE	4850377	N/A	2017/02/06	Nancy Rogers
Sulphate	KONE	4850366	N/A	2017/02/06	Mary Clancey
Total Dissolved Solids (TDS calc)	CALC	4848794	N/A	2017/02/07	Automated Statchk

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08305 Sampler Initials: AS

TEST SUMMARY

Maxxam ID: DVS406 Sample ID: SW10

Collected:

2017/01/30

Matrix: Water

Shipped:

Received: 2017/02/01

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Organic carbon - Total (TOC)	TECH	4854231	N/A	2017/02/07	Steven Smith
Turbidity	TURB	4850250	N/A	2017/02/03	Julia McGovern

Maxxam ID: DVS419 Sample ID: SW11 Matrix: Water **Collected:** 2017/01/30

Shipped:

Received: 2017/02/01

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4848786	N/A	2017/02/03	Automated Statchk
Alkalinity	KONE	4850350	N/A	2017/02/06	Nancy Rogers
Chloride	KONE	4850359	N/A	2017/02/06	Mary Clancey
Colour	KONE	4850388	N/A	2017/02/06	Mary Clancey
Conductance - water	AT	4850238	N/A	2017/02/03	Julia McGovern
Hardness (calculated as CaCO3)		4848788	N/A	2017/02/06	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4850869	2017/02/03	2017/02/06	Arlene Rossiter
Metals Water Total MS	CICP/MS	4850234	2017/02/03	2017/02/03	Bryon Angevine
Ion Balance (% Difference)	CALC	4848789	N/A	2017/02/07	Automated Statchk
Anion and Cation Sum	CALC	4848790	N/A	2017/02/07	Automated Statchk
Nitrogen Ammonia - water	KONE	4849192	N/A	2017/02/06	Mary Clancey
Nitrogen - Nitrate + Nitrite	KONE	4850394	N/A	2017/02/03	Nancy Rogers
Nitrogen - Nitrite	KONE	4850395	N/A	2017/02/03	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4848791	N/A	2017/02/07	Automated Statchk
pH	AT	4850237	N/A	2017/02/03	Julia McGovern
Phosphorus - ortho	KONE	4850390	N/A	2017/02/06	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4848792	N/A	2017/02/07	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4848793	N/A	2017/02/07	Automated Statchk
Reactive Silica	KONE	4850377	N/A	2017/02/06	Nancy Rogers
Sulphate	KONE	4850366	N/A	2017/02/06	Mary Clancey
Total Dissolved Solids (TDS calc)	CALC	4848794	N/A	2017/02/07	Automated Statchk
Organic carbon - Total (TOC)	TECH	4854231	N/A	2017/02/07	Steven Smith
Turbidity	TURB	4850250	N/A	2017/02/03	Julia McGovern

Maxxam ID: DVS420 Sample ID: SW13 Matrix: Water **Collected:** 2017/01/30

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4848786	N/A	2017/02/03	Automated Statchk
Alkalinity	KONE	4850399	N/A	2017/02/06	Nancy Rogers
Chloride	KONE	4850402	N/A	2017/02/06	Mary Clancey
Colour	KONE	4850410	N/A	2017/02/06	Mary Clancey
Conductance - water	AT	4850242	N/A	2017/02/03	Julia McGovern
Hardness (calculated as CaCO3)	_	4848788	N/A	2017/02/06	Automated Statchk

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08305 Sampler Initials: AS

TEST SUMMARY

Maxxam ID: DVS420 Sample ID: SW13 Matrix: Water

Collected:

2017/01/30

Shipped: Received:

2017/02/01

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Mercury - Total (CVAA,LL)	CV/AA	4850869	2017/02/03	2017/02/06	Arlene Rossiter
Metals Water Total MS	CICP/MS	4850234	2017/02/03	2017/02/03	Bryon Angevine
Ion Balance (% Difference)	CALC	4848789	N/A	2017/02/07	Automated Statchk
Anion and Cation Sum	CALC	4848790	N/A	2017/02/07	Automated Statchk
Nitrogen Ammonia - water	KONE	4849192	N/A	2017/02/06	Mary Clancey
Nitrogen - Nitrate + Nitrite	KONE	4850416	N/A	2017/02/03	Nancy Rogers
Nitrogen - Nitrite	KONE	4850417	N/A	2017/02/03	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4848791	N/A	2017/02/07	Automated Statchk
pH	AT	4850241	N/A	2017/02/03	Julia McGovern
Phosphorus - ortho	KONE	4850415	N/A	2017/02/06	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4848792	N/A	2017/02/07	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4848793	N/A	2017/02/07	Automated Statchk
Reactive Silica	KONE	4850406	N/A	2017/02/06	Nancy Rogers
Sulphate	KONE	4850405	N/A	2017/02/06	Mary Clancey
Total Dissolved Solids (TDS calc)	CALC	4848794	N/A	2017/02/07	Automated Statchk
Organic carbon - Total (TOC)	TECH	4854231	N/A	2017/02/07	Steven Smith
Turbidity	TURB	4850250	N/A	2017/02/03	Julia McGovern

Maxxam ID: DVS420 Dup

Sample ID: SW13

Matrix: Water

2017/01/30 Collected:

Shipped:

Received: 2017/02/01

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Metals Water Total MS	CICP/MS	4850234	2017/02/03	2017/02/03	Bryon Angevine

Maxxam ID: DVS421 Sample ID: SW14

Matrix: Water

Collected: 2017/01/31

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4848786	N/A	2017/02/03	Automated Statchk
Alkalinity	KONE	4850399	N/A	2017/02/06	Nancy Rogers
Chloride	KONE	4850402	N/A	2017/02/06	Mary Clancey
Colour	KONE	4850410	N/A	2017/02/06	Mary Clancey
Conductance - water	AT	4850242	N/A	2017/02/03	Julia McGovern
Hardness (calculated as CaCO3)		4848788	N/A	2017/02/06	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4850869	2017/02/03	2017/02/06	Arlene Rossiter
Metals Water Diss. MS (as rec'd)	CICP/MS	4850625	N/A	2017/02/04	Bryon Angevine
Metals Water Total MS	CICP/MS	4850497	2017/02/03	2017/02/06	Bryon Angevine
Ion Balance (% Difference)	CALC	4848789	N/A	2017/02/07	Automated Statchk
Anion and Cation Sum	CALC	4848790	N/A	2017/02/07	Automated Statchk
Nitrogen Ammonia - water	KONE	4849192	N/A	2017/02/06	Mary Clancey
Nitrogen - Nitrate + Nitrite	KONE	4850416	N/A	2017/02/03	Nancy Rogers

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08305 Sampler Initials: AS

TEST SUMMARY

Maxxam ID: DVS421 Sample ID: SW14 Matrix: Water

Collected: 2017/01/31

Shipped:

Received: 2017/02/01

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Nitrogen - Nitrite	KONE	4850417	N/A	2017/02/03	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4848791	N/A	2017/02/07	Automated Statchk
рН	AT	4850241	N/A	2017/02/03	Julia McGovern
Phosphorus - ortho	KONE	4850415	N/A	2017/02/06	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4848792	N/A	2017/02/07	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4848793	N/A	2017/02/07	Automated Statchk
Reactive Silica	KONE	4850406	N/A	2017/02/06	Nancy Rogers
Sulphate	KONE	4850405	N/A	2017/02/06	Mary Clancey
Total Dissolved Solids (TDS calc)	CALC	4848794	N/A	2017/02/07	Automated Statchk
Organic carbon - Total (TOC)	TECH	4854231	N/A	2017/02/07	Steven Smith
Total Suspended Solids	BAL	4850267	2017/02/03	2017/02/08	Leslie Power
Turbidity	TURB	4850252	N/A	2017/02/03	Julia McGovern

Maxxam ID: DVS422 Sample ID: SW15 Matrix: Water

Collected: 2017/01/31

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4848786	N/A	2017/02/03	Automated Statchk
Alkalinity	KONE	4850399	N/A	2017/02/06	Nancy Rogers
Chloride	KONE	4850402	N/A	2017/02/06	Mary Clancey
Colour	KONE	4850410	N/A	2017/02/06	Mary Clancey
Conductance - water	AT	4850238	N/A	2017/02/03	Julia McGovern
Hardness (calculated as CaCO3)		4848788	N/A	2017/02/06	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4850869	2017/02/03	2017/02/06	Arlene Rossiter
Metals Water Total MS	CICP/MS	4850234	2017/02/03	2017/02/03	Bryon Angevine
Ion Balance (% Difference)	CALC	4848789	N/A	2017/02/07	Automated Statchk
Anion and Cation Sum	CALC	4848790	N/A	2017/02/07	Automated Statchk
Nitrogen Ammonia - water	KONE	4849192	N/A	2017/02/06	Mary Clancey
Nitrogen - Nitrate + Nitrite	KONE	4850416	N/A	2017/02/03	Nancy Rogers
Nitrogen - Nitrite	KONE	4850417	N/A	2017/02/03	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4848791	N/A	2017/02/07	Automated Statchk
pH	AT	4850237	N/A	2017/02/03	Julia McGovern
Phosphorus - ortho	KONE	4850415	N/A	2017/02/06	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4848792	N/A	2017/02/07	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4848793	N/A	2017/02/07	Automated Statchk
Reactive Silica	KONE	4850406	N/A	2017/02/06	Nancy Rogers
Sulphate	KONE	4850405	N/A	2017/02/06	Mary Clancey
Total Dissolved Solids (TDS calc)	CALC	4848794	N/A	2017/02/07	Automated Statchk
Organic carbon - Total (TOC)	TECH	4854231	N/A	2017/02/07	Steven Smith
Turbidity	TURB	4850250	N/A	2017/02/03	Julia McGovern

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08305 Sampler Initials: AS

TEST SUMMARY

Maxxam ID: DVS423 Sample ID: SW16 Matrix: Water Collected:

2017/01/31

Shipped:

Received: 2017/02/01

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4848786	N/A	2017/02/03	Automated Statchk
Alkalinity	KONE	4850399	N/A	2017/02/06	Nancy Rogers
Chloride	KONE	4850402	N/A	2017/02/06	Mary Clancey
Colour	KONE	4850410	N/A	2017/02/06	Mary Clancey
Conductance - water	AT	4850238	N/A	2017/02/03	Julia McGovern
Hardness (calculated as CaCO3)		4848788	N/A	2017/02/07	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4850869	2017/02/03	2017/02/06	Arlene Rossiter
Metals Water Total MS	CICP/MS	4850497	2017/02/03	2017/02/06	Bryon Angevine
Ion Balance (% Difference)	CALC	4848789	N/A	2017/02/07	Automated Statchk
Anion and Cation Sum	CALC	4848790	N/A	2017/02/07	Automated Statchk
Nitrogen Ammonia - water	KONE	4849192	N/A	2017/02/06	Mary Clancey
Nitrogen - Nitrate + Nitrite	KONE	4850416	N/A	2017/02/03	Nancy Rogers
Nitrogen - Nitrite	KONE	4850417	N/A	2017/02/03	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4848791	N/A	2017/02/07	Automated Statchk
рН	AT	4850237	N/A	2017/02/03	Julia McGovern
Phosphorus - ortho	KONE	4850415	N/A	2017/02/06	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4848792	N/A	2017/02/07	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4848793	N/A	2017/02/07	Automated Statchk
Reactive Silica	KONE	4850406	N/A	2017/02/06	Nancy Rogers
Sulphate	KONE	4850405	N/A	2017/02/06	Mary Clancey
Total Dissolved Solids (TDS calc)	CALC	4848794	N/A	2017/02/07	Automated Statchk
Organic carbon - Total (TOC)	TECH	4854231	N/A	2017/02/07	Steven Smith
Turbidity	TURB	4850249	N/A	2017/02/03	Julia McGovern

Maxxam ID: DVS423 Dup

Sample ID: SW16

Matrix: Water

Collected: 2017/01/31

Shipped: Received:

2017/02/01

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Conductance - water	AT	4850238	N/A	2017/02/03	Julia McGovern
рН	AT	4850237	N/A	2017/02/03	Julia McGovern

Maxxam ID: DVS424

Sample ID: SW-DUP1

Matrix: Water

Collected: 2017/01/30 Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4848786	N/A	2017/02/03	Automated Statchk
Alkalinity	KONE	4850399	N/A	2017/02/06	Nancy Rogers
Chloride	KONE	4850402	N/A	2017/02/06	Mary Clancey
Colour	KONE	4850410	N/A	2017/02/06	Mary Clancey
Conductance - water	AT	4850238	N/A	2017/02/03	Julia McGovern
Hardness (calculated as CaCO3)		4848788	N/A	2017/02/07	Automated Statchk

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08305 Sampler Initials: AS

TEST SUMMARY

Maxxam ID: DVS424 Sample ID: SW-DUP1

Collected:

2017/01/30

Matrix: SW-DUP1

Shipped: Received: 2017/02/01

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Mercury - Total (CVAA,LL)	CV/AA	4850869	2017/02/03	2017/02/06	Arlene Rossiter
Metals Water Total MS	CICP/MS	4850497	2017/02/03	2017/02/06	Bryon Angevine
Ion Balance (% Difference)	CALC	4848789	N/A	2017/02/07	Automated Statchk
Anion and Cation Sum	CALC	4848790	N/A	2017/02/07	Automated Statchk
Nitrogen Ammonia - water	KONE	4849192	N/A	2017/02/06	Mary Clancey
Nitrogen - Nitrate + Nitrite	KONE	4850416	N/A	2017/02/03	Nancy Rogers
Nitrogen - Nitrite	KONE	4850417	N/A	2017/02/03	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4848791	N/A	2017/02/07	Automated Statchk
рН	AT	4850237	N/A	2017/02/03	Julia McGovern
Phosphorus - ortho	KONE	4850415	N/A	2017/02/06	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4848792	N/A	2017/02/07	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4848793	N/A	2017/02/07	Automated Statchk
Reactive Silica	KONE	4850406	N/A	2017/02/06	Nancy Rogers
Sulphate	KONE	4850405	N/A	2017/02/06	Mary Clancey
Total Dissolved Solids (TDS calc)	CALC	4848794	N/A	2017/02/07	Automated Statchk
Organic carbon - Total (TOC)	TECH	4854545	N/A	2017/02/07	Steven Smith
Turbidity	TURB	4850249	N/A	2017/02/03	Julia McGovern

Maxxam ID: DVS424 Dup Sample ID: SW-DUP1 Matrix: Water **Collected:** 2017/01/30

Shipped:

Received: 2017/02/01

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Organic carbon - Total (TOC)	TECH	4854545	N/A	2017/02/07	Steven Smith

Maxxam ID: DVS425 Sample ID: SW-DUP2 Matrix: Water **Collected:** 2017/01/30

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4848786	N/A	2017/02/03	Automated Statchk
Alkalinity	KONE	4850399	N/A	2017/02/06	Nancy Rogers
Chloride	KONE	4850402	N/A	2017/02/06	Mary Clancey
Colour	KONE	4850410	N/A	2017/02/06	Mary Clancey
Conductance - water	AT	4850242	N/A	2017/02/03	Julia McGovern
Hardness (calculated as CaCO3)		4848788	N/A	2017/02/06	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4850869	2017/02/03	2017/02/06	Arlene Rossiter
Metals Water Diss. MS (as rec'd)	CICP/MS	4850625	N/A	2017/02/04	Bryon Angevine
Metals Water Total MS	CICP/MS	4850497	2017/02/03	2017/02/06	Bryon Angevine
Ion Balance (% Difference)	CALC	4848789	N/A	2017/02/07	Automated Statchk
Anion and Cation Sum	CALC	4848790	N/A	2017/02/07	Automated Statchk
Nitrogen Ammonia - water	KONE	4849192	N/A	2017/02/06	Mary Clancey
Nitrogen - Nitrate + Nitrite	KONE	4850416	N/A	2017/02/03	Nancy Rogers

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08305 Sampler Initials: AS

TEST SUMMARY

Maxxam ID: DVS425 Sample ID: SW-DUP2 Matrix: Water Collected:

2017/01/30

Shipped: Received:

2017/02/01

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Nitrogen - Nitrite	KONE	4850417	N/A	2017/02/03	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4848791	N/A	2017/02/07	Automated Statchk
рН	AT	4850241	N/A	2017/02/03	Julia McGovern
Phosphorus - ortho	KONE	4850415	N/A	2017/02/06	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4848792	N/A	2017/02/07	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4848793	N/A	2017/02/07	Automated Statchk
Reactive Silica	KONE	4850406	N/A	2017/02/06	Nancy Rogers
Sulphate	KONE	4850405	N/A	2017/02/06	Mary Clancey
Total Dissolved Solids (TDS calc)	CALC	4848794	N/A	2017/02/07	Automated Statchk
Organic carbon - Total (TOC)	TECH	4854545	N/A	2017/02/07	Steven Smith
Total Suspended Solids	BAL	4850267	2017/02/03	2017/02/08	Leslie Power
Turbidity	TURB	4850250	N/A	2017/02/03	Julia McGovern

Maxxam ID: DVS425 Dup Sample ID: SW-DUP2 Matrix: Water **Collected:** 2017/01/30

Shipped:

Received: 2017/02/01

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	KONE	4850399	N/A	2017/02/06	Nancy Rogers
Chloride	KONE	4850402	N/A	2017/02/06	Mary Clancey
Colour	KONE	4850410	N/A	2017/02/06	Mary Clancey
Nitrogen - Nitrate + Nitrite	KONE	4850416	N/A	2017/02/03	Nancy Rogers
Nitrogen - Nitrite	KONE	4850417	N/A	2017/02/03	Nancy Rogers
Phosphorus - ortho	KONE	4850415	N/A	2017/02/06	Nancy Rogers
Reactive Silica	KONE	4850406	N/A	2017/02/06	Nancy Rogers
Sulphate	KONE	4850405	N/A	2017/02/06	Mary Clancey

Maxxam ID: DVS426 Sample ID: P1A Matrix: Water **Collected:** 2017/01/30

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4848786	N/A	2017/02/03	Automated Statchk
Alkalinity	KONE	4850399	N/A	2017/02/06	Nancy Rogers
Chloride	KONE	4850402	N/A	2017/02/06	Mary Clancey
Colour	KONE	4850410	N/A	2017/02/06	Mary Clancey
Conductance - water	AT	4850238	N/A	2017/02/03	Julia McGovern
Hardness (calculated as CaCO3)		4848788	N/A	2017/02/07	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4850869	2017/02/03	2017/02/06	Arlene Rossiter
Metals Water Total MS	CICP/MS	4850497	2017/02/03	2017/02/06	Bryon Angevine
Ion Balance (% Difference)	CALC	4848789	N/A	2017/02/07	Automated Statchk
Anion and Cation Sum	CALC	4848790	N/A	2017/02/07	Automated Statchk
Nitrogen Ammonia - water	KONE	4849192	N/A	2017/02/06	Mary Clancey

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08305 Sampler Initials: AS

TEST SUMMARY

Maxxam ID: DVS426 Sample ID: P1A Matrix: Water Collected:

2017/01/30

Shipped:

Received: 2017/02/01

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Nitrogen - Nitrate + Nitrite	KONE	4850416	N/A	2017/02/03	Nancy Rogers
Nitrogen - Nitrite	KONE	4850417	N/A	2017/02/03	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4848791	N/A	2017/02/07	Automated Statchk
pH	AT	4850237	N/A	2017/02/03	Julia McGovern
Phosphorus - ortho	KONE	4850415	N/A	2017/02/06	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4848792	N/A	2017/02/07	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4848793	N/A	2017/02/07	Automated Statchk
Reactive Silica	KONE	4850406	N/A	2017/02/06	Nancy Rogers
Sulphate	KONE	4850405	N/A	2017/02/06	Mary Clancey
Total Dissolved Solids (TDS calc)	CALC	4848794	N/A	2017/02/07	Automated Statchk
Organic carbon - Total (TOC)	TECH	4854545	N/A	2017/02/07	Steven Smith
Turbidity	TURB	4850250	N/A	2017/02/03	Julia McGovern

Maxxam ID: DVS427 Sample ID: P1B Matrix: Water **Collected:** 2017/01/30

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst		
Carbonate, Bicarbonate and Hydroxide	CALC	4848786	N/A	2017/02/03	Automated Statchk		
Alkalinity	KONE	4850399	N/A	2017/02/06	Nancy Rogers		
Chloride	KONE	4850402	N/A	2017/02/06	Mary Clancey		
Colour	KONE	4850410	N/A	2017/02/06	Mary Clancey		
Conductance - water	AT	4850238	N/A	2017/02/03	Julia McGovern		
Hardness (calculated as CaCO3)		4848788	N/A	2017/02/07	Automated Statchk		
Mercury - Total (CVAA,LL)	CV/AA	4853060	2017/02/06	2017/02/07	Arlene Rossiter		
Metals Water Total MS	CICP/MS	4850497	2017/02/03	2017/02/06	Bryon Angevine		
Ion Balance (% Difference)	CALC	4848789	N/A	2017/02/07	Automated Statchk		
Anion and Cation Sum	CALC	4848790	N/A	2017/02/07	Automated Statchk		
Nitrogen Ammonia - water	KONE	4849192	N/A	2017/02/06	Mary Clancey		
Nitrogen - Nitrate + Nitrite	KONE	4850416	N/A	2017/02/03	Nancy Rogers		
Nitrogen - Nitrite	KONE	4850417	N/A	2017/02/03	Nancy Rogers		
Nitrogen - Nitrate (as N)	CALC	4848791	N/A	2017/02/07	Automated Statchk		
рН	AT	4850237	N/A	2017/02/03	Julia McGovern		
Phosphorus - ortho	KONE	4850415	N/A	2017/02/06	Nancy Rogers		
Sat. pH and Langelier Index (@ 20C)	CALC	4848792	N/A	2017/02/07	Automated Statchk		
Sat. pH and Langelier Index (@ 4C)	CALC	4848793	N/A	2017/02/07	Automated Statchk		
Reactive Silica	KONE	4850406	N/A	2017/02/06	Nancy Rogers		
Sulphate	KONE	4850405	N/A	2017/02/06	Mary Clancey		
Total Dissolved Solids (TDS calc)	CALC	4848794	N/A	2017/02/07	Automated Statchk		
Organic carbon - Total (TOC)	TECH	4854545	N/A	2017/02/07	Steven Smith		
Turbidity	TURB	4850249	N/A	2017/02/03	Julia McGovern		

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08305 Sampler Initials: AS

TEST SUMMARY

Maxxam ID: DVS427 Dup Sample ID: P1B

Collected:

2017/01/30

Matrix: Water

Shipped:

Received: 2017/02/01

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Nitrogen Ammonia - water	KONE	4849192	N/A	2017/02/06	Mary Clancey

Maxxam ID: DVS430

Collected:

2017/01/30

Sample ID: P2A Matrix: Water Shipped:

Received: 2017/02/01

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst		
Carbonate, Bicarbonate and Hydroxide	CALC	4848786	N/A	2017/02/03	Automated Statchk		
Alkalinity	KONE	4850399	N/A	2017/02/06	Nancy Rogers		
Chloride	KONE	4850402	N/A	2017/02/06	Mary Clancey		
Colour	KONE	4850410	N/A	2017/02/06	Mary Clancey		
Conductance - water	AT	4850238	N/A	2017/02/03	Julia McGovern		
Hardness (calculated as CaCO3)		4848788	N/A	2017/02/07	Automated Statchk		
Mercury - Total (CVAA,LL)	CV/AA	4853060	2017/02/06	2017/02/07	Arlene Rossiter		
Metals Water Total MS	CICP/MS	4850497	2017/02/03	2017/02/06	Bryon Angevine		
Ion Balance (% Difference)	CALC	4848789	N/A	2017/02/07	Automated Statchk		
Anion and Cation Sum	CALC	4848790	N/A	2017/02/07	Automated Statchk		
Nitrogen Ammonia - water	KONE	4849192	N/A	2017/02/06	Mary Clancey		
Nitrogen - Nitrate + Nitrite	KONE	4850416	N/A	2017/02/03	Nancy Rogers		
Nitrogen - Nitrite	KONE	4850417	N/A	2017/02/03	Nancy Rogers		
Nitrogen - Nitrate (as N)	CALC	4848791	N/A	2017/02/07	Automated Statchk		
рН	AT	4850237	N/A	2017/02/03	Julia McGovern		
Phosphorus - ortho	KONE	4850415	N/A	2017/02/06	Nancy Rogers		
Sat. pH and Langelier Index (@ 20C)	CALC	4848792	N/A	2017/02/07	Automated Statchk		
Sat. pH and Langelier Index (@ 4C)	CALC	4848793	N/A	2017/02/07	Automated Statchk		
Reactive Silica	KONE	4850406	N/A	2017/02/06	Nancy Rogers		
Sulphate	KONE	4850405	N/A	2017/02/06	Mary Clancey		
Total Dissolved Solids (TDS calc)	CALC	4848794	N/A	2017/02/07	Automated Statchk		
Organic carbon - Total (TOC)	TECH	4854545	N/A	2017/02/07	Steven Smith		
Turbidity	TURB	4850249	N/A	2017/02/03	Julia McGovern		

Maxxam ID: DVS431 Sample ID: P2B Matrix: Water

Collected: 20

2017/01/30

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4848786	N/A	2017/02/03	Automated Statchk
Alkalinity	KONE	4850399	N/A	2017/02/06	Nancy Rogers
Chloride	KONE	4850402	N/A	2017/02/06	Mary Clancey
Colour	KONE	4850410	N/A	2017/02/06	Mary Clancey
Conductance - water	AT	4850238	N/A	2017/02/03	Julia McGovern
Hardness (calculated as CaCO3)		4848788	N/A	2017/02/07	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4853060	2017/02/06	2017/02/07	Arlene Rossiter

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08305 Sampler Initials: AS

TEST SUMMARY

Maxxam ID: DVS431 Sample ID: P2B Matrix: Water

Collected:

2017/01/30

Shipped:

Received: 2017/02/01

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Metals Water Total MS	CICP/MS	4850497	2017/02/03	2017/02/06	Bryon Angevine
Ion Balance (% Difference)	CALC	4848789	N/A	2017/02/07	Automated Statchk
Anion and Cation Sum	CALC	4848790	N/A	2017/02/07	Automated Statchk
Nitrogen Ammonia - water	KONE	4849192	N/A	2017/02/06	Mary Clancey
Nitrogen - Nitrate + Nitrite	KONE	4850416	N/A	2017/02/03	Nancy Rogers
Nitrogen - Nitrite	KONE	4850417	N/A	2017/02/03	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4848791	N/A	2017/02/07	Automated Statchk
рН	AT	4850237	N/A	2017/02/03	Julia McGovern
Phosphorus - ortho	KONE	4850415	N/A	2017/02/06	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4848792	N/A	2017/02/07	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4848793	N/A	2017/02/07	Automated Statchk
Reactive Silica	KONE	4850406	N/A	2017/02/06	Nancy Rogers
Sulphate	KONE	4850405	N/A	2017/02/06	Mary Clancey
Total Dissolved Solids (TDS calc)	CALC	4848794	N/A	2017/02/07	Automated Statchk
Organic carbon - Total (TOC)	TECH	4854545	N/A	2017/02/07	Steven Smith
Turbidity	TURB	4850249	N/A	2017/02/03	Julia McGovern

Maxxam ID: DVS432 Sample ID: P3

Matrix: Water

2017/01/30 Collected:

Shipped:

Test Description	Instrumentation Ba		Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	oonate and Hydroxide CALC		N/A	2017/02/03	Automated Statchk
Alkalinity	KONE	4850399	N/A	2017/02/06	Nancy Rogers
Chloride	KONE	4850402	N/A	2017/02/06	Mary Clancey
Colour	KONE	4850410	N/A	2017/02/06	Mary Clancey
Conductance - water	AT	4850238	N/A	2017/02/03	Julia McGovern
Hardness (calculated as CaCO3)		4848788	N/A	2017/02/07	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4853060	2017/02/06	2017/02/07	Arlene Rossiter
Metals Water Total MS	CICP/MS	4850497	2017/02/03	2017/02/06	Bryon Angevine
Ion Balance (% Difference)	CALC	4848789	N/A	2017/02/07	Automated Statchk
Anion and Cation Sum	CALC	4848790	N/A	2017/02/07	Automated Statchk
Nitrogen Ammonia - water	KONE	4849192	N/A	2017/02/06	Mary Clancey
Nitrogen - Nitrate + Nitrite	KONE	4850416	N/A	2017/02/03	Nancy Rogers
Nitrogen - Nitrite	KONE	4850417	N/A	2017/02/03	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4848791	N/A	2017/02/07	Automated Statchk
pH	AT	4850237	N/A	2017/02/03	Julia McGovern
Phosphorus - ortho	KONE	4850415	N/A	2017/02/06	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4848792	N/A	2017/02/07	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4848793	N/A	2017/02/07	Automated Statchk
Reactive Silica	KONE	4850406	N/A	2017/02/06	Nancy Rogers
Sulphate	KONE	4850405	N/A	2017/02/06	Mary Clancey
Total Dissolved Solids (TDS calc)	CALC	4848794	N/A	2017/02/07	Automated Statchk

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08305 Sampler Initials: AS

TEST SUMMARY

Maxxam ID: DVS432 Sample ID: P3

Collected:

2017/01/30

Matrix: Water

Shipped: Received: 2017/02/01

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Organic carbon - Total (TOC)	TECH	4854545	N/A	2017/02/07	Steven Smith
Turbidity	TURB	4850249	N/A	2017/02/03	Julia McGovern

Maxxam ID: DVS433 Sample ID: BACK2 Matrix: Water **Collected:** 2017/01/30

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4848786	N/A	2017/02/03	Automated Statchk
Alkalinity	KONE 4850399 N/A 2017/02/06 Nanc		Nancy Rogers		
Chloride	KONE	4850402	N/A	2017/02/06	Mary Clancey
Colour	KONE	4850410	N/A	2017/02/06	Mary Clancey
Conductance - water	AT	4850242	N/A	2017/02/03	Julia McGovern
Hardness (calculated as CaCO3)		4848788	N/A	2017/02/06	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4853060	2017/02/06	2017/02/07	Arlene Rossiter
Metals Water Diss. MS (as rec'd)	CICP/MS	4850625	N/A	2017/02/04	Bryon Angevine
Metals Water Total MS	CICP/MS	4850234	2017/02/03	2017/02/03	Bryon Angevine
Ion Balance (% Difference)	CALC	4848789	N/A	2017/02/07	Automated Statchk
Anion and Cation Sum	CALC	4848790	N/A	2017/02/07	Automated Statchk
Nitrogen Ammonia - water	KONE	4849192	N/A	2017/02/06	Mary Clancey
Nitrogen - Nitrate + Nitrite	KONE	4850416	N/A	2017/02/03	Nancy Rogers
Nitrogen - Nitrite	KONE	4850417	N/A	2017/02/03	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4848791	N/A	2017/02/07	Automated Statchk
рН	AT	4850241	N/A	2017/02/03	Julia McGovern
Phosphorus - ortho	KONE	4850415	N/A	2017/02/06	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4848792	N/A	2017/02/07	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4848793	N/A	2017/02/07	Automated Statchk
Reactive Silica	KONE	4850406	N/A	2017/02/06	Nancy Rogers
Sulphate	KONE	4850405	N/A	2017/02/06	Mary Clancey
Total Dissolved Solids (TDS calc)	CALC	4848794	N/A	2017/02/07	Automated Statchk
Organic carbon - Total (TOC)	TECH	4854545	N/A	2017/02/07	Steven Smith
Total Suspended Solids	BAL	4850467	2017/02/03	2017/02/07	Leslie Power
Turbidity	TURB	4850250	N/A	2017/02/03	Julia McGovern

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08305 Sampler Initials: AS

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1	2.0°C
Package 2	3.0°C
Package 3	3.3°C
Package 4	5.3°C

Sample DVS397 [SW1]: RCAp Ion Balance acceptable. Anion/cation agreement within 0.2 meq/L.

Sample DVS398 [SW2]: RCAp Ion Balance acceptable. Anion/cation agreement within 0.2 meq/L.

Sample DVS399 [SW3]: RCAp Ion Balance acceptable. Anion/cation agreement within 0.2 meq/L.

Sample DVS400 [SW4]: RCAp Ion Balance acceptable. Anion/cation agreement within 0.2 meq/L.

Sample DVS401 [SW5]: Poor RCAp Ion Balance due to sample matrix.

Sample DVS402 [SW6]: RCAp Ion Balance acceptable. Anion/cation agreement within 0.2 meq/L.

Sample DVS403 [SW7] : RCAp Ion Balance acceptable. Anion/cation agreement within 0.2 meq/L.

Sample DVS404 [SW8]: Poor RCAp Ion Balance due to sample matrix.

Sample DVS405 [SW9]: RCAp Ion Balance acceptable. Anion/cation agreement within 0.2 meq/L.

Sample DVS406 [SW10]: RCAp Ion Balance acceptable. Anion/cation agreement within 0.2 meg/L.

Sample DVS419 [SW11]: RCAp Ion Balance acceptable. Anion/cation agreement within 0.2 meq/L.

 $Sample\ \ DVS420\ [SW13]\ : RCAp\ Ion\ Balance\ acceptable.\ Anion/cation\ agreement\ within\ 0.2\ meq/L.$

 $Sample\ \ DVS421\ [SW14]\ : RCAp\ Ion\ Balance\ acceptable.\ Anion/cation\ agreement\ within\ 0.2\ meq/L.$

 $Sample\ \ DVS423\ [SW16]\ : RCAp\ Ion\ Balance\ acceptable.\ Anion/cation\ agreement\ within\ 0.2\ meq/L.$

Sample DVS425 [SW-DUP2]: RCAp Ion Balance acceptable. Anion/cation agreement within 0.2 meq/L.

Sample DVS427 [P1B]: RCAp Ion Balance acceptable. Anion/cation agreement within 0.2 meq/L.

Sample DVS430 [P2A]: RCAp Ion Balance acceptable. Anion/cation agreement within 0.2 meq/L.

Sample DVS431 [P2B]: RCAp Ion Balance acceptable. Anion/cation agreement within 0.2 meq/L.

Sample DVS433 [BACK2]: RCAp Ion Balance acceptable. Anion/cation agreement within 0.2 meq/L.

Results relate only to the items tested.

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08305 Sampler Initials: AS

QUALITY ASSURANCE REPORT

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
4849179	MCN	Matrix Spike(DVS405)	Nitrogen (Ammonia Nitrogen)	2017/02/06		104	%	80 - 120
4849179	MCN	Spiked Blank	Nitrogen (Ammonia Nitrogen)	2017/02/06		106	%	80 - 120
4849179	MCN		Nitrogen (Ammonia Nitrogen)	2017/02/06	< 0.050		mg/L	
4849179	MCN	RPD - Sample/Sample Dup	Nitrogen (Ammonia Nitrogen)	2017/02/06	NC		%	20
4849192	MCN	Matrix Spike(DVS427)	Nitrogen (Ammonia Nitrogen)	2017/02/06		104	%	80 - 120
4849192	MCN	Spiked Blank	Nitrogen (Ammonia Nitrogen)	2017/02/06		106	%	80 - 120
4849192	MCN	•	Nitrogen (Ammonia Nitrogen)	2017/02/06	< 0.050	200	mg/L	00 120
4849192	MCN	RPD - Sample/Sample Dup	Nitrogen (Ammonia Nitrogen)	2017/02/06	1.5		%	20
4850234	BAN	Matrix Spike(DVS422)	Total Aluminum (Al)	2017/02/03	2.0	94	%	80 - 120
.00020.	2,		Total Antimony (Sb)	2017/02/03		98	%	80 - 120
			Total Arsenic (As)	2017/02/03		91	%	80 - 120
			Total Barium (Ba)	2017/02/03		88	%	80 - 120
			Total Beryllium (Be)	2017/02/03		89	%	80 - 120
			Total Bismuth (Bi)	2017/02/03		99	%	80 - 120
			Total Boron (B)	2017/02/03		96	%	80 - 120
			Total Cadmium (Cd)	2017/02/03		93	%	80 - 120
			Total Calcium (Ca)	2017/02/03		98	%	80 - 120
			Total Chromium (Cr)	2017/02/03		90	%	80 - 120
			Total Cobalt (Co)	2017/02/03		92	%	80 - 120
			Total Copper (Cu)	2017/02/03		93	%	80 - 120
			Total Iron (Fe)	2017/02/03		95	%	80 - 120
			Total Lead (Pb)	2017/02/03		90	%	80 - 120
			Total Magnesium (Mg)	2017/02/03		98	%	80 - 120
			Total Manganese (Mn)	2017/02/03		91	%	80 - 120
			Total Molybdenum (Mo)	2017/02/03		102	%	80 - 120
			Total Nickel (Ni)	2017/02/03		92	%	80 - 120
			Total Phosphorus (P)	2017/02/03		99	%	80 - 120
			Total Potassium (K)	2017/02/03		103	%	80 - 120
			Total Selenium (Se)	2017/02/03		95	%	80 - 120
			Total Silver (Ag)	2017/02/03		93	%	80 - 120
			Total Sodium (Na)	2017/02/03		NC	%	80 - 120
			Total Strontium (Sr)	2017/02/03		90	%	80 - 120
			Total Thallium (TI)	2017/02/03		99	%	80 - 120
			Total Tin (Sn)	2017/02/03		98	%	80 - 120
			Total Titanium (Ti)	2017/02/03		92	%	80 - 120
			Total Uranium (U)	2017/02/03		100	%	80 - 120
			Total Vanadium (V)	2017/02/03		90	%	80 - 120
			Total Zinc (Zn)	2017/02/03		98	%	80 - 120
4850234	BAN	Spiked Blank	Total Aluminum (AI)	2017/02/03		104	%	80 - 120
			Total Antimony (Sb)	2017/02/03		98	%	80 - 120
			Total Arsenic (As)	2017/02/03		97	%	80 - 120
			Total Barium (Ba)	2017/02/03		93	%	80 - 120
			Total Beryllium (Be)	2017/02/03		92	%	80 - 120
			Total Bismuth (Bi)	2017/02/03		100	%	80 - 120
			Total Boron (B)	2017/02/03		94	%	80 - 120
			Total Cadmium (Cd)	2017/02/03		99	%	80 - 120
			Total Calcium (Ca)	2017/02/03		99	%	80 - 120
			Total Chromium (Cr)	2017/02/03		98	%	80 - 120
			Total Cobalt (Co)	2017/02/03		98	%	80 - 120
			Total Copper (Cu)	2017/02/03		98	%	80 - 120
			Total Iron (Fe)	2017/02/03		100	%	80 - 120

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08305 Sampler Initials: AS

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			Total Lead (Pb)	2017/02/03		96	%	80 - 120
			Total Magnesium (Mg)	2017/02/03		102	%	80 - 120
			Total Manganese (Mn)	2017/02/03		100	%	80 - 120
			Total Molybdenum (Mo)	2017/02/03		99	%	80 - 120
			Total Nickel (Ni)	2017/02/03		102	%	80 - 120
			Total Phosphorus (P)	2017/02/03		102	%	80 - 120
			Total Potassium (K)	2017/02/03		104	%	80 - 120
			Total Selenium (Se)	2017/02/03		99	%	80 - 120
			Total Silver (Ag)	2017/02/03		99	%	80 - 120
			Total Sodium (Na)	2017/02/03		99	%	80 - 120
			Total Strontium (Sr)	2017/02/03		99	%	80 - 120
			Total Thallium (TI)	2017/02/03		99	%	80 - 120
			Total Tin (Sn)	2017/02/03		99	%	80 - 120
			Total Titanium (Ti)	2017/02/03		98	%	80 - 120
			Total Uranium (U)	2017/02/03		106	%	80 - 120
			Total Vanadium (V)	2017/02/03		96	%	80 - 120
			Total Zinc (Zn)	2017/02/03		100	%	80 - 120
1850234	BAN	Method Blank	Total Aluminum (Al)	2017/02/03	5.2,		ug/L	
			` '		RDL=5.0		O,	
			Total Antimony (Sb)	2017/02/03	<1.0		ug/L	
			Total Arsenic (As)	2017/02/03	<1.0		ug/L	
			Total Barium (Ba)	2017/02/03	<1.0		ug/L	
			Total Beryllium (Be)	2017/02/03	<1.0		ug/L	
			Total Bismuth (Bi)	2017/02/03	<2.0		ug/L	
			Total Boron (B)	2017/02/03	<50		ug/L	
			Total Cadmium (Cd)	2017/02/03	<0.010		ug/L	
			Total Calcium (Ca)	2017/02/03	<100		ug/L	
			Total Chromium (Cr)	2017/02/03	<1.0		ug/L	
			Total Cobalt (Co)	2017/02/03	<0.40		ug/L	
			Total Copper (Cu)	2017/02/03	<2.0		ug/L	
			Total Iron (Fe)	2017/02/03	<50		ug/L	
			Total Lead (Pb)	2017/02/03	<0.50		ug/L	
			Total Magnesium (Mg)	2017/02/03	<100		ug/L	
			Total Manganese (Mn)	2017/02/03	<2.0		ug/L	
			Total Molybdenum (Mo)	2017/02/03	<2.0		ug/L	
			Total Nickel (Ni)	2017/02/03	<2.0		ug/L	
			Total Phosphorus (P)	2017/02/03	<100		ug/L	
			Total Potassium (K)	2017/02/03	<100		ug/L	
			Total Selenium (Se)	2017/02/03	<1.0		ug/L	
			Total Silver (Ag)	2017/02/03	<0.10		ug/L	
			Total Sodium (Na)	2017/02/03	<100		ug/L	
			Total Strontium (Sr)	2017/02/03	<2.0		ug/L	
			Total Thallium (TI)	2017/02/03	<0.10		ug/L	
			Total Tin (Sn)	2017/02/03	<2.0		ug/L	
			Total Titanium (Ti)	2017/02/03	<2.0		ug/L	
			Total Uranium (U)	2017/02/03	<0.10		ug/L	
			Total Vanadium (V)	2017/02/03	<2.0		ug/L	
			Total Zinc (Zn)	2017/02/03	<5.0		ug/L	
4850234	BAN	RPD - Sample/Sample Dup		2017/02/03	8.6		%	20
.555257	D, 114	5 Campie/Sample Dup	Total Antimony (Sb)	2017/02/03	NC		%	20

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08305 Sampler Initials: AS

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
		N- N-	Total Barium (Ba)	2017/02/03	NC	,	%	20
			Total Beryllium (Be)	2017/02/03	NC		%	20
			Total Bismuth (Bi)	2017/02/03	NC		%	20
			Total Boron (B)	2017/02/03	NC		%	20
			Total Cadmium (Cd)	2017/02/03	NC		%	20
			Total Calcium (Ca)	2017/02/03	1.8		%	20
			Total Chromium (Cr)	2017/02/03	NC		%	20
			Total Cobalt (Co)	2017/02/03	NC		%	20
			Total Copper (Cu)	2017/02/03	NC		%	20
			Total Iron (Fe)	2017/02/03	NC		%	20
			Total Lead (Pb)	2017/02/03	NC		%	20
			Total Magnesium (Mg)	2017/02/03	1.4		%	20
			Total Manganese (Mn)	2017/02/03	NC		%	20
			Total Molybdenum (Mo)	2017/02/03	NC		%	20
			Total Nickel (Ni)	2017/02/03	NC		%	20
			Total Phosphorus (P)	2017/02/03	NC		%	20
			Total Potassium (K)	2017/02/03	NC		%	20
			Total Selenium (Se)	2017/02/03	NC		%	20
			Total Silver (Ag)	2017/02/03	NC		%	20
			Total Sodium (Na)	2017/02/03	4.3		%	20
			Total Strontium (Sr)	2017/02/03	NC		%	20
			Total Thallium (TI)	2017/02/03	NC		%	20
			Total Tin (Sn)	2017/02/03	NC		%	20
			Total Titanium (Ti)	2017/02/03	NC		%	20
			Total Uranium (U)	2017/02/03	NC		%	20
			Total Vanadium (V)	2017/02/03	NC		%	20
			Total Zinc (Zn)	2017/02/03	NC		%	20
4850237	JMV	QC Standard	pH	2017/02/03		100	%	97 - 103
4850237	JMV	RPD - Sample/Sample Dup	pH	2017/02/03	0.021		%	N/A
4850238	JMV	Spiked Blank	Conductivity	2017/02/03		103	%	80 - 120
4850238	JMV	Method Blank	Conductivity	2017/02/03	1.2,		uS/cm	
					RDL=1.0			
4850238	JMV	RPD - Sample/Sample Dup	Conductivity	2017/02/03	0.0022		%	25
4850241	JMV	QC Standard	pH	2017/02/03		100	%	97 - 103
4850241	JMV	RPD - Sample/Sample Dup	•	2017/02/03	1.0		%	N/A
4850242	JMV	Spiked Blank	Conductivity	2017/02/03		104	%	80 - 120
4850242	JMV	Method Blank	Conductivity	2017/02/03	1.7,		uS/cm	
			•	, ,	RDL=1.0		•	
4850242	JMV	RPD - Sample/Sample Dup	Conductivity	2017/02/03	NC		%	25
4850249	JMV	QC Standard	Turbidity	2017/02/03		97	%	80 - 120
4850249	JMV	Spiked Blank	Turbidity	2017/02/03		92	%	80 - 120
4850249	JMV	Method Blank	Turbidity	2017/02/03	< 0.10	3 2	NTU	00 120
4850249	JMV		Turbidity	2017/02/03	NC		%	20
4850250	JMV	QC Standard	Turbidity	2017/02/03	-	97	%	80 - 120
4850250	JMV	Spiked Blank	Turbidity	2017/02/03		92	%	80 - 120
4850250	JMV	Method Blank	Turbidity	2017/02/03	<0.10		NTU	
4850250	JMV	RPD - Sample/Sample Dup		2017/02/03	NC		%	20
4850252	JMV	QC Standard	Turbidity	2017/02/03	-	97	%	80 - 120
4850252	JMV	Spiked Blank	Turbidity	2017/02/03		92	%	80 - 120
		Method Blank	Turbidity	2017/02/03	<0.10		NTU	0
4850252	JMV							

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08305 Sampler Initials: AS

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
4850267	LPW	QC Standard	Total Suspended Solids	2017/02/08		104	%	80 - 120
4850267	LPW	Method Blank	Total Suspended Solids	2017/02/08	<1.0		mg/L	
4850267	LPW	RPD - Sample/Sample Dup		2017/02/08	3.3		%	25
4850280	MLB	Matrix Spike	Total Aluminum (Al)	2017/02/03		99	%	80 - 120
			Total Antimony (Sb)	2017/02/03		98	%	80 - 120
			Total Arsenic (As)	2017/02/03		90	%	80 - 120
			Total Barium (Ba)	2017/02/03		89	%	80 - 120
			Total Beryllium (Be)	2017/02/03		86	%	80 - 120
			Total Bismuth (Bi)	2017/02/03		100	%	80 - 120
			Total Boron (B)	2017/02/03		92	%	80 - 120
			Total Cadmium (Cd)	2017/02/03		93	%	80 - 120
			Total Calcium (Ca)	2017/02/03		99	%	80 - 120
			Total Chromium (Cr)	2017/02/03		91	%	80 - 120
			Total Cobalt (Co)	2017/02/03		92	%	80 - 120
			Total Copper (Cu)	2017/02/03		92	%	80 - 120
			Total Iron (Fe)	2017/02/03		95	%	80 - 120
			Total Lead (Pb)	2017/02/03		90	%	80 - 120
			Total Magnesium (Mg)	2017/02/03		99	%	80 - 120
			Total Manganese (Mn)	2017/02/03		NC	%	80 - 120
			Total Molybdenum (Mo)	2017/02/03		99	%	80 - 120
			Total Nickel (Ni)	2017/02/03		93	%	80 - 120
			Total Phosphorus (P)	2017/02/03		99	%	80 - 120
			Total Potassium (K)	2017/02/03		102	%	80 - 120
			Total Selenium (Se)	2017/02/03		94	%	80 - 120
			Total Silver (Ag)	2017/02/03		92	%	80 - 120
			Total Sodium (Na)	2017/02/03		95	% %	80 - 120
			Total Strontium (Sr)	2017/02/03		90	% %	80 - 120
				2017/02/03		100	% %	80 - 120
			Total Thallium (TI)	2017/02/03		100	% %	80 - 120
			Total Tin (Sn)	2017/02/03		92	% %	80 - 120
			Total Uranium (Ti)			99	% %	
			Total Vanadium (U)	2017/02/03				80 - 120
			Total Vanadium (V)	2017/02/03		91	%	80 - 120
4050200	MID	Cailead Dlamb	Total Zinc (Zn)	2017/02/03		97	%	80 - 120
4850280	IVILB	Spiked Blank	Total Antimony (Sh)	2017/02/03		102	% %	80 - 120 80 - 120
			Total Antimony (Sb)	2017/02/03		101		
			Total Arsenic (As)	2017/02/03		98	%	80 - 120
			Total Barium (Ba)	2017/02/03		95	%	80 - 120
			Total Beryllium (Be)	2017/02/03		93	%	80 - 120
			Total Bismuth (Bi)	2017/02/03		103	%	80 - 120
			Total Boron (B)	2017/02/03		95	%	80 - 120
			Total Cadmium (Cd)	2017/02/03		101	%	80 - 120
			Total Clarentine (Ca)	2017/02/03		102	%	80 - 120
			Total Chromium (Cr)	2017/02/03		100	%	80 - 120
			Total Cobalt (Co)	2017/02/03		101	%	80 - 120
			Total Copper (Cu)	2017/02/03		100	%	80 - 120
			Total Iron (Fe)	2017/02/03		102	%	80 - 120
			Total Lead (Pb)	2017/02/03		98	%	80 - 120
			Total Magnesium (Mg)	2017/02/03		103	%	80 - 120
			Total Manganese (Mn)	2017/02/03		102	%	80 - 120
			Total Molybdenum (Mo)	2017/02/03		103	%	80 - 120
			Total Nickel (Ni)	2017/02/03		103	%	80 - 120

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08305 Sampler Initials: AS

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			Total Phosphorus (P)	2017/02/03		102	%	80 - 120
			Total Potassium (K)	2017/02/03		106	%	80 - 120
			Total Selenium (Se)	2017/02/03		100	%	80 - 120
			Total Silver (Ag)	2017/02/03		99	%	80 - 120
			Total Sodium (Na)	2017/02/03		100	%	80 - 120
			Total Strontium (Sr)	2017/02/03		101	%	80 - 120
			Total Thallium (TI)	2017/02/03		102	%	80 - 120
			Total Tin (Sn)	2017/02/03		104	%	80 - 120
			Total Titanium (Ti)	2017/02/03		101	%	80 - 120
			Total Uranium (U)	2017/02/03		109	%	80 - 120
			Total Vanadium (V)	2017/02/03		98	%	80 - 120
			Total Zinc (Zn)	2017/02/03		102	%	80 - 120
4850280	MLB	Method Blank	Total Aluminum (Al)	2017/02/03	7.6,		ug/L	
			` ,	. ,	RDL=5.0		O,	
			Total Antimony (Sb)	2017/02/03	<1.0		ug/L	
			Total Arsenic (As)	2017/02/03	<1.0		ug/L	
			Total Barium (Ba)	2017/02/03	<1.0		ug/L	
			Total Beryllium (Be)	2017/02/03	<1.0		ug/L	
			Total Bismuth (Bi)	2017/02/03	<2.0		ug/L	
			Total Boron (B)	2017/02/03	<50		ug/L	
			Total Cadmium (Cd)	2017/02/03	<0.010		ug/L	
			Total Calcium (Ca)	2017/02/03	<100		ug/L	
			Total Chromium (Cr)	2017/02/03	<1.0		ug/L	
			Total Cobalt (Co)	2017/02/03	<0.40		ug/L	
			Total Copper (Cu)	2017/02/03	<2.0		ug/L	
			Total Iron (Fe)	2017/02/03	<50		ug/L	
			Total Lead (Pb)	2017/02/03	<0.50		ug/L	
			Total Magnesium (Mg)	2017/02/03	<100		ug/L	
			Total Manganese (Mn)	2017/02/03	<2.0		ug/L	
			Total Molybdenum (Mo)	2017/02/03	<2.0		ug/L	
			Total Nickel (Ni)	2017/02/03	<2.0		ug/L	
			Total Phosphorus (P)	2017/02/03	<100		ug/L	
			Total Potassium (K)	2017/02/03	<100		ug/L	
			Total Selenium (Se)	2017/02/03	<1.0		ug/L	
			Total Silver (Ag)	2017/02/03	<0.10		ug/L	
			Total Sodium (Na)	2017/02/03	<100		ug/L	
			Total Strontium (Sr)	2017/02/03	<2.0		ug/L	
			Total Thallium (TI)	2017/02/03	<0.10		ug/L	
			Total Tin (Sn)	2017/02/03	<2.0		ug/L	
			Total Titanium (Ti)	2017/02/03	<2.0		ug/L	
			Total Uranium (U)	2017/02/03	<0.10		ug/L	
			Total Vanadium (V)	2017/02/03	<2.0		ug/L	
			Total Zinc (Zn)	2017/02/03	<5.0		ug/L	
4850280	MLB	RPD - Sample/Sample Dup	Total Aluminum (AI)	2017/02/06	NC		%	20
. 500200		2 Campie/Campie Dup	Total Antimony (Sb)	2017/02/06	NC		%	20
			Total Arsenic (As)	2017/02/06	NC		%	20
			Total Barium (Ba)	2017/02/06	NC		%	20
			Total Beryllium (Be)	2017/02/06	NC		%	20
			Total Bismuth (Bi)	2017/02/06	NC		%	20
				<u> </u>				
			Total Boron (B)	2017/02/06	NC		%	20

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08305 Sampler Initials: AS

QA/QC	-			Date	·	%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			Total Calcium (Ca)	2017/02/06	NC		%	20
			Total Chromium (Cr)	2017/02/06	NC		%	20
			Total Cobalt (Co)	2017/02/06	NC		%	20
			Total Copper (Cu)	2017/02/06	NC		%	20
			Total Iron (Fe)	2017/02/06	NC		%	20
			Total Lead (Pb)	2017/02/06	NC		%	20
			Total Magnesium (Mg)	2017/02/06	NC		%	20
			Total Manganese (Mn)	2017/02/06	NC		%	20
			Total Molybdenum (Mo)	2017/02/06	NC		%	20
			Total Nickel (Ni)	2017/02/06	NC		%	20
			Total Phosphorus (P)	2017/02/06	NC		%	20
			Total Potassium (K)	2017/02/06	NC		%	20
			Total Selenium (Se)	2017/02/06	NC		%	20
			Total Silver (Ag)	2017/02/06	NC		%	20
			Total Sodium (Na)	2017/02/06	NC		%	20
			Total Strontium (Sr)	2017/02/06	NC		%	20
			Total Thallium (TI)	2017/02/06	NC		%	20
			Total Tin (Sn)	2017/02/06	NC		%	20
			Total Titanium (Ti)	2017/02/06	NC		%	20
			Total Uranium (U)	2017/02/06	NC		%	20
			Total Vanadium (V)	2017/02/06	NC		%	20
			Total Zinc (Zn)	2017/02/06	NC		%	20
4850350	NRG	Matrix Spike	Total Alkalinity (Total as CaCO3)	2017/02/06		NC	%	80 - 120
4850350	NRG	Spiked Blank	Total Alkalinity (Total as CaCO3)	2017/02/06		109	%	80 - 120
4850350	NRG	Method Blank	Total Alkalinity (Total as CaCO3)	2017/02/06	<5.0		mg/L	
4850350	NRG	RPD - Sample/Sample Dup	Total Alkalinity (Total as CaCO3)	2017/02/06	NC		%	25
4850359	MCN	Matrix Spike	Dissolved Chloride (CI)	2017/02/06		NC	%	80 - 120
4850359	MCN	QC Standard	Dissolved Chloride (CI)	2017/02/06		108	%	80 - 120
4850359	MCN	Spiked Blank	Dissolved Chloride (CI)	2017/02/06		106	%	80 - 120
4850359	MCN	Method Blank	Dissolved Chloride (CI)	2017/02/06	<1.0		mg/L	
4850359	MCN	RPD - Sample/Sample Dup	Dissolved Chloride (CI)	2017/02/06	6.0		%	25
4850366	MCN	Matrix Spike	Dissolved Sulphate (SO4)	2017/02/06		110	%	80 - 120
4850366	MCN	Spiked Blank	Dissolved Sulphate (SO4)	2017/02/06		100	%	80 - 120
4850366	MCN	Method Blank	Dissolved Sulphate (SO4)	2017/02/06	<2.0		mg/L	
4850366	MCN	RPD - Sample/Sample Dup	Dissolved Sulphate (SO4)	2017/02/06	NC		%	25
4850377	NRG	Matrix Spike	Reactive Silica (SiO2)	2017/02/06		NC	%	80 - 120
4850377	NRG	Spiked Blank	Reactive Silica (SiO2)	2017/02/06		104	%	80 - 120
4850377	NRG	Method Blank	Reactive Silica (SiO2)	2017/02/06	< 0.50		mg/L	
4850377	NRG	RPD - Sample/Sample Dup	Reactive Silica (SiO2)	2017/02/06	0.47		%	25
4850388	MCN	Spiked Blank	Colour	2017/02/06		99	%	80 - 120
4850388	MCN	Method Blank	Colour	2017/02/06	<5.0		TCU	
4850388	MCN	RPD - Sample/Sample Dup	Colour	2017/02/06	NC		%	20
4850390	NRG	Matrix Spike	Orthophosphate (P)	2017/02/06		91	%	80 - 120
4850390	NRG	Spiked Blank	Orthophosphate (P)	2017/02/06		96	%	80 - 120
4850390	NRG	Method Blank	Orthophosphate (P)	2017/02/06	< 0.010		mg/L	
4850390	NRG	RPD - Sample/Sample Dup	Orthophosphate (P)	2017/02/06	NC		%	25
4850394	NRG	Matrix Spike	Nitrate + Nitrite (N)	2017/02/03		92	%	80 - 120
4850394	NRG	Spiked Blank	Nitrate + Nitrite (N)	2017/02/03		100	%	80 - 120
4850394	NRG	Method Blank	Nitrate + Nitrite (N)	2017/02/03	< 0.050		mg/L	
4850394	NRG	RPD - Sample/Sample Dup	Nitrate + Nitrite (N)	2017/02/03	NC		%	25
4850395	NRG	Matrix Spike	Nitrite (N)	2017/02/03		84	%	80 - 120

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08305 Sampler Initials: AS

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
4850395	NRG	Spiked Blank	Nitrite (N)	2017/02/03		85	%	80 - 120
4850395	NRG	Method Blank	Nitrite (N)	2017/02/03	< 0.010		mg/L	
4850395	NRG	RPD - Sample/Sample Dup	. ,	2017/02/03	NC		%	25
4850399	NRG	Matrix Spike(DVS425)	Total Alkalinity (Total as CaCO3)	2017/02/06		103	%	80 - 120
4850399	NRG	Spiked Blank	Total Alkalinity (Total as CaCO3)	2017/02/06		108	%	80 - 120
4850399	NRG	Method Blank	Total Alkalinity (Total as CaCO3)	2017/02/06	<5.0	100	mg/L	00 120
4850399	NRG	RPD - Sample/Sample Dup	Total Alkalinity (Total as CaCO3)	2017/02/06	NC		%	25
4850402	MCN	Matrix Spike(DVS425)	Dissolved Chloride (Cl)	2017/02/06		NC	%	80 - 120
4850402	MCN	QC Standard	Dissolved Chloride (Cl)	2017/02/06		109	%	80 - 120
4850402	MCN	Spiked Blank	Dissolved Chloride (CI)	2017/02/06		105	%	80 - 120
4850402	MCN	Method Blank	Dissolved Chloride (Cl)	2017/02/06	<1.0	100	mg/L	00 120
4850402	MCN	RPD - Sample/Sample Dup	Dissolved Chloride (Cl)	2017/02/06	0.67		%	25
4850405	MCN	Matrix Spike(DVS425)	Dissolved Sulphate (SO4)	2017/02/06	0.07	133 (1)	%	80 - 120
4850405	MCN	Spiked Blank	Dissolved Sulphate (SO4)	2017/02/06		100	%	80 - 120
4850405	MCN	Method Blank	Dissolved Sulphate (SO4)	2017/02/06	<2.0	100	mg/L	00 120
4850405	MCN	RPD - Sample/Sample Dup	Dissolved Sulphate (SO4)	2017/02/06	NC		%	25
4850406	NRG	Matrix Spike(DVS425)	Reactive Silica (SiO2)	2017/02/06		NC	%	80 - 120
4850406	NRG	Spiked Blank	Reactive Silica (SiO2)	2017/02/06		101	%	80 - 120
4850406	NRG	Method Blank	Reactive Silica (SiO2)	2017/02/06	< 0.50	101	mg/L	00 120
4850406	NRG		Reactive Silica (SiO2)	2017/02/06	0.32		%	25
4850410	MCN	Spiked Blank	Colour	2017/02/06	0.02	94	%	80 - 120
4850410	MCN	Method Blank	Colour	2017/02/06	<5.0	3.	TCU	00 120
4850410	MCN	RPD - Sample/Sample Dup	Colour	2017/02/06	NC		%	20
4850415	NRG	Matrix Spike(DVS425)	Orthophosphate (P)	2017/02/06		90	%	80 - 120
4850415	NRG	Spiked Blank	Orthophosphate (P)	2017/02/06		95	%	80 - 120
4850415	NRG	Method Blank	Orthophosphate (P)	2017/02/06	< 0.010		mg/L	
4850415	NRG	RPD - Sample/Sample Dup	Orthophosphate (P)	2017/02/06	NC		%	25
4850416	NRG	Matrix Spike(DVS425)	Nitrate + Nitrite (N)	2017/02/03		90	%	80 - 120
4850416	NRG	Spiked Blank	Nitrate + Nitrite (N)	2017/02/03		97	%	80 - 120
4850416	NRG	Method Blank	Nitrate + Nitrite (N)	2017/02/03	< 0.050		mg/L	
4850416	NRG	RPD - Sample/Sample Dup	Nitrate + Nitrite (N)	2017/02/03	NC		%	25
4850417	NRG	Matrix Spike(DVS425)	Nitrite (N)	2017/02/03		83	%	80 - 120
4850417	NRG	Spiked Blank	Nitrite (N)	2017/02/03		92	%	80 - 120
4850417	NRG	Method Blank	Nitrite (N)	2017/02/03	< 0.010		mg/L	
4850417	NRG	RPD - Sample/Sample Dup	Nitrite (N)	2017/02/03	NC		%	25
4850467	LPW	QC Standard	Total Suspended Solids	2017/02/07		94	%	80 - 120
4850467	LPW	Method Blank	Total Suspended Solids	2017/02/07	<1.0		mg/L	
4850467	LPW	RPD - Sample/Sample Dup	Total Suspended Solids	2017/02/07	4.8		%	25
4850497		Matrix Spike	Total Aluminum (AI)	2017/02/06		NC	%	80 - 120
			Total Antimony (Sb)	2017/02/06		102	%	80 - 120
			Total Arsenic (As)	2017/02/06		96	%	80 - 120
			Total Barium (Ba)	2017/02/06		NC	%	80 - 120
			Total Beryllium (Be)	2017/02/06		97	%	80 - 120
			Total Bismuth (Bi)	2017/02/06		96	%	80 - 120
			Total Boron (B)	2017/02/06		NC	%	80 - 120
			Total Cadmium (Cd)	2017/02/06		100	%	80 - 120
			Total Calcium (Ca)	2017/02/06		NC	%	80 - 120
			Total Chromium (Cr)	2017/02/06		94	%	80 - 120
			Total Cobalt (Co)	2017/02/06		95	%	80 - 120
			Total Copper (Cu)	2017/02/06		91	%	80 - 120
			Total Iron (Fe)	2017/02/06		106	%	80 - 120

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08305 Sampler Initials: AS

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			Total Lead (Pb)	2017/02/06		93	%	80 - 120
			Total Magnesium (Mg)	2017/02/06		NC	%	80 - 120
			Total Manganese (Mn)	2017/02/06		NC	%	80 - 120
			Total Molybdenum (Mo)	2017/02/06		NC	%	80 - 120
			Total Nickel (Ni)	2017/02/06		NC	%	80 - 120
			Total Phosphorus (P)	2017/02/06		100	%	80 - 120
			Total Potassium (K)	2017/02/06		NC	%	80 - 120
			Total Selenium (Se)	2017/02/06		96	%	80 - 120
			Total Silver (Ag)	2017/02/06		98	%	80 - 120
			Total Sodium (Na)	2017/02/06		NC	%	80 - 120
			Total Strontium (Sr)	2017/02/06		NC	%	80 - 120
			Total Thallium (TI)	2017/02/06		96	%	80 - 120
			Total Tin (Sn)	2017/02/06		107	%	80 - 120
			Total Titanium (Ti)	2017/02/06		105	%	80 - 120
			Total Uranium (U)	2017/02/06		97	%	80 - 120
			Total Vanadium (V)	2017/02/06		100	%	80 - 120
			Total Zinc (Zn)	2017/02/06		NC	%	80 - 120
4850497	BAN	Spiked Blank	Total Aluminum (Al)	2017/02/06		104	%	80 - 120
4030437	D/ (14	эрікса віалік	Total Antimony (Sb)	2017/02/06		100	%	80 - 120
			Total Arsenic (As)	2017/02/06		95	%	80 - 120
			Total Barium (Ba)	2017/02/06		96	%	80 - 120
			Total Barium (Ba)	2017/02/06		96	%	80 - 120
			Total Berymum (Be)	2017/02/06		102	%	80 - 120
			Total Boron (B)	2017/02/06		93	%	80 - 120
			Total Cadmium (Cd)	2017/02/06		99	% %	80 - 120
			Total Cadmidin (Cd)	2017/02/06		101	%	80 - 120
			Total Chromium (Cr)	2017/02/06		95	% %	80 - 120
							% %	
			Total Cobalt (Co)	2017/02/06		96		80 - 120
			Total Copper (Cu)	2017/02/06		95	%	80 - 120
			Total Iron (Fe)	2017/02/06		100	%	80 - 120
			Total Magnesium (Ma)	2017/02/06		98	%	80 - 120
			Total Magnesium (Mg)	2017/02/06		105	%	80 - 120
			Total Manganese (Mn)	2017/02/06		97	%	80 - 120
			Total Molybdenum (Mo)	2017/02/06		99	%	80 - 120
			Total Nickel (Ni)	2017/02/06		97	%	80 - 120
			Total Phosphorus (P)	2017/02/06		104	%	80 - 120
			Total Potassium (K)	2017/02/06		101	%	80 - 120
			Total Selenium (Se)	2017/02/06		97	%	80 - 120
			Total Silver (Ag)	2017/02/06		98	%	80 - 120
			Total Sodium (Na)	2017/02/06		100	%	80 - 120
			Total Strontium (Sr)	2017/02/06		98	%	80 - 120
			Total Thallium (TI)	2017/02/06		101	%	80 - 120
			Total Tin (Sn)	2017/02/06		103	%	80 - 120
			Total Titanium (Ti)	2017/02/06		98	%	80 - 120
			Total Uranium (U)	2017/02/06		108	%	80 - 120
			Total Vanadium (V)	2017/02/06		100	%	80 - 120
			Total Zinc (Zn)	2017/02/06		97	%	80 - 120
4850497	BAN	Method Blank	Total Aluminum (AI)	2017/02/06	6.3,		ug/L	
					RDL=5.0			
			Total Antimony (Sb)	2017/02/06	<1.0		ug/L	
			Total Arsenic (As)	2017/02/06	<1.0		ug/L	

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08305 Sampler Initials: AS

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			Total Barium (Ba)	2017/02/06	<1.0	·	ug/L	
			Total Beryllium (Be)	2017/02/06	<1.0		ug/L	
			Total Bismuth (Bi)	2017/02/06	<2.0		ug/L	
			Total Boron (B)	2017/02/06	<50		ug/L	
			Total Cadmium (Cd)	2017/02/06	<0.010		ug/L	
			Total Calcium (Ca)	2017/02/06	<100		ug/L	
			Total Chromium (Cr)	2017/02/06	<1.0		ug/L	
			Total Cobalt (Co)	2017/02/06	< 0.40		ug/L	
			Total Copper (Cu)	2017/02/06	<2.0		ug/L	
			Total Iron (Fe)	2017/02/06	<50		ug/L	
			Total Lead (Pb)	2017/02/06	<0.50		ug/L	
			Total Magnesium (Mg)	2017/02/06	<100		ug/L	
			Total Manganese (Mn)	2017/02/06	<2.0		ug/L	
			Total Molybdenum (Mo)	2017/02/06	<2.0		ug/L	
			Total Nickel (Ni)	2017/02/06	<2.0		ug/L	
			Total Phosphorus (P)	2017/02/06	<100		ug/L	
			Total Potassium (K)	2017/02/06	<100		ug/L	
			Total Selenium (Se)	2017/02/06	<1.0		ug/L	
			Total Silver (Ag)	2017/02/06	<0.10		ug/L	
			Total Sodium (Na)	2017/02/06	<100		ug/L	
			Total Strontium (Sr)	2017/02/06	<2.0		ug/L	
			Total Thallium (TI)	2017/02/06	<0.10		ug/L	
			Total Tin (Sn)	2017/02/06	<2.0		ug/L	
			Total Titanium (Ti)	2017/02/06	<2.0		ug/L	
			Total Uranium (U)	2017/02/06	<0.10		ug/L	
			Total Vanadium (V)	2017/02/06	<2.0		ug/L	
			Total Zinc (Zn)	2017/02/06	<5.0		ug/L	
4850497	BAN	RPD - Sample/Sample Dup		2017/02/06	NC		%	20
4850625	BAN	Matrix Spike	Dissolved Aluminum (Al)	2017/02/04	NC	113	%	80 - 120
4030023	D/ (14	Width Spike	Dissolved Antimony (Sb)	2017/02/04		110	%	80 - 120
			Dissolved Arsenic (As)	2017/02/04		103	%	80 - 120
			Dissolved Barium (Ba)	2017/02/04		97	%	80 - 120
			Dissolved Barryllium (Be)	2017/02/04		95	%	80 - 120
			Dissolved Bismuth (Bi)	2017/02/04		109	%	80 - 120
			Dissolved Bismath (B)	2017/02/04		NC	%	80 - 120
			Dissolved Cadmium (Cd)	2017/02/04		106	%	80 - 120
			Dissolved Calcium (Ca)	2017/02/04		NC	%	80 - 120
			Dissolved Chromium (Cr)	2017/02/04		101	%	80 - 120
			Dissolved Cobalt (Co)	2017/02/04		101	%	80 - 120
			Dissolved Copper (Cu)	2017/02/04		102	%	80 - 120
			Dissolved Copper (Cu) Dissolved Iron (Fe)	2017/02/04		112	%	80 - 120
			Dissolved Holf (Fe)	2017/02/04		102	%	80 - 120
			Dissolved Lead (PD) Dissolved Magnesium (Mg)	2017/02/04		NC	%	80 - 120
			Dissolved Manganese (Mn)	2017/02/04		NC	%	80 - 120
			Dissolved Molybdenum (Mo)	2017/02/04		107	%	80 - 120
			Dissolved Nickel (Ni)	2017/02/04		107	%	80 - 120
			Dissolved Phosphorus (P)	2017/02/04		103	% %	80 - 120 80 - 120
				2017/02/04		111	% %	80 - 120 80 - 120
			Dissolved Potassium (K) Dissolved Selenium (Se)	2017/02/04		104	% %	80 - 120 80 - 120
				2017/02/04				
			Dissolved Silver (Ag) Dissolved Sodium (Na)	2017/02/04 2017/02/04		101 105	% %	80 - 120 80 - 120
			Dissolved SouldIII (Na)	2017/02/04		103	70	80 - 120

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08305 Sampler Initials: AS

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
-			Dissolved Strontium (Sr)	2017/02/04		NC	%	80 - 120
			Dissolved Thallium (TI)	2017/02/04		109	%	80 - 120
			Dissolved Tin (Sn)	2017/02/04		111	%	80 - 120
			Dissolved Titanium (Ti)	2017/02/04		101	%	80 - 120
			Dissolved Uranium (U)	2017/02/04		113	%	80 - 120
			Dissolved Vanadium (V)	2017/02/04		100	%	80 - 120
			Dissolved Zinc (Zn)	2017/02/04		108	%	80 - 120
4850625	BAN	Spiked Blank	Dissolved Aluminum (AI)	2017/02/04		105	%	80 - 120
		- P	Dissolved Antimony (Sb)	2017/02/04		99	%	80 - 120
			Dissolved Arsenic (As)	2017/02/04		96	%	80 - 120
			Dissolved Barium (Ba)	2017/02/04		93	%	80 - 120
			Dissolved Beryllium (Be)	2017/02/04		90	%	80 - 120
			Dissolved Bismuth (Bi)	2017/02/04		101	%	80 - 120
			Dissolved Boron (B)	2017/02/04		90	%	80 - 120
			Dissolved Cadmium (Cd)	2017/02/04		100	%	80 - 120
			Dissolved Calcium (Ca)	2017/02/04		96	%	80 - 120
			Dissolved Chromium (Cr)	2017/02/04		95	%	80 - 120
			Dissolved Cobalt (Co)	2017/02/04		96	%	80 - 120
			Dissolved Copper (Cu)	2017/02/04		96	%	80 - 120
			Dissolved Iron (Fe)	2017/02/04		103	%	80 - 120
			Dissolved Lead (Pb)	2017/02/04		97	%	80 - 120
			Dissolved Magnesium (Mg)	2017/02/04		103	%	80 - 120
			Dissolved Manganese (Mn)	2017/02/04		99	%	80 - 120
			Dissolved Molybdenum (Mo)	2017/02/04		98	%	80 - 120
			Dissolved Nickel (Ni)	2017/02/04		99	% %	80 - 120
			Dissolved Nickel (NI) Dissolved Phosphorus (P)	2017/02/04		105	%	80 - 120
			Dissolved Priosphorus (F) Dissolved Potassium (K)	2017/02/04		103	% %	80 - 120
			Dissolved Foldssidin (K) Dissolved Selenium (Se)	2017/02/04		99	% %	80 - 120
			` '	2017/02/04		98	%	80 - 120
			Dissolved Silver (Ag)			99	%	80 - 120
			Dissolved Strontium (Sr.)	2017/02/04 2017/02/04		98	%	
			Dissolved Strontium (Sr)					80 - 120 80 - 120
			Dissolved Tip (Sr.)	2017/02/04		101	%	
			Dissolved Tin (Sn)	2017/02/04		102	%	80 - 120
			Dissolved Uranium (Ti)	2017/02/04		99 106	% %	80 - 120
			Dissolved Vanadium (U)	2017/02/04		106		80 - 120
			Dissolved Vanadium (V)	2017/02/04		94	%	80 - 120
4050635	DANI	Mathad Dlad	Dissolved Zinc (Zn)	2017/02/04	.E.O	101	%	80 - 120
4850625	BAN	Method Blank	Dissolved Aluminum (Al)	2017/02/04	<5.0		ug/L	
			Dissolved Antimony (Sb)	2017/02/04	<1.0		ug/L	
			Dissolved Arsenic (As)	2017/02/04	<1.0		ug/L	
			Dissolved Barium (Ba)	2017/02/04	<1.0		ug/L	
			Dissolved Beryllium (Be)	2017/02/04	<1.0		ug/L	
			Dissolved Bismuth (Bi)	2017/02/04	<2.0		ug/L	
			Dissolved Boron (B)	2017/02/04	<50		ug/L	
			Dissolved Cadmium (Cd)	2017/02/04	<0.010		ug/L	
			Dissolved Calcium (Ca)	2017/02/04	<100		ug/L	
			Dissolved Chromium (Cr)	2017/02/04	<1.0		ug/L	
			Dissolved Cobalt (Co)	2017/02/04	<0.40		ug/L	
			Dissolved Copper (Cu)	2017/02/04	<2.0		ug/L	
			Dissolved Iron (Fe)	2017/02/04	<50		ug/L	
			Dissolved Lead (Pb)	2017/02/04	<0.50		ug/L	

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08305 Sampler Initials: AS

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			Dissolved Magnesium (Mg)	2017/02/04	<100		ug/L	
			Dissolved Manganese (Mn)	2017/02/04	<2.0		ug/L	
			Dissolved Molybdenum (Mo)	2017/02/04	<2.0		ug/L	
			Dissolved Nickel (Ni)	2017/02/04	<2.0		ug/L	
			Dissolved Phosphorus (P)	2017/02/04	<100		ug/L	
			Dissolved Potassium (K)	2017/02/04	<100		ug/L	
			Dissolved Selenium (Se)	2017/02/04	<1.0		ug/L	
			Dissolved Silver (Ag)	2017/02/04	< 0.10		ug/L	
			Dissolved Sodium (Na)	2017/02/04	<100		ug/L	
			Dissolved Strontium (Sr)	2017/02/04	<2.0		ug/L	
			Dissolved Thallium (TI)	2017/02/04	<0.10		ug/L	
			Dissolved Tin (Sn)	2017/02/04	<2.0		ug/L	
			Dissolved Titanium (Ti)	2017/02/04	<2.0		ug/L	
			Dissolved Uranium (U)	2017/02/04	<0.10		ug/L	
			Dissolved Vanadium (V)	2017/02/04	<2.0		ug/L	
			Dissolved Zinc (Zn)	2017/02/04	<5.0		ug/L	
4850625	BAN	RPD - Sample/Sample Dup	Dissolved Aluminum (Al)	2017/02/04	NC		%	20
4030023	DAIN	Ki b Sample/Sample bup	Dissolved Antimony (Sb)	2017/02/04	NC		%	20
			Dissolved Arsenic (As)	2017/02/04	1.6		%	20
			Dissolved Barium (Ba)	2017/02/04	1.2		%	20
			Dissolved Beryllium (Be)	2017/02/04	NC		%	20
			Dissolved Bismuth (Bi)	2017/02/04	NC		%	20
			Dissolved Boron (B)	2017/02/04	0.38		%	20
			Dissolved Cadmium (Cd)	2017/02/04	NC		%	20
			Dissolved Calcium (Ca)	2017/02/04	1.8		%	20
			Dissolved Calcium (Ca) Dissolved Chromium (Cr)	2017/02/04	NC		% %	20
			Dissolved Cobalt (Co)	2017/02/04	NC		% %	20
			Dissolved Copper (Cu)	2017/02/04	NC		% %	20
			Dissolved Copper (Cu)	2017/02/04	NC		%	20
			Dissolved from (Fe) Dissolved Lead (Pb)	2017/02/04	NC		%	20
			` '	2017/02/04	2.7		% %	20
			Dissolved Magnesium (Mg)				%	
			Dissolved Manganese (Mn)	2017/02/04	4.0			20
			Dissolved Molybdenum (Mo)	2017/02/04	NC		%	20
			Dissolved Nickel (Ni)	2017/02/04	NC		% %	20
			Dissolved Phosphorus (P)	2017/02/04	NC 0.31		% %	20
			Dissolved Potassium (K)	2017/02/04	0.31			20
			Dissolved Selenium (Se)	2017/02/04	NC		%	20
			Dissolved Silver (Ag)	2017/02/04	NC		%	20
			Dissolved Sodium (Na)	2017/02/04	2.7		%	20
			Dissolved Strontium (Sr)	2017/02/04	3.1		%	20
			Dissolved Thallium (TI)	2017/02/04	NC		%	20
			Dissolved Tito rives (Ti)	2017/02/04	NC		%	20
			Dissolved Titanium (Ti)	2017/02/04	NC		%	20
			Dissolved Uranium (U)	2017/02/04	1.7		%	20
			Dissolved Vanadium (V)	2017/02/04	NC		%	20
4050000	450	Markets Codd - (D) (C400)	Dissolved Zinc (Zn)	2017/02/04	NC	407	%	20
4850869	ARS	Matrix Spike(DVS403)	Total Mercury (Hg)	2017/02/06		107	%	80 - 120
4850869	ARS	Spiked Blank	Total Mercury (Hg)	2017/02/06	.0.616	106	%	80 - 120
4850869	ARS	Method Blank	Total Mercury (Hg)	2017/02/06	<0.013		ug/L	
4850869	ARS	RPD - Sample/Sample Dup	Total Mercury (Hg)	2017/02/06	NC		%	20
4852494	JMV	QC Standard	pH	2017/02/06		100	%	97 - 103

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08305 Sampler Initials: AS

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
4852494	JMV	RPD - Sample/Sample Dup	рН	2017/02/06	0.48		%	N/A
4852495	JMV	Spiked Blank	Conductivity	2017/02/06		101	%	80 - 120
4852495	JMV	Method Blank	Conductivity	2017/02/06	1.5,		uS/cm	
					RDL=1.0			
4852495	JMV	RPD - Sample/Sample Dup	Conductivity	2017/02/06	1.7		%	25
4853060	ARS	Matrix Spike	Total Mercury (Hg)	2017/02/07		103	%	80 - 120
4853060	ARS	Spiked Blank	Total Mercury (Hg)	2017/02/07		104	%	80 - 120
4853060	ARS	Method Blank	Total Mercury (Hg)	2017/02/07	< 0.013		ug/L	
4853060	ARS	RPD - Sample/Sample Dup	Total Mercury (Hg)	2017/02/07	NC		%	20
4854231	SSI	Matrix Spike	Total Organic Carbon (C)	2017/02/07		95	%	80 - 120
4854231	SSI	Spiked Blank	Total Organic Carbon (C)	2017/02/07		95	%	80 - 120
4854231	SSI	Method Blank	Total Organic Carbon (C)	2017/02/07	< 0.50		mg/L	
4854231	SSI	RPD - Sample/Sample Dup	Total Organic Carbon (C)	2017/02/07	NC		%	20
4854545	SSI	Matrix Spike(DVS425)	Total Organic Carbon (C)	2017/02/07		NC	%	80 - 120
4854545	SSI	Spiked Blank	Total Organic Carbon (C)	2017/02/07		99	%	80 - 120
4854545	SSI	Method Blank	Total Organic Carbon (C)	2017/02/07	< 0.50		mg/L	
4854545	SSI	RPD - Sample/Sample Dup	Total Organic Carbon (C)	2017/02/07	NC (2)		%	20

N/A = Not Applicable

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than 2x that of the native sample concentration).

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

- (1) Elevated matrix spike recovery due to sample matrix.
- (2) Reporting limit was increased due to turbidity.

Englobe Corp.

Client Project #: P-0010903 Site Location: LAKE GEORGE

Your P.O. #: A08305 Sampler Initials: AS

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Ak Liaisman
Eric Dearman, Scientific Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Page 58 of 60

		INVOICE TO:				Report Information	rmation					Project Information	ormation		Labo	Laboratory Use Only	nly
Company Name	#41009 Englobe Corp.	be Corp.		Company Marin						0	Alleria M	B63657			Maxxam Job #		Bottle Order #;
Contact Name		ble		Product Many	Aven Co	e/Lisa L/Alexandra S	andra S.			מממ	Quotation #						
Address	97 Troop Ave			Address						Project #	et a	P-0010903	3		8121953		35824
	Dartmouth NS B3B 2A7	B3B 2A7								Proje	Project Name				Chain Of Custody Record	cord	Project Manager
Phone	(902) 468-6486		(902) 468-4919	Phone	(902) 468-6486	486	Fax		(902) 468-4919	Siten		LAKE GEORGE	ORGE				Account Management
Email	Dartmouth.AP@	Dartmouth AP@englobecorp.com		Email	Aven.Cole@englobecorp.com	genglobec	orp.com			Sam	Sampled By	A5	17		C#595824-01-01		Walling Asiana
Regulatory Criteria:	riteriar			Special	Special Instructions				W	IALYSIS RED	ANALYSIS REQUESTED (PLEASE BE SPECIFIC)	E BE SPECIFIC	2		Turnaround Ti	Turnaround Time (TAT) Required:	lred:
Coarrie	with S. Wenner Consumer	Company And Company Co	4					netsW ni elet	24.00	s (ec,q)				在 色粉 覆覆	Proses provide advance notice for rush projects. Regular (Standard) TAT: (will be applied if Rush TAT is not specified): Standard TAT = S.Y Working days for most feets. (Standard TAT = S.Y Working days for most feets. Feets a row is a Standard TAT for contain feets as on) as BOD and Disumb-Furans are > \$ forty = contact your Project Managel for Desiris.	and holice for rust field; nost fests. ests such as BOD; details.	projects Main Diagraph and Charants are >
	Potabia/Nonpotable/Ti	Politicie/Norpetable/Tissue(Soil/Studge/Netal					esen9 & ben enlupe9 not		VD) istoT -	s) stetaM b				7 6	Job Specific Rush TAT (If applies to entire submission) Date Required	entire submission) Tima Required	. pa
	SAMPLES MUST BE K	SAMPLES MUST BE KEPT GOOL (< 10°C) FROM TIME OF SAMPLING UNTIL DELIVERY TO MAXXAM	ME OF SAMPLING UNTI	. DELIVERY TI	D MAXXAM		_			evio						Preventable Hannards J Dilbar Danishad Amiliana	South Assistant
Sample	Sample Barcode Label	Sample (Location) Identification		Date Sampled	Time Sampled	Mairix	-			esiO					Battles	The state of the s	
S	SID#326292	SW1	1/15	SVANT B	13400	50	×	×	×	×					19		
	SIDMAZBZBS	SW2	795	SCAP 411/125	Seal		×	×	×	×					9		
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	SID#328294	SW3	100	17.7	30/1/7 11h 50		×	×	×	×					9		
S	SID#328295	SW4	31/	31/1/17 18	13430		×	×							7		
S S	SIDHAMINININI SIDHAZ8286	SW5	795	30/1/17 1	11455		×	×	53						7		
	SIDMINIMENTALISMINISMINISMINISMINISMINISMINISMINISMI	SW6	31/1	1 41/1/2	13437		×	×							5		
S. S.	SID#328298	SW7	307	3011113	9410		×	×	×						Z		
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	SION328299	SW8	30/	30/117 11	10405		×	×	×						7		
S	II III III III III III III III III III	SWS	30/	30/1/7	OHO		×	×	u u						T		
IIIIIII S	NIMITALINI MENDENINI MENDENINI SI DESCRIZZAZIONI	SW10	30/	41/1	9445	->	×	×	×						T		
· RELIN	RELINGUISHED BY: (Signature/Print)	ins/Print)	Date: (YY/MM/IDD)	Time		RECEIV	RECEIVED BY: (Signature/Print)	sature/Print]		a O	Date: (YY/MM/DD)	Time	# jars used and	\vdash	Lab Use Only		
						\$	00	1	1	-				Time Squality	Temperature (*C) on Receipt	Custody	Custody Seal lination Codlery

Maxxam Analytics International Corporation of a Maxxam Analytics

Address Phone

Maxxam Analytics International Corporation of a Maxxam Analytics

Chain Of Custody Record

Maxxam Analytics International Corporation of a Maxxam Analytics

Attention:Lisa Ladouceur

Englobe Corp.
97 Troop Ave
Dartmouth, NS
CANADA B3B 2A7

Your P.O. #: A08530

Your Project #: P-0010903-0-00-205 Site#: Lake George Road, Lake George,

Site Location: Lake George Road, Lake George, NS

Your C.O.C. #: 606952-01-01

Report Date: 2017/05/09

Report #: R4453804 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B784266 Received: 2017/04/26, 16:25

Sample Matrix: Water # Samples Received: 23

ii sumples neceived. 25		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Carbonate, Bicarbonate and Hydroxide	23	N/A	2017/05/01	N/A	SM 22 4500-CO2 D
Alkalinity	23	N/A	2017/05/02	ATL SOP 00013	EPA 310.2 R1974 m
Chloride	23	N/A	2017/05/02	ATL SOP 00014	SM 22 4500-Cl- E m
Colour	23	N/A	2017/05/03	ATL SOP 00020	SM 22 2120C m
Conductance - water	23	N/A	2017/05/01	ATL SOP 00004	SM 22 2510B m
Hardness (calculated as CaCO3)	16	N/A	2017/05/01	ATL SOP 00048	SM 22 2340 B
Hardness (calculated as CaCO3)	6	N/A	2017/05/02	ATL SOP 00048	SM 22 2340 B
Hardness (calculated as CaCO3)	1	N/A	2017/05/03	ATL SOP 00048	SM 22 2340 B
Mercury - Total (CVAA,LL)	23	2017/04/28	2017/05/01	ATL SOP 00026	EPA 245.1 R3 m
Metals Water Diss. MS (as rec'd)	6	N/A	2017/05/02	ATL SOP 00058	EPA 6020A R1 m
Metals Water Total MS	16	2017/04/28	2017/04/29	ATL SOP 00058	EPA 6020A R1 m
Metals Water Total MS	6	2017/04/28	2017/05/01	ATL SOP 00058	EPA 6020A R1 m
Metals Water Total MS	1	2017/04/28	2017/05/02	ATL SOP 00058	EPA 6020A R1 m
Ion Balance (% Difference)	21	N/A	2017/05/08	N/A	Auto Calc.
Ion Balance (% Difference)	2	N/A	2017/05/09	N/A	Auto Calc.
Anion and Cation Sum	21	N/A	2017/05/08	N/A	Auto Calc.
Anion and Cation Sum	2	N/A	2017/05/09	N/A	Auto Calc.
Total Ammonia-N (1)	21	N/A	2017/05/08	CAM SOP-00441	EPA GS I-2522-90 m
Total Ammonia-N (1)	2	N/A	2017/05/09	CAM SOP-00441	EPA GS I-2522-90 m
Nitrogen - Nitrate + Nitrite	23	N/A	2017/05/02	ATL SOP 00016	USGS SOPINCF0452.2 m
Nitrogen - Nitrite	23	N/A	2017/05/02	ATL SOP 00017	SM 22 4500-NO2- B m
Nitrogen - Nitrate (as N)	23	N/A	2017/05/03	ATL SOP 00018	ASTM D3867-16
pH (2)	23	N/A	2017/05/01	ATL SOP 00003	SM 22 4500-H+ B m
Phosphorus - ortho	23	N/A	2017/05/02	ATL SOP 00021	EPA 365.2 m
Sat. pH and Langelier Index (@ 20C)	10	N/A	2017/05/03	ATL SOP 00049	Auto Calc.
Sat. pH and Langelier Index (@ 20C)	12	N/A	2017/05/08	ATL SOP 00049	Auto Calc.
Sat. pH and Langelier Index (@ 20C)	1	N/A	2017/05/09	ATL SOP 00049	Auto Calc.
Sat. pH and Langelier Index (@ 4C)	10	N/A	2017/05/03	ATL SOP 00049	Auto Calc.
Sat. pH and Langelier Index (@ 4C)	12	N/A	2017/05/08	ATL SOP 00049	Auto Calc.
Sat. pH and Langelier Index (@ 4C)	1	N/A	2017/05/09	ATL SOP 00049	Auto Calc.

Attention:Lisa Ladouceur

Englobe Corp.
97 Troop Ave
Dartmouth, NS
CANADA B3B 2A7

Your P.O. #: A08530

Your Project #: P-0010903-0-00-205 Site#: Lake George Road, Lake George,

Site Location: Lake George Road, Lake George, NS

Your C.O.C. #: 606952-01-01

Report Date: 2017/05/09

Report #: R4453804 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B784266 Received: 2017/04/26, 16:25

Sample Matrix: Water # Samples Received: 23

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Reactive Silica	23	N/A	2017/05/02	ATL SOP 00022	EPA 366.0 m
Sulphate	23	N/A	2017/05/03	ATL SOP 00023	ASTMD516-11 m
Total Dissolved Solids (TDS calc)	21	N/A	2017/05/08	N/A	Auto Calc.
Total Dissolved Solids (TDS calc)	2	N/A	2017/05/09	N/A	Auto Calc.
Organic carbon - Total (TOC) (3)	23	N/A	2017/04/28	ATL SOP 00037	SM 22 5310C m
Total Suspended Solids	2	2017/05/01	2017/05/03	ATL SOP 00007	SM 22 2540D m
Total Suspended Solids	4	2017/05/01	2017/05/04	ATL SOP 00007	SM 22 2540D m
Turbidity	23	N/A	2017/05/01	ATL SOP 00011	EPA 180.1 R2 m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported: unless indicated otherwise, associated sample data are not blank corrected.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) This test was performed by Maxxam Analytics Mississauga
- (2) The APHA Standard Method require pH to be analyzed within 15 minutes of sampling and therefore field analysis is required for compliance. All Laboratory pH analyses in this report are reported past the APHA Standard Method holding time.
- (3) TOC / DOC present in the sample should be considered as non-purgeable TOC / DOC.

Attention:Lisa Ladouceur

Englobe Corp.
97 Troop Ave
Dartmouth, NS
CANADA B3B 2A7

Your P.O. #: A08530

Your Project #: P-0010903-0-00-205 Site#: Lake George Road, Lake George,

Site Location: Lake George Road, Lake George, NS

Your C.O.C. #: 606952-01-01

Report Date: 2017/05/09

Report #: R4453804

Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B784266 Received: 2017/04/26, 16:25

Encryption Key

Maxxam 09 May 2017 14:29:49

Please direct all questions regarding this Certificate of Analysis Series Project Manager.

Michelle Hill, Project Manager Email: MHill@maxxam.ca Phone# (902)420-0203 Ext:289

This report has been generated and distributed using a secure automated process.

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Maxxam Job #: B784266 Report Date: 2017/05/09

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Your P.O. #: A08530 Sampler Initials: LL

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Maxxam ID		EHA221			EHA222			EHA223			
Sampling Date		2017/04/26			2017/04/25			2017/04/25			
COC Number		606952-01-01			606952-01-01			606952-01-01			
	UNITS	SW1	RDL	QC Batch	SW2	RDL	QC Batch	SW3	RDL	QC Batch	MDL
Calculated Parameters		•	•	•	·	•	•	•	•	•	
Anion Sum	me/L	0.520	N/A	4957617	0.420	N/A	4957617	1.19	N/A	4957617	N/A
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	4957614	<1.0	1.0	4957614	31	1.0	4957614	0.20
Calculated TDS	mg/L	42	1.0	4957610	33	1.0	4957610	76	1.0	4957610	0.20
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	4957614	<1.0	1.0	4957614	<1.0	1.0	4957614	0.20
Cation Sum	me/L	0.690	N/A	4957617	0.580	N/A	4957617	1.33	N/A	4957617	N/A
Hardness (CaCO3)	mg/L	4.9	1.0	4957615	8.4	1.0	4957615	27	1.0	4957615	1.0
Ion Balance (% Difference)	%	14.1	N/A	4957616	16.0	N/A	4957616	5.56	N/A	4957616	N/A
Langelier Index (@ 20C)	N/A	NC		4957608	NC		4957608	-2.27		4957608	
Langelier Index (@ 4C)	N/A	NC		4957609	NC		4957609	-2.52		4957609	
Nitrate (N)	mg/L	0.077	0.050	4957618	0.067	0.050	4957618	0.092	0.050	4957618	N/A
Saturation pH (@ 20C)	N/A	NC		4957608	NC		4957608	8.98		4957608	
Saturation pH (@ 4C)	N/A	NC		4957609	NC		4957609	9.23		4957609	
Inorganics	•			•		•	•			•	
Total Alkalinity (Total as CaCO3)	mg/L	<5.0	5.0	4962261	<5.0	5.0	4962261	31	5.0	4962261	N/A
Total Ammonia-N	mg/L	<0.050	0.050	4973137	<0.050	0.050	4973879	0.093	0.050	4973133	0.008
Dissolved Chloride (CI)	mg/L	16	1.0	4962263	15	1.0	4962263	18	1.0	4962263	N/A
Colour	TCU	580 (1)	130	4962279	220 (1)	100	4962279	430 (1)	130	4962279	N/A
Nitrate + Nitrite (N)	mg/L	0.077	0.050	4962287	0.067	0.050	4962287	0.092	0.050	4962287	N/A
Nitrite (N)	mg/L	<0.010	0.010	4962292	<0.010	0.010	4962292	<0.010	0.010	4962292	N/A
Total Organic Carbon (C)	mg/L	20 (1)	5.0	4959592	13 (1)	2.5	4959592	33 (1)	5.0	4959592	N/A
Orthophosphate (P)	mg/L	0.020	0.010	4962282	0.014	0.010	4962282	0.028	0.010	4962282	N/A
рН	рН	5.41	N/A	4962125	5.43	N/A	4962127	6.72	N/A	4962125	N/A
Reactive Silica (SiO2)	mg/L	5.6	0.50	4962271	5.8	0.50	4962271	4.5	0.50	4962271	N/A
Dissolved Sulphate (SO4)	mg/L	3.4	2.0	4962266	<2.0	2.0	4962266	3.3	2.0	4962266	N/A
Turbidity	NTU	5.1	0.10	4962155	2.9	0.10	4962155	17	0.10	4962155	0.10
Conductivity	uS/cm	79	1.0	4962126	69	1.0	4962128	120	1.0	4962126	N/A
Metals											
Total Aluminum (Al)	ug/L	720	5.0	4959500	370	5.0	4959507	1600	5.0	4959500	N/A
Total Antimony (Sb)	ug/L	<1.0	1.0	4959500	<1.0	1.0	4959507	<1.0	1.0	4959500	N/A
Total Arsenic (As)	ug/L	1.3	1.0	4959500	<1.0	1.0	4959507	4.7	1.0	4959500	N/A
Total Barium (Ba)	ug/L	3.1	1.0	4959500	2.8	1.0	4959507	21	1.0	4959500	N/A
Total Beryllium (Be)	ug/L	<1.0	1.0	4959500	<1.0	1.0	4959507	<1.0	1.0	4959500	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

(1) Elevated reporting limit due to sample matrix.

Maxxam Job #: B784266 Report Date: 2017/05/09 Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Your P.O. #: A08530 Sampler Initials: LL

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Maxxam ID		EHA221			EHA222			EHA223			
Sampling Date		2017/04/26			2017/04/25			2017/04/25			
COC Number		606952-01-01			606952-01-01			606952-01-01			
	UNITS	SW1	RDL	QC Batch	SW2	RDL	QC Batch	SW3	RDL	QC Batch	MDL
Total Bismuth (Bi)	ug/L	<2.0	2.0	4959500	<2.0	2.0	4959507	<2.0	2.0	4959500	N/A
Total Boron (B)	ug/L	<50	50	4959500	<50	50	4959507	<50	50	4959500	N/A
Total Cadmium (Cd)	ug/L	0.034	0.010	4959500	0.028	0.010	4959507	0.071	0.010	4959500	N/A
Total Calcium (Ca)	ug/L	950	100	4959500	1400	100	4959507	8000	100	4959500	N/A
Total Chromium (Cr)	ug/L	1.2	1.0	4959500	1.5	1.0	4959507	4.7	1.0	4959500	N/A
Total Cobalt (Co)	ug/L	0.45	0.40	4959500	<0.40	0.40	4959507	2.9	0.40	4959500	N/A
Total Copper (Cu)	ug/L	<2.0	2.0	4959500	<2.0	2.0	4959507	4.7	2.0	4959500	N/A
Total Iron (Fe)	ug/L	800	50	4959500	310	50	4959507	7200	50	4959500	N/A
Total Lead (Pb)	ug/L	3.4	0.50	4959500	1.4	0.50	4959507	5.4	0.50	4959500	N/A
Total Magnesium (Mg)	ug/L	600	100	4959500	1100	100	4959507	2400	100	4959500	N/A
Total Manganese (Mn)	ug/L	17	2.0	4959500	14	2.0	4959507	560	2.0	4959500	N/A
Total Molybdenum (Mo)	ug/L	<2.0	2.0	4959500	<2.0	2.0	4959507	<2.0	2.0	4959500	N/A
Total Nickel (Ni)	ug/L	2.0	2.0	4959500	<2.0	2.0	4959507	4.6	2.0	4959500	N/A
Total Phosphorus (P)	ug/L	<100	100	4959500	<100	100	4959507	250	100	4959500	N/A
Total Potassium (K)	ug/L	4000	100	4959500	1400	100	4959507	7600	100	4959500	N/A
Total Selenium (Se)	ug/L	<1.0	1.0	4959500	<1.0	1.0	4959507	<1.0	1.0	4959500	N/A
Total Silver (Ag)	ug/L	<0.10	0.10	4959500	<0.10	0.10	4959507	<0.10	0.10	4959500	N/A
Total Sodium (Na)	ug/L	9800	100	4959500	7900	100	4959507	11000	100	4959500	N/A
Total Strontium (Sr)	ug/L	7.6	2.0	4959500	9.4	2.0	4959507	41	2.0	4959500	N/A
Total Thallium (Tl)	ug/L	<0.10	0.10	4959500	<0.10	0.10	4959507	<0.10	0.10	4959500	N/A
Total Tin (Sn)	ug/L	<2.0	2.0	4959500	<2.0	2.0	4959507	<2.0	2.0	4959500	N/A
Total Titanium (Ti)	ug/L	16	2.0	4959500	4.5	2.0	4959507	36	2.0	4959500	N/A
Total Uranium (U)	ug/L	<0.10	0.10	4959500	<0.10	0.10	4959507	0.21	0.10	4959500	N/A
Total Vanadium (V)	ug/L	<2.0	2.0	4959500	<2.0	2.0	4959507	3.4	2.0	4959500	N/A
Total Zinc (Zn)	ug/L	5.2	5.0	4959500	<5.0	5.0	4959507	44	5.0	4959500	N/A

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

N/A = Not Applicable

Maxxam Job #: B784266 Report Date: 2017/05/09 Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Your P.O. #: A08530 Sampler Initials: LL

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Maxxam ID		EHA223			EHA224			EHA225			
Sampling Date		2017/04/25			2017/04/26			2017/04/25			
COC Number		606952-01-01			606952-01-01			606952-01-01			
	UNITS	SW3 Lab-Dup	RDL	QC Batch	SW4	RDL	QC Batch	SW5	RDL	QC Batch	MDL
Calculated Parameters	•		•		•	•			•	•	
Anion Sum	me/L		N/A	4957617	1.41	N/A	4957617	1.02	N/A	4957617	N/A
Bicarb. Alkalinity (calc. as CaCO3)	mg/L		1.0	4957614	9.2	1.0	4957614	24	1.0	4957614	0.20
Calculated TDS	mg/L		1.0	4957610	89	1.0	4957610	61	1.0	4957610	0.20
Carb. Alkalinity (calc. as CaCO3)	mg/L		1.0	4957614	<1.0	1.0	4957614	<1.0	1.0	4957614	0.20
Cation Sum	me/L		N/A	4957617	1.52	N/A	4957617	1.12	N/A	4957617	N/A
Hardness (CaCO3)	mg/L		1.0	4957615	17	1.0	4957615	23	1.0	4957615	1.0
Ion Balance (% Difference)	%		N/A	4957616	3.75	N/A	4957616	4.67	N/A	4957616	N/A
Langelier Index (@ 20C)	N/A			4957608	-3.35		4957608	-2.28		4957608	
Langelier Index (@ 4C)	N/A			4957609	-3.61		4957609	-2.53		4957609	
Nitrate (N)	mg/L		0.050	4957618	0.41	0.050	4957618	<0.050	0.050	4957618	N/A
Saturation pH (@ 20C)	N/A			4957608	9.78		4957608	9.16		4957608	
Saturation pH (@ 4C)	N/A			4957609	10.0		4957609	9.41		4957609	
Inorganics			•			•			•	•	
Total Alkalinity (Total as CaCO3)	mg/L		5.0	4962261	9.2	5.0	4962261	24	5.0	4962261	N/A
Total Ammonia-N	mg/L		0.050	4973133	<0.050	0.050	4973133	<0.050	0.050	4973137	0.0080
Dissolved Chloride (CI)	mg/L		1.0	4962263	40	1.0	4962263	17	1.0	4962263	N/A
Colour	TCU		130	4962279	220 (1)	100	4962279	320 (1)	130	4962279	N/A
Nitrate + Nitrite (N)	mg/L		0.050	4962287	0.41	0.050	4962287	<0.050	0.050	4962287	N/A
Nitrite (N)	mg/L		0.010	4962292	<0.010	0.010	4962292	<0.010	0.010	4962292	N/A
Total Organic Carbon (C)	mg/L	33 (1)	5.0	4959592	12 (1)	2.5	4959592	23 (1)	5.0	4959592	N/A
Orthophosphate (P)	mg/L		0.010	4962282	0.011	0.010	4962282	0.015	0.010	4962282	N/A
рН	рН		N/A	4962125	6.43	N/A	4962125	6.88	N/A	4962125	N/A
Reactive Silica (SiO2)	mg/L		0.50	4962271	3.9	0.50	4962271	0.69	0.50	4962271	N/A
Dissolved Sulphate (SO4)	mg/L		2.0	4962266	3.5	2.0	4962266	2.6	2.0	4962266	N/A
Turbidity	NTU		0.10	4962155	4.0	0.10	4962155	9.2	0.10	4962159	0.10
Conductivity	uS/cm		1.0	4962126	170	1.0	4962126	110	1.0	4962126	N/A
Metals											
Total Aluminum (Al)	ug/L		5.0	4959500	440	5.0	4959507	570	5.0	4959500	N/A
Total Antimony (Sb)	ug/L		1.0	4959500	<1.0	1.0	4959507	<1.0	1.0	4959500	N/A
Total Arsenic (As)	ug/L		1.0	4959500	<1.0	1.0	4959507	1.6	1.0	4959500	N/A
Total Barium (Ba)	ug/L		1.0	4959500	6.1	1.0	4959507	9.1	1.0	4959500	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

(1) Elevated reporting limit due to sample matrix.

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Your P.O. #: A08530 Sampler Initials: LL

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Maxxam ID		EHA223			EHA224			EHA225			
Sampling Date		2017/04/25			2017/04/26			2017/04/25			
COC Number		606952-01-01			606952-01-01			606952-01-01			
	UNITS	SW3 Lab-Dup	RDL	QC Batch	SW4	RDL	QC Batch	SW5	RDL	QC Batch	MDL
Total Beryllium (Be)	ug/L		1.0	4959500	<1.0	1.0	4959507	<1.0	1.0	4959500	N/A
Total Bismuth (Bi)	ug/L		2.0	4959500	<2.0	2.0	4959507	<2.0	2.0	4959500	N/A
Total Boron (B)	ug/L		50	4959500	<50	50	4959507	<50	50	4959500	N/A
Total Cadmium (Cd)	ug/L		0.010	4959500	0.025	0.010	4959507	0.029	0.010	4959500	N/A
Total Calcium (Ca)	ug/L		100	4959500	3900	100	4959507	5900	100	4959500	N/A
Total Chromium (Cr)	ug/L		1.0	4959500	<1.0	1.0	4959507	1.6	1.0	4959500	N/A
Total Cobalt (Co)	ug/L		0.40	4959500	1.2	0.40	4959507	0.82	0.40	4959500	N/A
Total Copper (Cu)	ug/L		2.0	4959500	2.3	2.0	4959507	3.1	2.0	4959500	N/A
Total Iron (Fe)	ug/L		50	4959500	990	50	4959507	2100	50	4959500	N/A
Total Lead (Pb)	ug/L		0.50	4959500	1.7	0.50	4959507	0.98	0.50	4959500	N/A
Total Magnesium (Mg)	ug/L		100	4959500	1800	100	4959507	2000	100	4959500	N/A
Total Manganese (Mn)	ug/L		2.0	4959500	68	2.0	4959507	120	2.0	4959500	N/A
Total Molybdenum (Mo)	ug/L		2.0	4959500	<2.0	2.0	4959507	<2.0	2.0	4959500	N/A
Total Nickel (Ni)	ug/L		2.0	4959500	<2.0	2.0	4959507	2.6	2.0	4959500	N/A
Total Phosphorus (P)	ug/L		100	4959500	<100	100	4959507	130	100	4959500	N/A
Total Potassium (K)	ug/L		100	4959500	2400	100	4959507	5600	100	4959500	N/A
Total Selenium (Se)	ug/L		1.0	4959500	<1.0	1.0	4959507	<1.0	1.0	4959500	N/A
Total Silver (Ag)	ug/L		0.10	4959500	<0.10	0.10	4959507	<0.10	0.10	4959500	N/A
Total Sodium (Na)	ug/L		100	4959500	25000	100	4959507	10000	100	4959500	N/A
Total Strontium (Sr)	ug/L		2.0	4959500	26	2.0	4959507	31	2.0	4959500	N/A
Total Thallium (TI)	ug/L		0.10	4959500	<0.10	0.10	4959507	<0.10	0.10	4959500	N/A
Total Tin (Sn)	ug/L		2.0	4959500	<2.0	2.0	4959507	<2.0	2.0	4959500	N/A
Total Titanium (Ti)	ug/L		2.0	4959500	7.8	2.0	4959507	11	2.0	4959500	N/A
Total Uranium (U)	ug/L		0.10	4959500	<0.10	0.10	4959507	<0.10	0.10	4959500	N/A
Total Vanadium (V)	ug/L		2.0	4959500	<2.0	2.0	4959507	<2.0	2.0	4959500	N/A
Total Zinc (Zn)	ug/L		5.0	4959500	<5.0	5.0	4959507	20	5.0	4959500	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Your P.O. #: A08530 Sampler Initials: LL

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Maxxam ID		EHA225			EHA226		EHA227			
Sampling Date		2017/04/25			2017/04/26		2017/04/25			
COC Number		606952-01-01			606952-01-01		606952-01-01			
	UNITS	SW5 Lab-Dup	RDL	QC Batch	SW6	QC Batch	SW7	RDL	QC Batch	MDL
Calculated Parameters										
Anion Sum	me/L		N/A	4957617	1.07	4957617	0.450	N/A	4957617	N/A
Bicarb. Alkalinity (calc. as CaCO3)	mg/L		1.0	4957614	16	4957614	<1.0	1.0	4957614	0.20
Calculated TDS	mg/L		1.0	4957610	64	4957610	35	1.0	4957610	0.20
Carb. Alkalinity (calc. as CaCO3)	mg/L		1.0	4957614	<1.0	4957614	<1.0	1.0	4957614	0.20
Cation Sum	me/L		N/A	4957617	1.10	4957617	0.550	N/A	4957617	N/A
Hardness (CaCO3)	mg/L		1.0	4957615	15	4957615	8.5	1.0	4957615	1.0
Ion Balance (% Difference)	%		N/A	4957616	1.38	4957616	10.0	N/A	4957616	N/A
Langelier Index (@ 20C)	N/A			4957608	-2.58	4957608	NC		4957608	
Langelier Index (@ 4C)	N/A			4957609	-2.83	4957609	NC		4957609	
Nitrate (N)	mg/L		0.050	4957618	0.096	4957618	0.057	0.050	4957618	N/A
Saturation pH (@ 20C)	N/A			4957608	9.52	4957608	NC		4957608	
Saturation pH (@ 4C)	N/A			4957609	9.77	4957609	NC		4957609	
Inorganics										
Total Alkalinity (Total as CaCO3)	mg/L		5.0	4962261	16	4962261	<5.0	5.0	4962261	N/A
Total Ammonia-N	mg/L	<0.050	0.050	4973137	<0.050	4973137	<0.050	0.050	4973137	0.0080
Dissolved Chloride (CI)	mg/L		1.0	4962263	24	4962263	14	1.0	4962263	N/A
Colour	TCU		130	4962279	110 (1)	4962279	240 (1)	25	4962279	N/A
Nitrate + Nitrite (N)	mg/L		0.050	4962287	0.096	4962287	0.057	0.050	4962287	N/A
Nitrite (N)	mg/L		0.010	4962292	<0.010	4962292	<0.010	0.010	4962292	N/A
Total Organic Carbon (C)	mg/L		5.0	4959592	11 (1)	4959592	12 (1)	2.5	4959592	N/A
Orthophosphate (P)	mg/L		0.010	4962282	0.011	4962282	0.011	0.010	4962282	N/A
рН	рН		N/A	4962125	6.94	4962127	5.52	N/A	4962127	N/A
Reactive Silica (SiO2)	mg/L		0.50	4962271	2.3	4962271	6.1	0.50	4962271	N/A
Dissolved Sulphate (SO4)	mg/L		2.0	4962266	3.0	4962266	2.1	2.0	4962266	N/A
Turbidity	NTU		0.10	4962159	6.3	4962159	1.1	0.10	4962155	0.10
Conductivity	uS/cm		1.0	4962126	120	4962128	69	1.0	4962128	N/A
Metals										
Total Aluminum (Al)	ug/L		5.0	4959500	450	4959507	360	5.0	4959500	N/A
Total Antimony (Sb)	ug/L		1.0	4959500	<1.0	4959507	<1.0	1.0	4959500	N/A
Total Arsenic (As)	ug/L		1.0	4959500	1.1	4959507	<1.0	1.0	4959500	N/A
Total Barium (Ba)	ug/L		1.0	4959500	5.9	4959507	3.0	1.0	4959500	N/A
1							-			

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

(1) Elevated reporting limit due to sample matrix.

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Your P.O. #: A08530 Sampler Initials: LL

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Maxxam ID		EHA225			EHA226		EHA227			
Sampling Date		2017/04/25			2017/04/26		2017/04/25			
COC Number		606952-01-01			606952-01-01		606952-01-01			
	UNITS	SW5 Lab-Dup	RDL	QC Batch	SW6	QC Batch	SW7	RDL	QC Batch	MDL
Total Beryllium (Be)	ug/L		1.0	4959500	<1.0	4959507	<1.0	1.0	4959500	N/A
Total Bismuth (Bi)	ug/L		2.0	4959500	<2.0	4959507	<2.0	2.0	4959500	N/A
Total Boron (B)	ug/L		50	4959500	<50	4959507	<50	50	4959500	N/A
Total Cadmium (Cd)	ug/L		0.010	4959500	0.019	4959507	0.026	0.010	4959500	N/A
Total Calcium (Ca)	ug/L		100	4959500	3900	4959507	1600	100	4959500	N/A
Total Chromium (Cr)	ug/L		1.0	4959500	1.3	4959507	<1.0	1.0	4959500	N/A
Total Cobalt (Co)	ug/L		0.40	4959500	0.63	4959507	<0.40	0.40	4959500	N/A
Total Copper (Cu)	ug/L		2.0	4959500	3.2	4959507	<2.0	2.0	4959500	N/A
Total Iron (Fe)	ug/L		50	4959500	950	4959507	260	50	4959500	N/A
Total Lead (Pb)	ug/L		0.50	4959500	0.68	4959507	1.4	0.50	4959500	N/A
Total Magnesium (Mg)	ug/L		100	4959500	1300	4959507	1100	100	4959500	N/A
Total Manganese (Mn)	ug/L		2.0	4959500	54	4959507	14	2.0	4959500	N/A
Total Molybdenum (Mo)	ug/L		2.0	4959500	<2.0	4959507	<2.0	2.0	4959500	N/A
Total Nickel (Ni)	ug/L		2.0	4959500	<2.0	4959507	<2.0	2.0	4959500	N/A
Total Phosphorus (P)	ug/L		100	4959500	<100	4959507	<100	100	4959500	N/A
Total Potassium (K)	ug/L		100	4959500	2900	4959507	1500	100	4959500	N/A
Total Selenium (Se)	ug/L		1.0	4959500	<1.0	4959507	<1.0	1.0	4959500	N/A
Total Silver (Ag)	ug/L		0.10	4959500	<0.10	4959507	<0.10	0.10	4959500	N/A
Total Sodium (Na)	ug/L		100	4959500	16000	4959507	7600	100	4959500	N/A
Total Strontium (Sr)	ug/L		2.0	4959500	20	4959507	11	2.0	4959500	N/A
Total Thallium (TI)	ug/L		0.10	4959500	<0.10	4959507	<0.10	0.10	4959500	N/A
Total Tin (Sn)	ug/L		2.0	4959500	<2.0	4959507	<2.0	2.0	4959500	N/A
Total Titanium (Ti)	ug/L		2.0	4959500	11	4959507	5.2	2.0	4959500	N/A
Total Uranium (U)	ug/L		0.10	4959500	<0.10	4959507	<0.10	0.10	4959500	N/A
Total Vanadium (V)	ug/L		2.0	4959500	<2.0	4959507	<2.0	2.0	4959500	N/A
Total Zinc (Zn)	ug/L		5.0	4959500	14	4959507	<5.0	5.0	4959500	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Your P.O. #: A08530 Sampler Initials: LL

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Dissolved Sulphate (SO4) mg/L 4.1 2.0 4962266 <2.0	Maxxam ID		EHA228			EHA229			EHA230			
No. Calculated Parameters	Sampling Date		2017/04/25			2017/04/25			2017/04/25			
Calculated Parameters	COC Number		606952-01-01			606952-01-01			606952-01-01			
Anion Sum me/L 0.620 N/A 4957617 1.20 N/A 4957617 0.560 N/A 4957617 N/A Bicarb. Alkalinity (calc. as CaCO3) mg/L 6.6 1.0 4957614 35 1.0 4957614 4.1 1.0 4957614 0.20		UNITS	SW8	RDL	QC Batch	SW9	RDL	QC Batch	SW11	RDL	QC Batch	MDL
Bicarb. Alkalinity (calc. as CaCO3) mg/L 6.6 1.0 4957614 35 1.0 4957614 <1.0 1.0 4957614 0.20 Calculated TDS mg/L 38 1.0 4957610 180 1.0 4957610 43 1.0 4957610 0.20 Carb. Alkalinity (calc. as CaCO3) mg/L 0.740 N/A 4957617 0.10 4957614 0.20 Carb. Alkalinity (calc. as CaCO3) mg/L 0.740 N/A 4957617 0.740 N/A 4957617 0.740 N/A 4957617 0.740 N/A 4957617 0.740 N/A 4957617 0.740 N/A 4957617 0.740 N/A 4957615 0.740 N/A 4957615 0.740 N/A 4957615 0.740 N/A 4957616 0.740 N/A 4957615 0.740 N/A 4957616 0.740 N/A 4957616 0.740 N/A 4957616 0.740 N/A 4957616 0.740 N/A 4957616 0.740 N/A 4957616 0.740 N/A 4957616 0.740 N/A 4957616 0.740 N/A 4957616 0.740 N/A 4957616 0.740 N/A 4957616 0.740 N/A 4957616 0.740 N/A 4957616 0.740 N/A 4957616 0.740 0.740 N/A 4957616 0.740 N/A 4957616 0.740 N/A 4957616 0.740 N/A 4957616 0.740 N/A 4957616 0.740 0.740 N/A 4957616 0.740 N/A 4957608 N/A 4957608 N/A 4957608 N/A 4957608 N/A 4957618 N	Calculated Parameters	-	<u> </u>	<u> </u>	·	·		·	·	<u> </u>	<u> </u>	
Calculated TDS mg/L 38 1.0 4957610 1.80 1.0 4957610 43 1.0 4957610 0.20 Carb. Alkalinity (calc. as CaCO3) mg/L <1.0 1.0 4957614 <1.0 1.0 4957614 <1.0 1.0 4957614 <1.0 1.0 4957614 <1.0 1.0 4957614 <1.0 1.0 4957614 <1.0 1.0 4957614 <1.0 1.0 4957614 <1.0 1.0 4957614 <1.0 1.0 4957614 <1.0 1.0 4957614 <1.0 1.0 4957614 <1.0 1.0 4957615 0.670 N/A 4957615 0.670 N/A 4957615 0.670 N/A 4957615 0.670 N/A 4957615 0.070 N/A 4957615 0.070 N/A 4957615 0.070 N/A 4957615 0.070 N/A 4957615 0.070 N/A 4957616 0.070 N/A 4957616 0.070 N/A 4957616 0.070 N/A 4957616 0.070 N/A 4957616 0.070 N/A 4957616 0.070 N/A 4957616 0.070 N/A 4957616 0.070 N/A 4957616 0.070 N/A 4957616 0.070 N/A 4957616 0.070 N/A 4957616 0.070 N/A 4957616 0.070 N/A 4957616 0.070 N/A 4957616 0.070 N/A 4957616 0.070 N/A 4957616 0.070 N/A 4957608 0.070 N/A 49	Anion Sum	me/L	0.620	N/A	4957617	1.20	N/A	4957617	0.560	N/A	4957617	N/A
Carb. Alkalinity (calc. as CaCO3) mg/L < 1.0 1.0 4957614 < 1.0 1.0 4957614 < 1.0 1.0 4957614	Bicarb. Alkalinity (calc. as CaCO3)	mg/L	6.6	1.0	4957614	35	1.0	4957614	<1.0	1.0	4957614	0.20
Cation Sum me/L 0.740 N/A 4957617 5.28 N/A 4957617 0.670 N/A 4957617 N/A Hardness (CaCO3) mg/L 17 1.0 4957615 100 1.0 4957615 3.4 1.0 4957615 1.0 Ion Balance (% Difference) % 8.82 N/A 4957616 63.0 N/A 4957618 8.94 N/A 4957616 N/A Langeller Index (@ 20C) N/A -3.64 4957608 -1.44 4957608 NC 4957608 -1.49 4957609 NC 4957608 NC <t< td=""><td>Calculated TDS</td><td>mg/L</td><td>38</td><td>1.0</td><td>4957610</td><td>180</td><td>1.0</td><td>4957610</td><td>43</td><td>1.0</td><td>4957610</td><td>0.20</td></t<>	Calculated TDS	mg/L	38	1.0	4957610	180	1.0	4957610	43	1.0	4957610	0.20
Hardness (CaCO3) mg/L 1.7 1.0 4957615 1.00 4957615 3.4 1.0 4957615 1.0 Ion Balance (% Difference) % 8.82 N/A 4957616 63.0 N/A 4957616 8.94 N/A 4957616 N/A Langelier Index (@ 20C) N/A -3.64 4957608 -1.44 4957608 NC 4957608 -1.44 4957609 NC 4957608 -1.44 4957609 NC 4957608 -1.44 4957609 NC 4957608 -1.44 4957609 NC 4957608 NC	Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	4957614	<1.0	1.0	4957614	<1.0	1.0	4957614	0.20
No. No.	Cation Sum	me/L	0.740	N/A	4957617	5.28	N/A	4957617	0.670	N/A	4957617	N/A
Langelier Index (@ 20C) N/A -3.64	Hardness (CaCO3)	mg/L	17	1.0	4957615	100	1.0	4957615	3.4	1.0	4957615	1.0
Langelier Index (@ 4C) N/A -3.89	Ion Balance (% Difference)	%	8.82	N/A	4957616	63.0	N/A	4957616	8.94	N/A	4957616	N/A
Nitrate (N) mg/L	Langelier Index (@ 20C)	N/A	-3.64		4957608	-1.44		4957608	NC		4957608	
Saturation pH (@ 20C) N/A 9.86 4957608 8.40 4957608 NC 4957608 A957608 Saturation pH (@ 4C) N/A 10.1 4957609 8.65 4957609 NC 4957609 C Inorganics Total Alkalinity (Total as CaCO3) mg/L 6.6 5.0 4962261 35 5.0 4962261 <5.0 5.0 4962261 N/A Total Alkalinity (Total as CaCO3) mg/L 6.6 5.0 4962261 35 5.0 4962261 <5.0	Langelier Index (@ 4C)	N/A	-3.89		4957609	-1.69		4957609	NC		4957609	
Saturation pH (@ 4C) N/A 10.1 4957609 8.65 4957609 NC 4957609 Inorganics Total Alkalinity (Total as CaCO3) mg/L 6.6 5.0 4962261 35 5.0 4962261 <5.0	Nitrate (N)	mg/L	<0.050	0.050	4957618	0.099	0.050	4957618	0.11	0.050	4957618	N/A
Total Alkalinity (Total as CaCO3) mg/L 6.6 5.0 4962261 35 5.0 4962261 <5.0 5.0 4962261 <7.0 5.0 4962261 <7.0 5.0 4962261 <7.0 5.0 4962261 <7.0 5.0 4962262 <7.0 <7.0 4962263 <7.0 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 4962263 <7.0 496	Saturation pH (@ 20C)	N/A	9.86		4957608	8.40		4957608	NC		4957608	
Total Alkalinity (Total as CaCO3)	Saturation pH (@ 4C)	N/A	10.1		4957609	8.65		4957609	NC		4957609	
Total Ammonia-N mg/L <0.050 0.050 4973137 0.13 0.050 4973133 <0.050 0.050 4972947 0.080 Dissolved Chloride (Cl) mg/L 14 1.0 4962263 17 1.0 4962263 16 1.0 4962263 N/A Colour TCU 200 (1) 25 4962279 350 (1) 130 4962279 720 (1) 150 4962279 N/A Nitrate + Nitrite (N) mg/L <0.050 0.050 4962287 0.099 0.050 4962287 0.11 0.050 4962287 N/A Nitrite (N) mg/L <0.010 0.010 4962292 <0.010 0.010 4962292 <0.010 0.010 4962292 N/A Total Organic Carbon (C) mg/L 17 (1) 2.5 4959592 39 (2) 25 4959592 25 (1) 5.0 4959592 N/A Orthophosphate (P) mg/L 0.013 0.010 4962282 0.11 0.010 4962282 0.020 0.010 4962282 N/A PH 6.22 N/A 4962127 6.97 N/A 4962127 5.07 N/A 4962127 N/A Reactive Silica (SiO2) mg/L <0.50 0.50 4962266 <0.00 4962266 <0.00 4962266 4.6 2.0 4962266 N/A Turbidity NTU 87 0.10 4962155 120 1.0 496215 2.7 0.10 496215 0.10 Conductivity us/cm 79 1.0 496218 130 1.0 496218 82 1.0 496218 N/A Metals Total Aluminum (Al) ug/L 1200 5.0 4959500 23000 5.0 4959500 710 5.0 4959500 N/A Total Antimony (Sb) ug/L <1.0 1.0 4959500 55 1.0 4959500 1.3 1.0 4959500 N/A	Inorganics			•						•		
Dissolved Chloride (Cl) mg/L 14 1.0 4962263 17 1.0 4962263 16 1.0 4962263 N/A Colour TCU 200 (1) 25 4962279 350 (1) 130 4962279 720 (1) 150 4962279 N/A Nitrate + Nitrite (N) mg/L <0.050 0.050 4962287 0.099 0.050 4962287 0.11 0.050 4962287 N/A Nitrite (N) mg/L <0.010 0.010 4962292 <0.010 0.010 4962292 <0.010 0.010 4962292 N/A Total Organic Carbon (C) mg/L 17 (1) 2.5 4959592 39 (2) 25 4959592 25 (1) 5.0 4959592 N/A Orthophosphate (P) mg/L 0.013 0.010 4962282 0.11 0.010 4962282 0.020 0.010 4962282 N/A PH 6.22 N/A 4962127 6.97 N/A 4962127 5.07 N/A 4962127 N/A Reactive Silica (SiO2) mg/L <0.50 0.50 4962271 0.79 0.50 4962271 5.0 0.50 4962271 N/A Dissolved Sulphate (SO4) mg/L 4.1 2.0 4962266 <2.0 2.0 4962266 4.6 2.0 4962266 N/A Turbidity NTU 87 0.10 4962125 120 1.0 4962155 2.7 0.10 4962155 0.10 Conductivity us/cm 79 1.0 4962128 130 1.0 4962128 82 1.0 4962128 N/A Metals Total Aluminum (Al) ug/L 1200 5.0 4959500 23000 5.0 4959500 710 5.0 4959500 N/A Total Antimony (Sb) ug/L <1.0 1.0 4959500 55 1.0 4959500 1.3 1.0 4959500 N/A	Total Alkalinity (Total as CaCO3)	mg/L	6.6	5.0	4962261	35	5.0	4962261	<5.0	5.0	4962261	N/A
Colour TCU 200 (1) 25 4962279 350 (1) 130 4962279 720 (1) 150 4962279 N/A Nitrate + Nitrite (N) mg/L <0.050 0.050 4962287 0.099 0.050 4962287 0.11 0.050 4962287 N/A Nitrite (N) mg/L <0.010 0.010 4962292 <0.010 0.010 4962292 <0.010 0.010 4962292 <0.010 0.010 4962292 N/A Total Organic Carbon (C) mg/L 17 (1) 2.5 4959592 39 (2) 25 4959592 25 (1) 5.0 4959592 N/A Orthophosphate (P) mg/L 0.013 0.010 4962282 0.11 0.010 4962282 0.020 0.010 4962282 N/A PH 6.22 N/A 4962127 6.97 N/A 4962127 5.07 N/A 4962127 N/A Reactive Silica (SiO2) mg/L <0.50 0.50 4962271 0.79 0.50 4962271 5.0 0.50 4962271 N/A Dissolved Sulphate (SO4) mg/L 4.1 2.0 4962266 <2.0 2.0 4962266 4.6 2.0 4962266 N/A Turbidity NTU 87 0.10 4962128 130 1.0 4962155 2.7 0.10 4962125 0.10 Conductivity us/cm 79 1.0 4962128 130 1.0 4962125 82 1.0 4962126 N/A Metals Total Aluminum (Al) ug/L 1200 5.0 4959500 23000 5.0 4959500 710 5.0 4959500 N/A Total Antimony (Sb) ug/L <1.0 1.0 4959500 55 1.0 4959500 1.3 1.0 4959500 N/A	Total Ammonia-N	mg/L	<0.050	0.050	4973137	0.13	0.050	4973133	<0.050	0.050	4972947	0.0080
Nitrate + Nitrite (N) mg/L	Dissolved Chloride (CI)	mg/L	14	1.0	4962263	17	1.0	4962263	16	1.0	4962263	N/A
Nitrite (N) mg/L	Colour	TCU	200 (1)	25	4962279	350 (1)	130	4962279	720 (1)	150	4962279	N/A
Total Organic Carbon (C) mg/L 17 (1) 2.5 4959592 39 (2) 25 4959592 25 (1) 5.0 4959592 N/A Orthophosphate (P) mg/L 0.013 0.010 4962282 0.11 0.010 4962282 0.020 0.010 4962282 N/A pH 6.22 N/A 4962127 6.97 N/A 4962127 5.07 N/A 4962127 N/A Reactive Silica (SiO2) mg/L <0.50 0.50 4962271 0.79 0.50 4962271 5.0 0.50 4962271 N/A Dissolved Sulphate (SO4) mg/L 4.1 2.0 4962266 <2.0 2.0 4962266 4.6 2.0 4962266 N/A Turbidity NTU 87 0.10 4962155 120 1.0 4962155 2.7 0.10 4962155 0.10 Conductivity uS/cm 79 1.0 4962128 130 1.0 4962128 82 1.0 4962128 N/A Metals Total Aluminum (Al) ug/L 1200 5.0 4959500 23000 5.0 4959500 710 5.0 4959500 N/A Total Antimony (Sb) ug/L <1.0 1.0 4959500 <5 1.0 4959500 <1.0 1.0 4959500 N/A	Nitrate + Nitrite (N)	mg/L	<0.050	0.050	4962287	0.099	0.050	4962287	0.11	0.050	4962287	N/A
Orthophosphate (P) mg/L 0.013 0.010 4962282 0.11 0.010 4962282 0.020 0.010 4962282 N/A pH pH 6.22 N/A 4962127 6.97 N/A 4962127 5.07 N/A 4962127 N/A Reactive Silica (SiO2) mg/L <0.50	Nitrite (N)	mg/L	<0.010	0.010	4962292	<0.010	0.010	4962292	<0.010	0.010	4962292	N/A
pH 6.22 N/A 4962127 6.97 N/A 4962127 5.07 N/A 4962127 N/A Reactive Silica (SiO2) mg/L <0.50 0.50 4962271 0.79 0.50 4962271 5.0 0.50 4962271 N/A Dissolved Sulphate (SO4) mg/L 4.1 2.0 4962266 <2.0 2.0 4962266 4.6 2.0 4962266 N/A Turbidity NTU 87 0.10 4962155 120 1.0 4962155 2.7 0.10 4962155 0.10 Conductivity uS/cm 79 1.0 4962128 130 1.0 4962128 82 1.0 4962128 N/A Metals Total Aluminum (Al) ug/L 1200 5.0 4959500 23000 5.0 4959500 710 5.0 4959500 N/A Total Antimony (Sb) ug/L <1.0 1.0 4959500 <1.0 1.0 4959500 <1.0 1.0 4959500 N/A	Total Organic Carbon (C)	mg/L	17 (1)	2.5	4959592	39 (2)	25	4959592	25 (1)	5.0	4959592	N/A
Reactive Silica (SiO2) mg/L <0.50 0.50 4962271 0.79 0.50 4962271 5.0 0.50 4962271 N/A Dissolved Sulphate (SO4) mg/L 4.1 2.0 4962266 <2.0 2.0 4962266 4.6 2.0 4962266 N/A Turbidity NTU 87 0.10 4962155 120 1.0 4962155 2.7 0.10 4962155 0.10 Conductivity uS/cm 79 1.0 4962128 130 1.0 4962128 82 1.0 4962128 N/A Metals Total Aluminum (Al) ug/L 1200 5.0 4959500 23000 5.0 4959500 710 5.0 4959500 N/A Total Antimony (Sb) ug/L <1.0 1.0 4959500 <1.0 1.0 4959500 <1.0 1.0 4959500 N/A Total Arsenic (As) ug/L <1.0 1.0 4959500 55 1.0 4959500 1.3 1.0 4959500 N/A	Orthophosphate (P)	mg/L	0.013	0.010	4962282	0.11	0.010	4962282	0.020	0.010	4962282	N/A
Dissolved Sulphate (SO4) mg/L 4.1 2.0 4962266 <2.0 2.0 4962266 4.6 2.0 4962266 N/A Turbidity NTU 87 0.10 4962155 120 1.0 4962155 2.7 0.10 4962155 0.10 Conductivity uS/cm 79 1.0 4962128 130 1.0 4962128 82 1.0 4962128 N/A Metals Total Aluminum (AI) ug/L 1200 5.0 4959500 23000 5.0 4959500 710 5.0 4959500 N/A Total Antimony (Sb) ug/L <1.0 1.0 4959500 <1.0 1.0 4959500 <1.0 1.0 4959500 N/A Total Arsenic (As) ug/L <1.0 1.0 4959500 55 1.0 4959500 1.3 1.0 4959500 N/A	рН	рН	6.22	N/A	4962127	6.97	N/A	4962127	5.07	N/A	4962127	N/A
Turbidity NTU 87 0.10 4962155 120 1.0 4962155 2.7 0.10 4962155 0.10 Conductivity uS/cm 79 1.0 4962128 130 1.0 4962128 82 1.0 4962128 N/A Metals Total Aluminum (Al) ug/L 1200 5.0 4959500 23000 5.0 4959500 710 5.0 4959500 N/A Total Antimony (Sb) ug/L <1.0 1.0 4959500 <1.0 1.0 4959500 <1.0 1.0 4959500 N/A Total Arsenic (As) ug/L <1.0 1.0 4959500 55 1.0 4959500 1.3 1.0 4959500 N/A	Reactive Silica (SiO2)	mg/L	<0.50	0.50	4962271	0.79	0.50	4962271	5.0	0.50	4962271	N/A
Conductivity uS/cm 79 1.0 4962128 130 1.0 4962128 82 1.0 4962128 N/A Metals Total Aluminum (Al) ug/L 1200 5.0 4959500 23000 5.0 4959500 710 5.0 4959500 N/A Total Antimony (Sb) ug/L <1.0	Dissolved Sulphate (SO4)	mg/L	4.1	2.0	4962266	<2.0	2.0	4962266	4.6	2.0	4962266	N/A
Metals Total Aluminum (Al) ug/L 1200 5.0 4959500 23000 5.0 4959500 710 5.0 4959500 N/A Total Antimony (Sb) ug/L <1.0	Turbidity	NTU	87	0.10	4962155	120	1.0	4962155	2.7	0.10	4962155	0.10
Total Aluminum (Al) ug/L 1200 5.0 4959500 23000 5.0 4959500 710 5.0 4959500 N/A Total Antimony (Sb) ug/L <1.0	Conductivity	uS/cm	79	1.0	4962128	130	1.0	4962128	82	1.0	4962128	N/A
Total Antimony (Sb) ug/L <1.0 1.0 4959500 <1.0 1.0 4959500 <1.0 1.0 4959500 N/A Total Arsenic (As) ug/L <1.0	Metals											
Total Arsenic (As) ug/L <1.0 1.0 4959500 55 1.0 4959500 1.3 1.0 4959500 N/A	Total Aluminum (AI)	ug/L	1200	5.0	4959500	23000	5.0	4959500	710	5.0	4959500	N/A
	Total Antimony (Sb)	ug/L	<1.0	1.0	4959500	<1.0	1.0	4959500	<1.0	1.0	4959500	N/A
Total Barium (Ba) ug/L 7.8 1.0 4959500 220 1.0 4959500 2.2 1.0 4959500 N/A	Total Arsenic (As)	ug/L	<1.0	1.0	4959500	55	1.0	4959500	1.3	1.0	4959500	N/A
	Total Barium (Ba)	ug/L	7.8	1.0	4959500	220	1.0	4959500	2.2	1.0	4959500	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

- (1) Elevated reporting limit due to sample matrix.
- (2) Reporting limit was increased due to turbidity.

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Your P.O. #: A08530 Sampler Initials: LL

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Maxxam ID		EHA228			EHA229			EHA230			
Sampling Date		2017/04/25			2017/04/25			2017/04/25			
COC Number		606952-01-01			606952-01-01			606952-01-01			
	UNITS	SW8	RDL	QC Batch	SW9	RDL	QC Batch	SW11	RDL	QC Batch	MDL
Total Beryllium (Be)	ug/L	<1.0	1.0	4959500	1.1	1.0	4959500	<1.0	1.0	4959500	N/A
Total Bismuth (Bi)	ug/L	<2.0	2.0	4959500	<2.0	2.0	4959500	<2.0	2.0	4959500	N/A
Total Boron (B)	ug/L	<50	50	4959500	<50	50	4959500	<50	50	4959500	N/A
Total Cadmium (Cd)	ug/L	0.052	0.010	4959500	1.3	0.010	4959500	0.042	0.010	4959500	N/A
Total Calcium (Ca)	ug/L	4200	100	4959500	27000	100	4959500	670	100	4959500	N/A
Total Chromium (Cr)	ug/L	2.4	1.0	4959500	40	1.0	4959500	1.1	1.0	4959500	N/A
Total Cobalt (Co)	ug/L	0.95	0.40	4959500	75	0.40	4959500	<0.40	0.40	4959500	N/A
Total Copper (Cu)	ug/L	3.4	2.0	4959500	130	2.0	4959500	<2.0	2.0	4959500	N/A
Total Iron (Fe)	ug/L	1500	50	4959500	68000	50	4959500	550	50	4959500	N/A
Total Lead (Pb)	ug/L	1.1	0.50	4959500	110	0.50	4959500	3.8	0.50	4959500	N/A
Total Magnesium (Mg)	ug/L	1700	100	4959500	8600	100	4959500	420	100	4959500	N/A
Total Manganese (Mn)	ug/L	60	2.0	4959500	10000	2.0	4959500	6.1	2.0	4959500	N/A
Total Molybdenum (Mo)	ug/L	<2.0	2.0	4959500	12	2.0	4959500	<2.0	2.0	4959500	N/A
Total Nickel (Ni)	ug/L	3.5	2.0	4959500	56	2.0	4959500	2.0	2.0	4959500	N/A
Total Phosphorus (P)	ug/L	<100	100	4959500	8200	100	4959500	<100	100	4959500	N/A
Total Potassium (K)	ug/L	1100	100	4959500	11000	100	4959500	5400	100	4959500	N/A
Total Selenium (Se)	ug/L	<1.0	1.0	4959500	2.1	1.0	4959500	<1.0	1.0	4959500	N/A
Total Silver (Ag)	ug/L	<0.10	0.10	4959500	0.53	0.10	4959500	<0.10	0.10	4959500	N/A
Total Sodium (Na)	ug/L	7200	100	4959500	12000	100	4959500	10000	100	4959500	N/A
Total Strontium (Sr)	ug/L	25	2.0	4959500	170	2.0	4959500	5.2	2.0	4959500	N/A
Total Thallium (TI)	ug/L	<0.10	0.10	4959500	0.41	0.10	4959500	<0.10	0.10	4959500	N/A
Total Tin (Sn)	ug/L	<2.0	2.0	4959500	3.6	2.0	4959500	<2.0	2.0	4959500	N/A
Total Titanium (Ti)	ug/L	26	2.0	4959500	690	2.0	4959500	12	2.0	4959500	N/A
Total Uranium (U)	ug/L	<0.10	0.10	4959500	3.1	0.10	4959500	<0.10	0.10	4959500	N/A
Total Vanadium (V)	ug/L	<2.0	2.0	4959500	62	2.0	4959500	2.0	2.0	4959500	N/A
Total Zinc (Zn)	ug/L	9.5	5.0	4959500	280	5.0	4959500	<5.0	5.0	4959500	N/A

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Your P.O. #: A08530 Sampler Initials: LL

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Marriago ID		EUA224			FUADO			FUADO			
Maxxam ID		EHA231			EHA232			EHA233			
Sampling Date		2017/04/26			2017/04/25			2017/04/26			
COC Number		606952-01-01			606952-01-01			606952-01-01			
	UNITS	SW12	RDL	QC Batch	SW13	RDL	QC Batch	SW14	RDL	QC Batch	MDL
Calculated Parameters											
Anion Sum	me/L	0.400	N/A	4957617	0.280	N/A	4957617	1.20	N/A	4957617	N/A
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	4957614	<1.0	1.0	4957614	6.4	1.0	4957614	0.20
Calculated TDS	mg/L	32	1.0	4957610	18	1.0	4957610	76	1.0	4957610	0.20
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	4957614	<1.0	1.0	4957614	<1.0	1.0	4957614	0.20
Cation Sum	me/L	0.650	N/A	4957617	0.370	N/A	4957617	1.28	N/A	4957617	N/A
Hardness (CaCO3)	mg/L	7.4	1.0	4957615	5.6	1.0	4957615	13	1.0	4957615	1.0
Ion Balance (% Difference)	%	23.8	N/A	4957616	13.9	N/A	4957616	3.23	N/A	4957616	N/A
Langelier Index (@ 20C)	N/A	NC		4957608	NC		4957608	-3.78		4957608	
Langelier Index (@ 4C)	N/A	NC		4957609	NC		4957609	-4.03		4957609	
Nitrate (N)	mg/L	<0.050	0.050	4957618	<0.050	0.050	4957618	0.32	0.050	4957618	N/A
Saturation pH (@ 20C)	N/A	NC		4957608	NC		4957608	10.1		4957608	
Saturation pH (@ 4C)	N/A	NC		4957609	NC		4957609	10.3		4957609	
Inorganics											
Total Alkalinity (Total as CaCO3)	mg/L	<5.0	5.0	4962261	<5.0	5.0	4962261	6.4	5.0	4962261	N/A
Total Ammonia-N	mg/L	0.23	0.050	4972947	<0.050	0.050	4972947	<0.050	0.050	4972953	0.0080
Dissolved Chloride (CI)	mg/L	14	1.0	4962263	9.8	1.0	4962263	35	1.0	4962263	N/A
Colour	TCU	530 (1)	250	4962279	43	5.0	4962279	200 (1)	25	4962279	N/A
Nitrate + Nitrite (N)	mg/L	<0.050	0.050	4962287	<0.050	0.050	4962287	0.32	0.050	4962287	N/A
Nitrite (N)	mg/L	<0.010	0.010	4962292	<0.010	0.010	4962292	<0.010	0.010	4962292	N/A
Total Organic Carbon (C)	mg/L	34 (1)	5.0	4959592	5.5	0.50	4959592	12 (1)	2.5	4959592	N/A
Orthophosphate (P)	mg/L	0.015	0.010	4962282	<0.010	0.010	4962282	0.010	0.010	4962282	N/A
рН	рН	4.70	N/A	4962127	6.29	N/A	4962122	6.28	N/A	4962127	N/A
Reactive Silica (SiO2)	mg/L	3.4	0.50	4962271	0.61	0.50	4962271	4.0	0.50	4962271	N/A
Dissolved Sulphate (SO4)	mg/L	<2.0	2.0	4962266	<2.0	2.0	4962266	3.4	2.0	4962266	N/A
Turbidity	NTU	22	0.10	4962155	4.2	0.10	4962155	2.6	0.10	4962155	0.10
Conductivity	uS/cm	63	1.0	4962128	45	1.0	4962123	150	1.0	4962128	N/A
Metals	•	•	•	•	•		•	•	•	•	•
Total Aluminum (AI)	ug/L	1100	5.0	4959500	180	5.0	4959500	410	5.0	4959500	N/A
Total Antimony (Sb)	ug/L	<1.0	1.0	4959500	<1.0	1.0	4959500	<1.0	1.0	4959500	N/A
Total Arsenic (As)	ug/L	1.4	1.0	4959500	<1.0	1.0	4959500	<1.0	1.0	4959500	N/A
Total Barium (Ba)	ug/L	9.6	1.0	4959500	3.8	1.0	4959500	4.8	1.0	4959500	N/A
Total Beryllium (Be)	ug/L	<1.0	1.0	4959500	<1.0	1.0	4959500	<1.0	1.0	4959500	N/A
						_			_		

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

(1) Elevated reporting limit due to sample matrix.

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Your P.O. #: A08530 Sampler Initials: LL

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Maxxam ID		EHA231			EHA232			EHA233			
Sampling Date		2017/04/26			2017/04/25			2017/04/26			
COC Number		606952-01-01			606952-01-01			606952-01-01			
	UNITS	SW12	RDL	QC Batch	SW13	RDL	QC Batch	SW14	RDL	QC Batch	MDL
Total Bismuth (Bi)	ug/L	<2.0	2.0	4959500	<2.0	2.0	4959500	<2.0	2.0	4959500	N/A
Total Boron (B)	ug/L	<50	50	4959500	<50	50	4959500	<50	50	4959500	N/A
Total Cadmium (Cd)	ug/L	0.093	0.010	4959500	0.016	0.010	4959500	0.021	0.010	4959500	N/A
Total Calcium (Ca)	ug/L	1100	100	4959500	880	100	4959500	2800	100	4959500	N/A
Total Chromium (Cr)	ug/L	1.5	1.0	4959500	<1.0	1.0	4959500	3.8	1.0	4959500	N/A
Total Cobalt (Co)	ug/L	1.3	0.40	4959500	<0.40	0.40	4959500	0.50	0.40	4959500	N/A
Total Copper (Cu)	ug/L	2.7	2.0	4959500	<2.0	2.0	4959500	2.2	2.0	4959500	N/A
Total Iron (Fe)	ug/L	4000	50	4959500	350	50	4959500	750	50	4959500	N/A
Total Lead (Pb)	ug/L	2.5	0.50	4959500	<0.50	0.50	4959500	1.1	0.50	4959500	N/A
Total Magnesium (Mg)	ug/L	1100	100	4959500	820	100	4959500	1500	100	4959500	N/A
Total Manganese (Mn)	ug/L	36	2.0	4959500	16	2.0	4959500	22	2.0	4959500	N/A
Total Molybdenum (Mo)	ug/L	<2.0	2.0	4959500	<2.0	2.0	4959500	<2.0	2.0	4959500	N/A
Total Nickel (Ni)	ug/L	3.2	2.0	4959500	<2.0	2.0	4959500	<2.0	2.0	4959500	N/A
Total Phosphorus (P)	ug/L	390	100	4959500	<100	100	4959500	<100	100	4959500	N/A
Total Potassium (K)	ug/L	1100	100	4959500	460	100	4959500	2600	100	4959500	N/A
Total Selenium (Se)	ug/L	<1.0	1.0	4959500	<1.0	1.0	4959500	<1.0	1.0	4959500	N/A
Total Silver (Ag)	ug/L	<0.10	0.10	4959500	<0.10	0.10	4959500	<0.10	0.10	4959500	N/A
Total Sodium (Na)	ug/L	6800	100	4959500	5300	100	4959500	20000	100	4959500	N/A
Total Strontium (Sr)	ug/L	11	2.0	4959500	8.6	2.0	4959500	19	2.0	4959500	N/A
Total Thallium (TI)	ug/L	<0.10	0.10	4959500	<0.10	0.10	4959500	<0.10	0.10	4959500	N/A
Total Tin (Sn)	ug/L	<2.0	2.0	4959500	<2.0	2.0	4959500	<2.0	2.0	4959500	N/A
Total Titanium (Ti)	ug/L	12	2.0	4959500	4.0	2.0	4959500	8.1	2.0	4959500	N/A
Total Uranium (U)	ug/L	<0.10	0.10	4959500	<0.10	0.10	4959500	<0.10	0.10	4959500	N/A
Total Vanadium (V)	ug/L	2.1	2.0	4959500	<2.0	2.0	4959500	<2.0	2.0	4959500	N/A
Total Zinc (Zn)	ug/L	11	5.0	4959500	<5.0	5.0	4959500	<5.0	5.0	4959500	N/A

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Your P.O. #: A08530 Sampler Initials: LL

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Dissolved Sulphate (SO4) mg/L 5.5 2.0 4962266 <2.0	Maxxam ID		EHA234			EHA235			EHA236			
No. Calculated Parameters	Sampling Date		2017/04/26			2017/04/26			2017/04/25			
Calculated Parameters	COC Number		606952-01-01			606952-01-01			606952-01-01			
Anion Sum me/L 1.52 N/A 4957617 0.700 N/A 4957617 1.19 N/A 4957617 N/A Bicarb. Alkalinity (calc. as CaCO3) mg/L 5.3 1.0 4957614 5.3 1.0 4957614 3.4 1.0 4957610 0.20 Calculated TDS mg/L 89 1.0 4957614 4.0 1.0 4957610 1.0 4957610 1.0 4957614 0.20 Calculated TDS mg/L 4.10 1.0 4957614 4.10 1.0 4957610 1.0 4957614 0.20 Cation Sum me/L 1.40 N/A 4957617 0.820 N/A 4957615 1.0 4957617 N/A 4957617 N/A Hardness (CaCO3) mg/L 22 1.0 4957615 1.5 1.0 4957615 1.0 4957615 1.0 4957617 N/A 4957617 N/A 4957616 N/A Hardness (CaCO3) mg/L 22 1.0 4957615 1.5 1.0 4957615 1.0 4957615 1.0 4957615 N/A 4957616 N/A 4957616 N/A 4957616 N/A 4957616 N/A 4957616 N/A 4957616 N/A 4957616 N/A 4957616 N/A 4957616 N/A 4957616 N/A 4957616 N/A 4957616 N/A 4957616 N/A 4957616 N/A 4957616 N/A 4957616 N/A 4957616 N/A 4957619 N/A 4		UNITS	SW15	RDL	QC Batch	SW16	RDL	QC Batch	SW-DUP1	RDL	QC Batch	MDL
Bicarb. Alkalinity (calc. as CaCO3) mg/L 5.3 1.0 4957614 5.3 1.0 4957614 3.4 1.0 4957614 0.20 Calculated TDS mg/L 89 1.0 4957610 46 1.0 4957610 210 1.0 4957610 0.20 Carb. Alkalinity (calc. as CaCO3) mg/L 1.0 1.0 4957614 4.1 1.0 4957616 4.1 1.0 4957617 1.0 4957617 0.20 Carb. Alkalinity (calc. as CaCO3) mg/L 1.40 N/A 4957617 0.820 N/A 4957617 6.41 N/A 4957617 N/A 4957617 4.1 N/A 4957617 4.1 N/A 4957617 4.1 N/A 4957617 4.1 N/A 4957615 1.3 1.0 4957615 1.3 1.0 4957615 1.0 4957615 1.0 4957615 1.0 4957616 M/A 4957616	Calculated Parameters			<u> </u>	·		<u> </u>	<u> </u>	·	<u> </u>		
Calculated TDS mg/L 89 1.0 4957610 46 1.0 4957610 210 1.0 4957610 0.20 Carb. Alkalinity (calc. as CaCO3) mg/L <1.0 1.0 4957614 <1.0 1.0 4957614 <1.0 1.0 4957614 <1.0 1.0 4957614 <1.0 1.0 4957614 <1.0 1.0 4957614 <1.0 1.0 4957614 <1.0 1.0 4957614 <1.0 1.0 4957614 <1.0 1.0 4957615 1.0 4957615 1.0 4957615 1.0 4957615 1.0 4957615 1.0 4957615 1.0 4957615 1.0 4957615 1.0 4957616 6.81 N/A 4957615 1.0 4957616 6.81 N/A 4957615 1.0 4957616 6.81 N/A 4957615 1.0 4957616 6.81 N/A 4957616 6.81 N/A 4957616 7.89 N/A 4957616 6.81 N/A 4957616 7.89 N/A 4957616 6.81 N/A 4957616 7.89 N/A 4957616 6.81 N/A 4957616 7.89 N/A 4957616 7.89 N/A 4957616 7.89 N/A 4957616 7.89 N/A 4957616 7.89 N/A 4957616 7.89 N/A 4957616 7.89 N/A 4957616 7.89 N/A 4957616 7.89 N/A 4957616 7.89 N/A 4957618 7.89 N/A 49576	Anion Sum	me/L	1.52	N/A	4957617	0.700	N/A	4957617	1.19	N/A	4957617	N/A
Carb. Alkalinity (calc. as CaCO3) mg/L < 1.0 1.0 4957614 < 1.0 1.0 4957614 < 1.0 1.0 4957614 1.0 1.0 4957614 1.0 1.0 4957614 1.0 1.0 4957614 1.0 1.0 4957615 1.0 4957615 1.0 4957615 1.0 4957615 1.0 4957615 1.0 4957615 1.0 4957615 1.0 4957615 1.0 4957615 1.0 4957615 1.0 4957615 1.0 4957615 1.0 4957615 1.0 4957615 1.0 4957615 1.0 4957616 4.1 40 4957615 1.0 4957616 4.1 40 4957615 1.0 4957616 4.1 40 4957615 1.0 4957616 4.1 40 4957615 1.0 4957616 4.1 40 4957616 4.1 40 4957616 4.1 40 4957616 4.1 40 4957616 4.1 40 4957616 4.1 40 4957608 4.1 40 4957609	Bicarb. Alkalinity (calc. as CaCO3)	mg/L	5.3	1.0	4957614	5.3	1.0	4957614	34	1.0	4957614	0.20
Cation Sum me/L 1.40 N/A 4957617 0.820 N/A 4957617 6.41 N/A 4957617 N/A Hardness (CaCO3) mg/L 22 1.0 4957615 15 1.0 4957615 130 1.0 4957615 1.0 Lon Balance (% Difference) % 4.11 N/A 4957616 7.89 N/A 4957616 6.87 N/A 4957616 N/A Langeller Index (@ 20C) N/A -3.95 4957608 -4.13 4957608 -1.33 4957608 -1.58 <td>Calculated TDS</td> <td>mg/L</td> <td>89</td> <td>1.0</td> <td>4957610</td> <td>46</td> <td>1.0</td> <td>4957610</td> <td>210</td> <td>1.0</td> <td>4957610</td> <td>0.20</td>	Calculated TDS	mg/L	89	1.0	4957610	46	1.0	4957610	210	1.0	4957610	0.20
Hardness (CaCO3) mg/L 22 1.0 4957615 1.0 4957615 1.0 4957615 1.0 4957616 0.0 4957616 68.7 N/A 4957616 N/A Langelier Index (@ 20C) N/A -3.95 4957608 -4.33 4957608 -1.33 4957608 -1.58 4957608 -1.58 4957608 -1.58 4957608 -1.58 4957608 -1.33 4957608 -1.58	Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	4957614	<1.0	1.0	4957614	<1.0	1.0	4957614	0.20
No. No.	Cation Sum	me/L	1.40	N/A	4957617	0.820	N/A	4957617	6.41	N/A	4957617	N/A
Langelier Index (@ 20C) N/A -3.95 N 4957608 -4.13 N 4957608 -1.33 N 4957608 Langelier Index (@ 4C) N/A -4.20 N 4957609 -4.39 N 4957609 -1.58 N 4957609 Nitrate (N) mg/L 0.056 0.050 4957618 0.060 0.050 4957618 0.15 0.050 4957618 N/A Saturation pH (@ 20C) N/A 9.93 A957608 10.1 A957608 8.31 A957609 N/A 10.2 A957609 10.3 A957608 8.31 A957609 N/A 10.2 A957609 10.3 A957608 8.31 A957609 N/A 10.2 A957609 10.3 A957608 8.31 A957609 N/A 10.2 A957609 10.3 A957608 8.31 A957609 N/A 10.2 A957609 10.3 A957608 8.31 A957609 N/A 10.2 A957609 10.3 A957609 8.56 A957609 N/A 10.2 A957609 10.3 A957609 8.56 A957609 N/A 10.2 A957609 10.3 A957609 8.56 A957609 N/A 10.2 A957609 10.3 A957609 8.56 A957609 N/A 10.2 A957609 10.3 A957608 8.31 A957609 N/A 10.2 A957609 10.3 A957608 8.31 A957609 N/A 10.2 A957609 10.3 A957609 8.56 A957609 N/A 10.2 A957609 10.3 A957608 8.31 A957609 N/A 10.2 A957609 10.3 A957608 8.31 A957609 N/A 10.2 A957609 10.3 A957608 8.31 A957609 N/A 10.2 A957609 10.3 A957609 8.56 A957609 N/A 10.2 A957609 10.3 A957608 8.31 A957609 N/A 10.2 A957609 10.3 A957609 8.56 A957609 N/A 10.2 A957609 10.3 A957609 8.56 A957609 N/A 10.2 A957609 10.3 A957609 8.50 A957609 N/A 10.2 A957609 10.3 A957609 8.50 A957609 N/A 10.2 A962261 N/A 10.2 A96226	Hardness (CaCO3)	mg/L	22	1.0	4957615	15	1.0	4957615	130	1.0	4957615	1.0
Langelier Index (@ 4C) N/A -4.20 N/A -4.20 A957609 -4.39 A957609 -1.58 A957609 Nitrate (N) mg/L	Ion Balance (% Difference)	%	4.11	N/A	4957616	7.89	N/A	4957616	68.7	N/A	4957616	N/A
Nitrate (N) mg/L 0.056 0.050 4957618 0.060 0.050 4957618 0.15 0.050 4957618 N/A Saturation pH (@ 20C) N/A 9.93 4957608 10.1 4957608 8.31 4957608 Saturation pH (@ 4C) N/A 10.2 4957609 10.3 4957609 8.56 4957609 Inorganics Total Alkalinity (Total as CaCO3) mg/L 5.3 5.0 4962261 5.3 5.0 4962261 34 5.0 4962261 N/A Total Ammonia-N mg/L 4.0.050 0.050 4972947 4.0.050 0.050 4972947 0.19 0.050 4972953 0.0080 Dissolved Chloride (Cl) mg/L 46 1.0 4962263 21 1.0 4962263 17 1.0 4962263 N/A October Nitrite (N) mg/L 4.0.056 0.050 4962297 140 (1) 25 4962279 340 (1) 100 496229 N/A Nitrate + Nitrite (N) mg/L 4.0.010 0.050 4962297 1.000 0.050 4962297 4.010 0.050 4962297 N/A Nitrite (N) mg/L 4.0.010 0.010 4962292 4.0.010 0.010 4962292 4.0.010 0.010 4962292 4.0.010 0.010 4962292 N/A Total Organic Carbon (C) mg/L 3.2 0.50 4959592 13 (2) 5.0 495592 4.0.010 0.010 4962292 4.0.010 0.010 4962292 N/A Orthophosphate (P) mg/L 4.3 0.50 4962271 4.0 0.50 4962271 0.80 0.50 4962271 N/A Reactive Silica (SiO2) mg/L 4.3 0.50 4962261 4.0 0.50 4962271 0.80 0.50 4962271 N/A Dissolved Sulphate (SO4) mg/L 5.5 2.0 4962266 4.2.0 2.0 4962266 4.2.0 2.0 4962266 N/A Turbidity NTU 6.9 0.10 4962128 88 1.0 4962155 120 1.0 4962155 0.10 Conductivity nVTU 6.9 0.10 4962128 88 1.0 4962156 130 1.0 4962155 0.10 Conductivity nVTU 6.9 5.0 4959507 3.30 5.0 495950 2.8000 5.0 495950 N/A Total Aluminum (Al) ug/L 5.10 5.0 4959507 4.1.0 1.0 4959500 4.1.0 1.0 4959500 N/A Total Anteninum (Sb) ug/L 4.1.0 1.0 4959507 4.1.0 1.0 4959500 4.0.0 1.0 4959500 N/A	Langelier Index (@ 20C)	N/A	-3.95		4957608	-4.13		4957608	-1.33		4957608	
Saturation pH (@ 20C) N/A 9.93 4957608 10.1 4957608 8.31 4957608 10.1 Saturation pH (@ 4C) N/A 10.2 4957609 10.3 4957609 8.56 4957609 10.3 Inorganics Total Alkalinity (Total as CaCO3) mg/L 5.3 5.0 4962261 5.3 5.0 4962261 3.4 5.0 4962261 N/A Total Alkalinity (Total as CaCO3) mg/L 5.3 5.0 4962261 5.3 5.0 4962261 3.4 5.0 4962261 N/A Total Ammonia-N mg/L 46 1.0 4962263 21 1.0 4962263 17 1.0 4962263 N/A Colour TCU 10 5.0 4962279 140 (1) 25 4962279 340 (1) 100 4962263 N/A Nitriate + Nitrite (N) mg/L 0.056 0.050 4962287 0.060 0.050 4962287 0.15 0.050 4962287 N/A	Langelier Index (@ 4C)	N/A	-4.20		4957609	-4.39		4957609	-1.58		4957609	
Saturation pH (@ 4C) N/A 10.2 4957609 10.3 4957609 8.56 4957609 Inorganics Total Alkalinity (Total as CaCO3) mg/L 5.3 5.0 4962261 5.3 5.0 4962261 34 5.0 4962261 N/A Total Ammonia-N mg/L <0.050	Nitrate (N)	mg/L	0.056	0.050	4957618	0.060	0.050	4957618	0.15	0.050	4957618	N/A
Total Alkalinity (Total as CaCO3) mg/L 5.3 5.0 4962261 5.3 5.0 4962261 34 5.0 4962261 N/A Total Almannia-N mg/L <0.050 0.050 4972947 <0.050 0.050 4972947 0.19 0.050 4972953 0.080 Dissolved Chloride (Cl) mg/L 46 1.0 4962263 21 1.0 4962263 17 1.0 4962263 N/A Colour TCU 10 5.0 4962279 140 (1) 25 4962279 340 (1) 100 4962279 N/A Nitrate + Nitrite (N) mg/L <0.056 0.050 4962287 0.060 0.050 4962287 0.15 0.050 4962287 N/A Nitrite (N) mg/L <0.010 0.010 4962292 <0.010 0.010 4962292 <0.010 0.010 4962292 N/A Total Organic Carbon (C) mg/L <0.010 0.010 4962282 0.011 0.010 4962282 0.099 0.010 4962282 N/A PH DyH D	Saturation pH (@ 20C)	N/A	9.93		4957608	10.1		4957608	8.31		4957608	
Total Alkalinity (Total as CaCO3)	Saturation pH (@ 4C)	N/A	10.2		4957609	10.3		4957609	8.56		4957609	
Total Ammonia-N mg/L <0.050 0.050 4972947 <0.050 0.050 4972947 0.19 0.050 4972953 0.0080 Dissolved Chloride (Cl) mg/L 46 1.0 4962263 21 1.0 4962263 17 1.0 4962263 N/A Colour TCU 10 5.0 4962279 140 (1) 25 4962279 340 (1) 100 4962279 N/A Nitrate + Nitrite (N) mg/L 0.056 0.050 4962287 0.060 0.050 4962287 0.15 0.050 4962287 N/A Nitrite (N) mg/L <0.010 0.010 4962292 <0.010 0.010 4962292 <0.010 0.010 0.010 4962292 N/A Total Organic Carbon (C) mg/L 3.2 0.50 4959592 13 (2) 5.0 4959592 <50 (2) 50 4959592 N/A Orthophosphate (P) mg/L <0.010 0.010 4962282 0.011 0.010 4962282 0.099 0.010 4962282 N/A PH 5.98 N/A 4962127 5.94 N/A 4962125 6.98 N/A 4962127 N/A Reactive Silica (SiO2) mg/L 4.3 0.50 4962266 <2.0 2.0 4962266 <2.0 2.0 4962266 N/A Turbidity NTU 6.9 0.10 496218 88 1.0 4962155 120 1.0 496218 N/A Motals Total Aluminum (Al) ug/L 510 5.0 4959507 330 5.0 4959500 28000 5.0 4959500 N/A Total Arsenic (As) ug/L <1.0 1.0 4959507 <1.0 1.0 4959500 666 1.0 4959500 N/A Total Arsenic (As)	Inorganics	•		•			•			•		
Dissolved Chloride (Cl) mg/L 46 1.0 4962263 21 1.0 4962263 17 1.0 4962263 N/A Colour TCU 10 5.0 4962279 140 (1) 25 4962279 340 (1) 100 4962279 N/A Nitrate + Nitrite (N) mg/L 0.056 0.050 4962287 0.060 0.050 4962287 0.15 0.050 4962287 N/A Nitrite (N) mg/L <0.010 0.010 4962292 <0.010 0.010 4962292 <0.010 0.010 4962292 N/A Total Organic Carbon (C) mg/L 3.2 0.50 4959592 13 (2) 5.0 4959592 <50 (2) 50 4959592 N/A Orthophosphate (P) mg/L <0.010 0.010 4962282 0.011 0.010 4962282 0.099 0.010 4962282 N/A PH 9H 5.98 N/A 4962127 5.94 N/A 4962125 6.98 N/A 4962127 N/A Reactive Silica (SiO2) mg/L 4.3 0.50 4962271 4.0 0.50 4962271 0.80 0.50 4962271 N/A Dissolved Sulphate (SO4) mg/L 5.5 2.0 4962266 <2.0 2.0 4962266 <2.0 2.0 4962266 N/A Turbidity NTU 6.9 0.10 4962128 88 1.0 4962155 120 1.0 4962155 0.10 Conductivity us/cm 170 1.0 4962128 88 1.0 496216 130 1.0 4962128 N/A Metals Total Aluminum (Al) ug/L 510 5.0 4959507 330 5.0 4959500 28000 5.0 4959500 N/A Total Antimony (Sb) ug/L <1.0 1.0 4959507 <1.0 1.0 4959500 66 1.0 4959500 N/A	Total Alkalinity (Total as CaCO3)	mg/L	5.3	5.0	4962261	5.3	5.0	4962261	34	5.0	4962261	N/A
Colour TCU 10 5.0 4962279 140 (1) 25 4962279 340 (1) 100 4962279 N/A Nitrate + Nitrite (N) mg/L 0.056 0.050 4962287 0.060 0.050 4962287 0.15 0.050 4962287 N/A Nitrite (N) mg/L <0.010 0.010 4962292 <0.010 0.010 4962292 <0.010 0.010 4962292 N/A Total Organic Carbon (C) mg/L 3.2 0.50 4959592 13 (2) 5.0 4959592 <50 (2) 50 4959592 N/A Orthophosphate (P) mg/L <0.010 0.010 4962282 0.011 0.010 4962282 0.099 0.010 4962282 N/A PH 5.98 N/A 4962127 5.94 N/A 4962125 6.98 N/A 4962127 N/A Reactive Silica (SiO2) mg/L 4.3 0.50 4962271 4.0 0.50 4962271 0.80 0.50 4962271 N/A Dissolved Sulphate (SO4) mg/L 5.5 2.0 4962266 <2.0 2.0 4962266 <2.0 2.0 4962266 <2.0 2.0 4962266 N/A Turbidity NTU 6.9 0.10 4962128 88 1.0 4962125 120 1.0 4962128 N/A Metals Total Aluminum (Al) ug/L 510 5.0 4959507 330 5.0 4959500 28000 5.0 4959500 N/A Total Antimony (Sb) ug/L <1.0 1.0 4959507 <1.0 1.0 4959500 666 1.0 4959500 N/A	Total Ammonia-N	mg/L	<0.050	0.050	4972947	<0.050	0.050	4972947	0.19	0.050	4972953	0.0080
Nitrate + Nitrite (N) mg/L 0.056 0.050 4962287 0.060 0.050 4962287 0.15 0.050 4962287 N/A Nitrite (N) mg/L <0.010 0.010 4962292 <0.010 0.010 4962292 <0.010 0.010 4962292 N/A Total Organic Carbon (C) mg/L 3.2 0.50 4959592 13 (2) 5.0 4959592 <50 (2) 50 4959592 N/A Orthophosphate (P) mg/L <0.010 0.010 4962282 0.011 0.010 4962282 0.099 0.010 4962282 N/A PH 5.98 N/A 4962127 5.94 N/A 4962125 6.98 N/A 4962127 N/A Reactive Silica (SiO2) mg/L 4.3 0.50 4962271 4.0 0.50 4962271 0.80 0.50 4962271 N/A Dissolved Sulphate (SO4) mg/L 5.5 2.0 4962266 <2.0 2.0 4962266 <2.0 2.0 4962266 N/A Turbidity NTU 6.9 0.10 4962125 14 0.10 4962155 120 1.0 4962155 0.10 Conductivity uS/cm 170 1.0 4962128 88 1.0 4962126 130 1.0 4962128 N/A Metals Total Aluminum (Al) ug/L 510 5.0 4959507 330 5.0 4959500 28000 5.0 4959500 N/A Total Antimony (Sb) ug/L <1.0 1.0 4959507 <1.0 1.0 4959500 666 1.0 4959500 N/A	Dissolved Chloride (CI)	mg/L	46	1.0	4962263	21	1.0	4962263	17	1.0	4962263	N/A
Nitrite (N) mg/L	Colour	TCU	10	5.0	4962279	140 (1)	25	4962279	340 (1)	100	4962279	N/A
Total Organic Carbon (C) mg/L 3.2 0.50 4959592 13 (2) 5.0 4959592 <50 (2) 50 4959592 N/A Orthophosphate (P) mg/L <0.010 0.010 4962282 0.011 0.010 4962282 0.099 0.010 4962282 N/A pH 5.98 N/A 4962127 5.94 N/A 4962125 6.98 N/A 4962127 N/A Reactive Silica (SiO2) mg/L 4.3 0.50 4962271 4.0 0.50 4962271 0.80 0.50 4962271 N/A Dissolved Sulphate (SO4) mg/L 5.5 2.0 4962266 <2.0 2.0 4962266 <2.0 2.0 4962266 N/A Turbidity NTU 6.9 0.10 4962155 14 0.10 4962155 120 1.0 4962155 0.10 Conductivity uS/cm 170 1.0 4962128 88 1.0 4962166 130 1.0 4962128 N/A Metals Total Aluminum (Al) ug/L 510 5.0 4959507 330 5.0 4959500 28000 5.0 4959500 N/A Total Antimony (Sb) ug/L <1.0 1.0 4959507 <1.0 1.0 4959500 <66 1.0 4959500 N/A	Nitrate + Nitrite (N)	mg/L	0.056	0.050	4962287	0.060	0.050	4962287	0.15	0.050	4962287	N/A
Orthophosphate (P) mg/L <0.010 0.010 4962282 0.011 0.010 4962282 0.099 0.010 4962282 N/A pH pH 5.98 N/A 4962127 5.94 N/A 4962125 6.98 N/A 4962127 N/A Reactive Silica (SiO2) mg/L 4.3 0.50 4962271 4.0 0.50 4962271 0.80 0.50 4962271 N/A Dissolved Sulphate (SO4) mg/L 5.5 2.0 4962266 <2.0	Nitrite (N)	mg/L	<0.010	0.010	4962292	<0.010	0.010	4962292	<0.010	0.010	4962292	N/A
pH pH 5.98 N/A 4962127 5.94 N/A 4962125 6.98 N/A 4962127 N/A Reactive Silica (SiO2) mg/L 4.3 0.50 4962271 4.0 0.50 4962271 0.80 0.50 4962271 N/A Dissolved Sulphate (SO4) mg/L 5.5 2.0 4962266 <2.0	Total Organic Carbon (C)	mg/L	3.2	0.50	4959592	13 (2)	5.0	4959592	<50 (2)	50	4959592	N/A
Reactive Silica (SiO2) mg/L 4.3 0.50 4962271 4.0 0.50 4962271 0.80 0.50 4962271 N/A Dissolved Sulphate (SO4) mg/L 5.5 2.0 4962266 <2.0 2.0 4962266 <2.0 2.0 4962266 <2.0 2.0 4962266 N/A Turbidity NTU 6.9 0.10 4962155 14 0.10 4962155 120 1.0 4962155 0.10 Conductivity uS/cm 170 1.0 4962128 88 1.0 4962126 130 1.0 4962128 N/A Metals Total Aluminum (Al) ug/L 510 5.0 4959507 330 5.0 4959500 28000 5.0 4959500 N/A Total Antimony (Sb) ug/L <1.0 1.0 4959507 <1.0 1.0 4959500 666 1.0 4959500 N/A	Orthophosphate (P)	mg/L	<0.010	0.010	4962282	0.011	0.010	4962282	0.099	0.010	4962282	N/A
Dissolved Sulphate (SO4) mg/L 5.5 2.0 4962266 <2.0 2.0 4962266 <2.0 2.0 4962266 N/A Turbidity NTU 6.9 0.10 4962155 14 0.10 4962155 120 1.0 4962155 0.10 Conductivity uS/cm 170 1.0 4962128 88 1.0 4962126 130 1.0 4962128 N/A Metals Total Aluminum (Al) ug/L 510 5.0 4959507 330 5.0 4959500 28000 5.0 4959500 N/A Total Antimony (Sb) ug/L <1.0 1.0 4959507 <1.0 1.0 4959500 <66 1.0 4959500 N/A Total Arsenic (As) ug/L <1.0 1.0 4959507 <1.0 1.0 4959500 66 1.0 4959500 N/A	рН	рН	5.98	N/A	4962127	5.94	N/A	4962125	6.98	N/A	4962127	N/A
Turbidity NTU 6.9 0.10 4962155 14 0.10 4962155 120 1.0 4962155 0.10 Conductivity uS/cm 170 1.0 4962128 88 1.0 4962126 130 1.0 4962128 N/A Metals Total Aluminum (Al) ug/L 510 5.0 4959507 330 5.0 4959500 28000 5.0 4959500 N/A Total Antimony (Sb) ug/L <1.0 1.0 4959507 <1.0 1.0 4959500 66 1.0 4959500 N/A Total Arsenic (As) ug/L <1.0 1.0 4959507 <1.0 1.0 4959500 66 1.0 4959500 N/A	Reactive Silica (SiO2)	mg/L	4.3	0.50	4962271	4.0	0.50	4962271	0.80	0.50	4962271	N/A
Conductivity uS/cm 170 1.0 4962128 88 1.0 4962126 130 1.0 4962128 N/A Metals Total Aluminum (Al) ug/L 510 5.0 4959507 330 5.0 4959500 28000 5.0 4959500 N/A Total Antimony (Sb) ug/L <1.0	Dissolved Sulphate (SO4)	mg/L	5.5	2.0	4962266	<2.0	2.0	4962266	<2.0	2.0	4962266	N/A
Metals Total Aluminum (Al) ug/L 510 5.0 4959507 330 5.0 4959500 28000 5.0 4959500 N/A Total Antimony (Sb) ug/L <1.0	Turbidity	NTU	6.9	0.10	4962155	14	0.10	4962155	120	1.0	4962155	0.10
Total Aluminum (Al) ug/L 510 5.0 4959507 330 5.0 4959500 28000 5.0 4959500 N/A Total Antimony (Sb) ug/L <1.0	Conductivity	uS/cm	170	1.0	4962128	88	1.0	4962126	130	1.0	4962128	N/A
Total Antimony (Sb) ug/L <1.0 1.0 4959507 <1.0 1.0 4959500 <1.0 1.0 4959500 N/A Total Arsenic (As) ug/L <1.0	Metals											
Total Arsenic (As) ug/L <1.0 1.0 4959507 <1.0 1.0 4959500 66 1.0 4959500 N/A	Total Aluminum (AI)	ug/L	510	5.0	4959507	330	5.0	4959500	28000	5.0	4959500	N/A
	Total Antimony (Sb)	ug/L	<1.0	1.0	4959507	<1.0	1.0	4959500	<1.0	1.0	4959500	N/A
Total Barium (Ba) ug/L 7.7 1.0 4959507 9.4 1.0 4959500 290 1.0 4959500 N/A	Total Arsenic (As)	ug/L	<1.0	1.0	4959507	<1.0	1.0	4959500	66	1.0	4959500	N/A
	Total Barium (Ba)	ug/L	7.7	1.0	4959507	9.4	1.0	4959500	290	1.0	4959500	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

- (1) Elevated reporting limit due to sample matrix.
- (2) Reporting limit was increased due to turbidity.

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Your P.O. #: A08530 Sampler Initials: LL

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Maxxam ID		EHA234			EHA235			EHA236			
Sampling Date		2017/04/26			2017/04/26			2017/04/25			
COC Number		606952-01-01			606952-01-01			606952-01-01			
	UNITS	SW15	RDL	QC Batch	SW16	RDL	QC Batch	SW-DUP1	RDL	QC Batch	MDL
Total Beryllium (Be)	ug/L	<1.0	1.0	4959507	<1.0	1.0	4959500	1.4	1.0	4959500	N/A
Total Bismuth (Bi)	ug/L	<2.0	2.0	4959507	<2.0	2.0	4959500	<2.0	2.0	4959500	N/A
Total Boron (B)	ug/L	<50	50	4959507	<50	50	4959500	<50	50	4959500	N/A
Total Cadmium (Cd)	ug/L	0.030	0.010	4959507	0.036	0.010	4959500	1.9	0.010	4959500	N/A
Total Calcium (Ca)	ug/L	4800	100	4959507	3200	100	4959500	35000	100	4959500	N/A
Total Chromium (Cr)	ug/L	<1.0	1.0	4959507	<1.0	1.0	4959500	46	1.0	4959500	N/A
Total Cobalt (Co)	ug/L	1.3	0.40	4959507	0.60	0.40	4959500	100	0.40	4959500	N/A
Total Copper (Cu)	ug/L	<2.0	2.0	4959507	2.1	2.0	4959500	160	2.0	4959500	N/A
Total Iron (Fe)	ug/L	790	50	4959507	460	50	4959500	84000	50	4959500	N/A
Total Lead (Pb)	ug/L	<0.50	0.50	4959507	2.1	0.50	4959500	140	0.50	4959500	N/A
Total Magnesium (Mg)	ug/L	2500	100	4959507	1600	100	4959500	9800	100	4959500	N/A
Total Manganese (Mn)	ug/L	81	2.0	4959507	64	2.0	4959500	14000	2.0	4959500	N/A
Total Molybdenum (Mo)	ug/L	<2.0	2.0	4959507	<2.0	2.0	4959500	13	2.0	4959500	N/A
Total Nickel (Ni)	ug/L	<2.0	2.0	4959507	<2.0	2.0	4959500	69	2.0	4959500	N/A
Total Phosphorus (P)	ug/L	<100	100	4959507	390	100	4959500	10000	100	4959500	N/A
Total Potassium (K)	ug/L	750	100	4959507	1700	100	4959500	12000	100	4959500	N/A
Total Selenium (Se)	ug/L	<1.0	1.0	4959507	<1.0	1.0	4959500	2.2	1.0	4959500	N/A
Total Silver (Ag)	ug/L	<0.10	0.10	4959507	<0.10	0.10	4959500	0.58	0.10	4959500	N/A
Total Sodium (Na)	ug/L	21000	100	4959507	11000	100	4959500	12000	100	4959500	N/A
Total Strontium (Sr)	ug/L	32	2.0	4959507	24	2.0	4959500	230	2.0	4959500	N/A
Total Thallium (TI)	ug/L	<0.10	0.10	4959507	<0.10	0.10	4959500	0.52	0.10	4959500	N/A
Total Tin (Sn)	ug/L	<2.0	2.0	4959507	<2.0	2.0	4959500	4.4	2.0	4959500	N/A
Total Titanium (Ti)	ug/L	9.5	2.0	4959507	5.5	2.0	4959500	780	2.0	4959500	N/A
Total Uranium (U)	ug/L	<0.10	0.10	4959507	<0.10	0.10	4959500	3.8	0.10	4959500	N/A
Total Vanadium (V)	ug/L	<2.0	2.0	4959507	<2.0	2.0	4959500	79	2.0	4959500	N/A
Total Zinc (Zn)	ug/L	5.7	5.0	4959507	5.5	5.0	4959500	380	5.0	4959500	N/A

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Your P.O. #: A08530 Sampler Initials: LL

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Maxxam ID		EHA237	EHA237			EHA238			
Sampling Date		2017/04/25	2017/04/25			2017/04/25			
COC Number		606952-01-01	606952-01-01			606952-01-01			
	UNITS	SW-DUP2	SW-DUP2 Lab-Dup	RDL	QC Batch	P1A	RDL	QC Batch	MDL
Calculated Parameters									
Anion Sum	me/L	0.580		N/A	4957617	1.11	N/A	4957617	N/A
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	<1.0		1.0	4957614	30	1.0	4957614	0.20
Calculated TDS	mg/L	40		1.0	4957610	85	1.0	4957610	0.20
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0		1.0	4957614	<1.0	1.0	4957614	0.20
Cation Sum	me/L	0.760		N/A	4957617	1.87	N/A	4957617	N/A
Hardness (CaCO3)	mg/L	11		1.0	4957615	32	1.0	4957615	1.0
Ion Balance (% Difference)	%	13.4		N/A	4957616	25.5	N/A	4957616	N/A
Langelier Index (@ 20C)	N/A	NC			4957608	-2.79		4957608	
Langelier Index (@ 4C)	N/A	NC			4957609	-3.04		4957609	
Nitrate (N)	mg/L	<0.050		0.050	4957618	<0.050	0.050	4957618	N/A
Saturation pH (@ 20C)	N/A	NC			4957608	8.92		4957608	
Saturation pH (@ 4C)	N/A	NC			4957609	9.17		4957609	
Inorganics	•						•		,
Total Alkalinity (Total as CaCO3)	mg/L	<5.0	<5.0	5.0	4962307	30	5.0	4962307	N/A
Total Ammonia-N	mg/L	<0.050		0.050	4972953	0.26	0.050	4972953	0.0080
Dissolved Chloride (Cl)	mg/L	21	21	1.0	4962319	16	1.0	4962319	N/A
Colour	TCU	120 (1)	130 (1)	25	4962336	540 (1)	250	4962336	N/A
Nitrate + Nitrite (N)	mg/L	<0.050	<0.050	0.050	4962343	<0.050	0.050	4962343	N/A
Nitrite (N)	mg/L	<0.010	<0.010	0.010	4962344	<0.010	0.010	4962344	N/A
Total Organic Carbon (C)	mg/L	11		0.50	4959696	52 (1)	5.0	4959696	N/A
Orthophosphate (P)	mg/L	<0.010	0.012	0.010	4962341	0.030	0.010	4962341	N/A
рН	рН	5.86	5.96	N/A	4962127	6.13	N/A	4962127	N/A
Reactive Silica (SiO2)	mg/L	2.6	2.7	0.50	4962331	2.8	0.50	4962331	N/A
Dissolved Sulphate (SO4)	mg/L	<2.0	<2.0	2.0	4962327	2.5	2.0	4962327	N/A
Turbidity	NTU	1.2	1.4	0.10	4962155	47	0.10	4962159	0.10
Conductivity	uS/cm	89	89	1.0	4962128	120	1.0	4962128	N/A
Metals									
Total Aluminum (Al)	ug/L	310		5.0	4959500	1200	5.0	4959500	N/A
Total Antimony (Sb)	ug/L	<1.0		1.0	4959500	<1.0	1.0	4959500	N/A
Total Arsenic (As)	ug/L	<1.0		1.0	4959500	22	1.0	4959500	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

(1) Elevated reporting limit due to sample matrix.

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Your P.O. #: A08530 Sampler Initials: LL

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Maxxam ID		EHA237	EHA237			EHA238			
Sampling Date		2017/04/25	2017/04/25			2017/04/25			
COC Number		606952-01-01	606952-01-01			606952-01-01			
	UNITS	SW-DUP2	SW-DUP2 Lab-Dup	RDL	QC Batch	P1A	RDL	QC Batch	MDL
Total Beryllium (Be)	ug/L	<1.0		1.0	4959500	<1.0	1.0	4959500	N/A
Total Bismuth (Bi)	ug/L	<2.0		2.0	4959500	<2.0	2.0	4959500	N/A
Total Boron (B)	ug/L	<50		50	4959500	<50	50	4959500	N/A
Total Cadmium (Cd)	ug/L	0.017		0.010	4959500	0.068	0.010	4959500	N/A
Total Calcium (Ca)	ug/L	2000		100	4959500	8500	100	4959500	N/A
Total Chromium (Cr)	ug/L	1.6		1.0	4959500	3.2	1.0	4959500	N/A
Total Cobalt (Co)	ug/L	<0.40		0.40	4959500	2.8	0.40	4959500	N/A
Total Copper (Cu)	ug/L	<2.0		2.0	4959500	4.9	2.0	4959500	N/A
Total Iron (Fe)	ug/L	350		50	4959500	17000	50	4959500	N/A
Total Lead (Pb)	ug/L	0.50		0.50	4959500	6.6	0.50	4959500	N/A
Total Magnesium (Mg)	ug/L	1300		100	4959500	2600	100	4959500	N/A
Total Manganese (Mn)	ug/L	11		2.0	4959500	510	2.0	4959500	N/A
Total Molybdenum (Mo)	ug/L	<2.0		2.0	4959500	<2.0	2.0	4959500	N/A
Total Nickel (Ni)	ug/L	<2.0		2.0	4959500	3.7	2.0	4959500	N/A
Total Phosphorus (P)	ug/L	<100		100	4959500	980	100	4959500	N/A
Total Potassium (K)	ug/L	1100		100	4959500	7500	100	4959500	N/A
Total Selenium (Se)	ug/L	<1.0		1.0	4959500	<1.0	1.0	4959500	N/A
Total Silver (Ag)	ug/L	<0.10		0.10	4959500	<0.10	0.10	4959500	N/A
Total Sodium (Na)	ug/L	10000		100	4959500	9600	100	4959500	N/A
Total Strontium (Sr)	ug/L	14		2.0	4959500	43	2.0	4959500	N/A
Total Thallium (TI)	ug/L	<0.10		0.10	4959500	<0.10	0.10	4959500	N/A
Total Tin (Sn)	ug/L	<2.0		2.0	4959500	<2.0	2.0	4959500	N/A
Total Titanium (Ti)	ug/L	5.7		2.0	4959500	23	2.0	4959500	N/A
Total Uranium (U)	ug/L	<0.10		0.10	4959500	0.14	0.10	4959500	N/A
Total Vanadium (V)	ug/L	<2.0		2.0	4959500	5.5	2.0	4959500	N/A
Total Zinc (Zn)	ug/L	5.2		5.0	4959500	59	5.0	4959500	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Your P.O. #: A08530 Sampler Initials: LL

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

COC Number	Maxxam ID		EHA239			EHA240			EHA241			
COC Number COC												
No. Para P												
Anion Surm	o o ramber	UNITS		RDL	QC Batch		RDL	QC Batch		RDL	QC Batch	MDL
Bicarb. Alkalinity (calc. as CaCO3) mg/L < 1.0 1.0 4957614 80 1.0 4957614 1.0 1.0 4957614 0.20 Calculated TDS mg/L 46 1.0 4957610 150 1.0 4957610 40 1.0 4957610 0.20 Carb. Alkalinity (calc. as CaCO3) mg/L < 1.0 1.0 4957614 1.0 1.0 4957610 40 1.0 4957610 0.20 Carb. Alkalinity (calc. as CaCO3) mg/L < 1.0 1.0 4957614 1.0 1.0 4957614 1.0 1.0 4957614 0.20 Carb. Alkalinity (calc. as CaCO3) mg/L < 1.0 1.0 4957614 1.0 1.0 4957614 1.0 1.0 4957617 0.800 N/A 4957617 N/A Hardness (CaCO3) mg/L 17 1.0 4957615 54 1.0 4957615 12 1.0 4957615 1.0 Ion Balance (% Difference) % 25.3 N/A 4957616 6.48 N/A 4957616 21.2 N/A 4957616 N/A Langelier Index (@ 2OC) N/A NC 4957608 1.5.57 4957608 NC 4957608 Langelier Index (@ 2OC) N/A NC 4957608 1.5.57 4957609 NC 4957608 Langelier Index (@ 4C) N/A NC 4957608 1.5.57 4957609 NC 4957608 Nitrate (N) mg/L 0.050 0.050 4957618 0.050 0.050 4957618 0.081 0.050 4957618 N/A Saturation pH (@ 2OC) N/A NC 4957608 8.29 4957609 NC 4957608 Saturation pH (@ 4C) N/A NC 4957608 8.29 4957608 NC 4957608 Inorganics Total Alkalinity (Total as CaCO3) mg/L 0.41 0.050 4962307 80 5.0 4962307 0.050 0.050 4972953 0.0080 Dissolved Chloride (CI) mg/L 21 1.0 4962319 12 1.0 4962319 18 1.0 4962319 N/A Nitrate + Nitrite (N) mg/L 0.050 0.050 4952953 0.0050 0.050 4952947 0.050 0.050 4952343 N/A Nitrate + Nitrite (N) mg/L 0.010 0.010 4962344 0.010 0.010 4962344 0.010 0.010 4962344 N/A Nitrate + Nitrite (N) mg/L 0.010 0.010 4962344 0.010 0.010 4962341 0.040 0.010 4962341 N/A Nitrite (N) mg/L 0.016 0.010 4962341 0.032 0.010 4962341 0.040 0.010 4962341 N/A Nitrite (N) mg/L 0.016 0.010 4962341 0.032 0.010 4962317 1.0 0.000 4962341 N/A Nitrite (N) mg/L 0.016 0.010 4962341 0.032 0.010 4962317 1.5 0.0 4952307 N/A Reactive Silica (SiO2) mg/L 4.0 0.05 4962327 5.2 0.00 4962327 5.0 0.000 4962327 0.000 4962327 0.000 4962327 0.000 4962327 0.000 4962327 0.000 4962327 0.000 4962327 0.000 4962327 0.000 4962327 0.000 4962327 0.000 4962327 0.000 4962327 0.000 4962327 0.000 4962327 0.000 4962327 0.000 4962327 0.000 4962327 0.000 4962320 0.000 49623	Calculated Parameters										-	·
Calculated TDS	Anion Sum	me/L	0.590	N/A	4957617	2.38	N/A	4957617	0.520	N/A	4957617	N/A
Carb. Alkalinity (calc. as CaCO3) mg/L	Bicarb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	4957614	80	1.0	4957614	<1.0	1.0	4957614	0.20
Cation Sum me/L 0.990 N/A 4957617 2.71 N/A 4957617 0.800 N/A 4957617 N/A Hardness (CaCO3) mg/L 17 1.0 4957615 54 1.0 4957615 12 1.0 4957615 1.0 Ion Balance (% Difference) % 25.3 N/A 4957616 6.48 N/A 4957616 21.2 N/A 4957616 N/A Langelier Index (@ 20C) N/A NC 4957608 -1.57 4957608 NC 4957608 Langelier Index (@ 4C) N/A NC 4957608 NC 4957608 NC 4957608 Langelier Index (@ 4C) N/A NC 4957608	Calculated TDS	mg/L	46	1.0	4957610	150	1.0	4957610	40	1.0	4957610	0.20
Hardness (CaCO3) mg/L 17 1.0 4957615 54 1.0 4957615 12 1.0 4957615 1.0 Ion Balance (% Difference) % 25.3 N/A 4957616 6.48 N/A 4957616 21.2 N/A 4957616 N/A Langelier Index (@ 2OC) N/A NC 4957608 -1.57 4957608 NC 4957608	Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	4957614	<1.0	1.0	4957614	<1.0	1.0	4957614	0.20
Description Color	Cation Sum	me/L	0.990	N/A	4957617	2.71	N/A	4957617	0.800	N/A	4957617	N/A
Langelier Index (@ 20C) N/A NC 4957608 -1.57 4957608 NC 4957608 August 1	Hardness (CaCO3)	mg/L	17	1.0	4957615	54	1.0	4957615	12	1.0	4957615	1.0
Langelier Index (@ 4C) N/A NC 4957609 -1.82 4957609 NC 4957609 NITATED	Ion Balance (% Difference)	%	25.3	N/A	4957616	6.48	N/A	4957616	21.2	N/A	4957616	N/A
Nitrate (N)	Langelier Index (@ 20C)	N/A	NC		4957608	-1.57		4957608	NC		4957608	
Saturation pH (@ 20C) N/A NC 4957608 8.29 4957608 NC 4957608 Saturation pH (@ 4C) N/A NC 4957609 8.54 4957609 NC 4957609 Inorganics Total Alkalinity (Total as CaCO3) mg/L <5.0	Langelier Index (@ 4C)	N/A	NC		4957609	-1.82		4957609	NC		4957609	
Saturation pH (@ 4C)	Nitrate (N)	mg/L	<0.050	0.050	4957618	<0.050	0.050	4957618	0.081	0.050	4957618	N/A
Total Alkalinity (Total as CaCO3) mg/L <5.0 5.0 4962307 80 5.0 4962307 <5.0 5.0 4962307 N/A	Saturation pH (@ 20C)	N/A	NC		4957608	8.29		4957608	NC		4957608	
Total Alkalinity (Total as CaCO3)	Saturation pH (@ 4C)	N/A	NC		4957609	8.54		4957609	NC		4957609	
Total Ammonia-N mg/L 0.41 0.050 4972953 <0.050 0.050 4972947 <0.050 0.050 4972953 0.0080 Dissolved Chloride (CI) mg/L 21 1.0 4962319 25 1.0 4962319 18 1.0 4962319 N/A Colour TCU 310 (1) 100 4962336 310 (1) 130 4962336 540 (1) 150 4962336 N/A Nitrate + Nitrite (N) mg/L <0.050 0.050 4962343 <0.050 0.050 4962343 0.081 0.050 4962343 N/A Nitrite (N) mg/L <0.010 0.010 4962344 <0.010 0.010 4962344 <0.010 0.010 4962344 N/A Total Organic Carbon (C) mg/L 20 (1) 5.0 4959696 34 (1) 5.0 4959696 22 (1) 5.0 4959696 N/A Orthophosphate (P) mg/L 0.016 0.010 4962341 0.032 0.010 4962341 0.040 0.010 4962341 N/A PH 5.18 N/A 4962127 6.72 N/A 4962127 5.98 N/A 4962125 N/A Reactive Silica (SiO2) mg/L 4.0 0.50 4962331 5.2 0.50 4962331 2.8 0.50 4962331 N/A Dissolved Sulphate (SO4) mg/L <2.0 2.0 4962327 3.3 2.0 4962327 <2.0 2.0 4962327 N/A Turbidity NTU 330 1.0 4962155 25 0.10 4962155 2.7 0.10 4962159 0.10 Conductivity us/cm 88 1.0 4962128 240 1.0 4962128 82 1.0 4962126 N/A Metals Total Aluminum (Al) ug/L 2200 5.0 4959500 840 5.0 4959507 410 5.0 4959507 N/A Total Antimony (Sb) ug/L 1.4 1.0 4959500 2.3 1.0 4959507 1.3 1.0 4959507 N/A Total Arsenic (As) ug/L 1.4 1.0 4959500 15 1.0 4959507 8.1 1.0 4959507 N/A	Inorganics			•	•		•	•		•		
Dissolved Chloride (Cl)	Total Alkalinity (Total as CaCO3)	mg/L	<5.0	5.0	4962307	80	5.0	4962307	<5.0	5.0	4962307	N/A
Colour TCU 310 (1) 100 4962336 310 (1) 130 4962336 540 (1) 150 4962336 N/A Nitrate + Nitrite (N) mg/L <0.050 0.050 4962343 <0.050 0.050 4962343 0.081 0.050 4962343 N/A Nitrite (N) mg/L <0.010 0.010 4962344 <0.010 0.010 4962344 <0.010 0.010 4962344 <0.010 0.010 4962344 N/A Total Organic Carbon (C) mg/L 20 (1) 5.0 4959696 34 (1) 5.0 4959696 22 (1) 5.0 4959696 N/A Orthophosphate (P) mg/L 0.016 0.010 4962341 0.032 0.010 4962341 0.040 0.010 4962341 N/A PH pH 5.18 N/A 4962127 6.72 N/A 4962127 5.98 N/A 4962125 N/A Reactive Silica (SiO2) mg/L 4.0 0.50 4962331 5.2 0.50 4962331 2.8 0.50 4962331 N/A Dissolved Sulphate (SO4) mg/L <2.0 2.0 4962327 3.3 2.0 4962327 <2.0 2.0 4962327 N/A Turbidity NTU 330 1.0 4962155 25 0.10 4962155 2.7 0.10 4962159 0.10 Conductivity us/cm 88 1.0 4962128 240 1.0 4962128 82 1.0 4962126 N/A Metals Total Aluminum (Al) ug/L 2200 5.0 4959500 840 5.0 4959507 410 5.0 4959507 N/A Total Antimony (Sb) ug/L <1.0 1.0 4959500 2.3 1.0 4959507 1.3 1.0 4959507 N/A Total Arsenic (As) ug/L 35 1.0 4959500 15 1.0 4959507 8.1 1.0 4959507 N/A	Total Ammonia-N	mg/L	0.41	0.050	4972953	<0.050	0.050	4972947	<0.050	0.050	4972953	0.0080
Nitrate + Nitrite (N)	Dissolved Chloride (CI)	mg/L	21	1.0	4962319	25	1.0	4962319	18	1.0	4962319	N/A
Nitrite (N)	Colour	TCU	310 (1)	100	4962336	310 (1)	130	4962336	540 (1)	150	4962336	N/A
Total Organic Carbon (C) mg/L 20 (1) 5.0 4959696 34 (1) 5.0 4959696 22 (1) 5.0 4959696 N/A Orthophosphate (P) mg/L 0.016 0.010 4962341 0.032 0.010 4962341 0.040 0.010 4962341 N/A pH pH 5.18 N/A 4962127 6.72 N/A 4962127 5.98 N/A 4962125 N/A Reactive Silica (SiO2) mg/L 4.0 0.50 4962331 5.2 0.50 4962331 2.8 0.50 4962331 N/A Dissolved Sulphate (SO4) mg/L <2.0 2.0 4962327 3.3 2.0 4962327 <2.0 2.0 4962327 N/A Turbidity NTU 330 1.0 4962155 25 0.10 4962155 2.7 0.10 4962159 0.10 Conductivity us/cm 88 1.0 4962128 240 1.0 4962128 82 1.0 4962126 N/A Metals Total Aluminum (Al) ug/L 2200 5.0 4959500 840 5.0 4959507 410 5.0 4959507 N/A Total Antimony (Sb) ug/L <1.0 1.0 4959500 <1.0 1.0 4959507 <1.0 1.0 4959507 N/A Total Arsenic (As) ug/L 1.4 1.0 4959500 15 1.0 4959507 8.1 1.0 4959507 N/A Total Barium (Ba) ug/L 35 1.0 4959500 15 1.0 4959507 8.1 1.0 4959507 N/A	Nitrate + Nitrite (N)	mg/L	<0.050	0.050	4962343	<0.050	0.050	4962343	0.081	0.050	4962343	N/A
Orthophosphate (P) mg/L 0.016 0.010 4962341 0.032 0.010 4962341 0.040 0.010 4962341 N/A pH pH 5.18 N/A 4962127 6.72 N/A 4962127 5.98 N/A 4962125 N/A Reactive Silica (SiO2) mg/L 4.0 0.50 4962331 5.2 0.50 4962331 2.8 0.50 4962331 N/A Dissolved Sulphate (SO4) mg/L <2.0	Nitrite (N)	mg/L	<0.010	0.010	4962344	<0.010	0.010	4962344	<0.010	0.010	4962344	N/A
pH pH 5.18 N/A 4962127 6.72 N/A 4962127 5.98 N/A 4962125 N/A Reactive Silica (SiO2) mg/L 4.0 0.50 4962331 5.2 0.50 4962331 2.8 0.50 4962331 N/A Dissolved Sulphate (SO4) mg/L <2.0	Total Organic Carbon (C)	mg/L	20 (1)	5.0	4959696	34 (1)	5.0	4959696	22 (1)	5.0	4959696	N/A
Reactive Silica (SiO2) mg/L 4.0 0.50 4962331 5.2 0.50 4962331 2.8 0.50 4962331 N/A Dissolved Sulphate (SO4) mg/L <2.0 2.0 4962327 3.3 2.0 4962327 <2.0 2.0 4962327 N/A Turbidity NTU 330 1.0 4962155 25 0.10 4962155 2.7 0.10 4962159 0.10 Conductivity uS/cm 88 1.0 4962128 240 1.0 4962128 82 1.0 4962126 N/A Metals Total Aluminum (Al) ug/L 2200 5.0 4959500 840 5.0 4959507 410 5.0 4959507 N/A Total Antimony (Sb) ug/L <1.0 1.0 4959500 <1.0 1.0 4959507 <1.0 1.0 4959507 N/A Total Arsenic (As) ug/L 1.4 1.0 4959500 2.3 1.0 4959507 8.1 1.0 4959507 N/A Total Barium (Ba) ug/L 35 1.0 4959500 15 1.0 4959507 8.1 1.0 4959507 N/A	Orthophosphate (P)	mg/L	0.016	0.010	4962341	0.032	0.010	4962341	0.040	0.010	4962341	N/A
Dissolved Sulphate (SO4) mg/L <2.0 2.0 4962327 3.3 2.0 4962327 <2.0 2.0 4962327 N/A Turbidity NTU 330 1.0 4962155 25 0.10 4962155 2.7 0.10 4962159 0.10 Conductivity uS/cm 88 1.0 4962128 240 1.0 4962128 82 1.0 4962126 N/A Metals Total Aluminum (Al) ug/L 2200 5.0 4959500 840 5.0 4959507 410 5.0 4959507 N/A Total Antimony (Sb) ug/L <1.0 1.0 4959500 <1.0 1.0 4959507 <1.0 1.0 4959507 N/A Total Arsenic (As) ug/L 1.4 1.0 4959500 2.3 1.0 4959507 8.1 1.0 4959507 N/A Total Barium (Ba) ug/L 35 1.0 4959500 15 1.0 4959507 8.1 1.0 4959507 N/A	рН	рН	5.18	N/A	4962127	6.72	N/A	4962127	5.98	N/A	4962125	N/A
Turbidity NTU 330 1.0 4962155 25 0.10 4962155 2.7 0.10 4962159 0.10 Conductivity uS/cm 88 1.0 4962128 240 1.0 4962128 82 1.0 4962126 N/A Metals Total Aluminum (Al) ug/L 2200 5.0 4959500 840 5.0 4959507 410 5.0 4959507 N/A Total Antimony (Sb) ug/L <1.0 1.0 4959500 <1.0 1.0 4959507 <1.0 1.0 4959507 N/A Total Arsenic (As) ug/L 1.4 1.0 4959500 2.3 1.0 4959507 8.1 1.0 4959507 N/A Total Barium (Ba) ug/L 35 1.0 4959500 15 1.0 4959507 8.1 1.0 4959507 N/A	Reactive Silica (SiO2)	mg/L	4.0	0.50	4962331	5.2	0.50	4962331	2.8	0.50	4962331	N/A
Conductivity uS/cm 88 1.0 4962128 240 1.0 4962128 82 1.0 4962126 N/A Metals Total Aluminum (Al) ug/L 2200 5.0 4959500 840 5.0 4959507 410 5.0 4959507 N/A Total Antimony (Sb) ug/L <1.0 1.0 4959500 <1.0 1.0 4959507 <1.0 1.0 4959507 N/A Total Arsenic (As) ug/L 1.4 1.0 4959500 2.3 1.0 4959507 8.1 1.0 4959507 N/A Total Barium (Ba) ug/L 35 1.0 4959500 15 1.0 4959507 8.1 1.0 4959507 N/A	Dissolved Sulphate (SO4)	mg/L	<2.0	2.0	4962327	3.3	2.0	4962327	<2.0	2.0	4962327	N/A
Metals Total Aluminum (Al) ug/L 2200 5.0 4959500 840 5.0 4959507 410 5.0 4959507 N/A Total Antimony (Sb) ug/L <1.0	Turbidity	NTU	330	1.0	4962155	25	0.10	4962155	2.7	0.10	4962159	0.10
Total Aluminum (Al) ug/L 2200 5.0 4959500 840 5.0 4959507 410 5.0 4959507 N/A Total Antimony (Sb) ug/L <1.0	Conductivity	uS/cm	88	1.0	4962128	240	1.0	4962128	82	1.0	4962126	N/A
Total Antimony (Sb)	Metals			-		•			•			
Total Arsenic (As) ug/L 1.4 1.0 4959500 2.3 1.0 4959507 1.3 1.0 4959507 N/A Total Barium (Ba) ug/L 35 1.0 4959500 15 1.0 4959507 8.1 1.0 4959507 N/A	Total Aluminum (Al)	ug/L	2200	5.0	4959500	840	5.0	4959507	410	5.0	4959507	N/A
Total Barium (Ba) ug/L 35 1.0 4959500 15 1.0 4959507 8.1 1.0 4959507 N/A	Total Antimony (Sb)	ug/L	<1.0	1.0	4959500	<1.0	1.0	4959507	<1.0	1.0	4959507	N/A
	Total Arsenic (As)	ug/L	1.4	1.0	4959500	2.3	1.0	4959507	1.3	1.0	4959507	N/A
Total Beryllium (Be)	Total Barium (Ba)	ug/L	35	1.0	4959500	15	1.0	4959507	8.1	1.0	4959507	N/A
	Total Beryllium (Be)	ug/L	<1.0	1.0	4959500	<1.0	1.0	4959507	<1.0	1.0	4959507	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

(1) Elevated reporting limit due to sample matrix.

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Your P.O. #: A08530 Sampler Initials: LL

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Maxxam ID		EHA239			EHA240			EHA241			
Sampling Date		2017/04/25			2017/04/25			2017/04/25			
COC Number		606952-01-01			606952-01-01			606952-01-01			
	UNITS	P1B	RDL	QC Batch	P2A	RDL	QC Batch	P2B	RDL	QC Batch	MDL
Total Bismuth (Bi)	ug/L	<2.0	2.0	4959500	<2.0	2.0	4959507	<2.0	2.0	4959507	N/A
Total Boron (B)	ug/L	<50	50	4959500	<50	50	4959507	<50	50	4959507	N/A
Total Cadmium (Cd)	ug/L	0.24	0.010	4959500	0.060	0.010	4959507	0.046	0.010	4959507	N/A
Total Calcium (Ca)	ug/L	3000	100	4959500	15000	100	4959507	2900	100	4959507	N/A
Total Chromium (Cr)	ug/L	2.6	1.0	4959500	2.5	1.0	4959507	1.5	1.0	4959507	N/A
Total Cobalt (Co)	ug/L	2.2	0.40	4959500	3.2	0.40	4959507	0.48	0.40	4959507	N/A
Total Copper (Cu)	ug/L	6.9	2.0	4959500	5.4	2.0	4959507	4.2	2.0	4959507	N/A
Total Iron (Fe)	ug/L	4200	50	4959500	10000	50	4959507	2000	50	4959507	N/A
Total Lead (Pb)	ug/L	7.5	0.50	4959500	1.7	0.50	4959507	0.97	0.50	4959507	N/A
Total Magnesium (Mg)	ug/L	2300	100	4959500	4100	100	4959507	1200	100	4959507	N/A
Total Manganese (Mn)	ug/L	52	2.0	4959500	540	2.0	4959507	69	2.0	4959507	N/A
Total Molybdenum (Mo)	ug/L	<2.0	2.0	4959500	3.5	2.0	4959507	<2.0	2.0	4959507	N/A
Total Nickel (Ni)	ug/L	5.1	2.0	4959500	3.4	2.0	4959507	<2.0	2.0	4959507	N/A
Total Phosphorus (P)	ug/L	1800	100	4959500	290	100	4959507	130	100	4959507	N/A
Total Potassium (K)	ug/L	2000	100	4959500	15000	100	4959507	3500	100	4959507	N/A
Total Selenium (Se)	ug/L	<1.0	1.0	4959500	<1.0	1.0	4959507	<1.0	1.0	4959507	N/A
Total Silver (Ag)	ug/L	<0.10	0.10	4959500	<0.10	0.10	4959507	<0.10	0.10	4959507	N/A
Total Sodium (Na)	ug/L	9700	100	4959500	20000	100	4959507	8900	100	4959507	N/A
Total Strontium (Sr)	ug/L	29	2.0	4959500	63	2.0	4959507	17	2.0	4959507	N/A
Total Thallium (TI)	ug/L	<0.10	0.10	4959500	<0.10	0.10	4959507	<0.10	0.10	4959507	N/A
Total Tin (Sn)	ug/L	<2.0	2.0	4959500	<2.0	2.0	4959507	<2.0	2.0	4959507	N/A
Total Titanium (Ti)	ug/L	27	2.0	4959500	20	2.0	4959507	12	2.0	4959507	N/A
Total Uranium (U)	ug/L	0.12	0.10	4959500	<0.10	0.10	4959507	<0.10	0.10	4959507	N/A
Total Vanadium (V)	ug/L	2.7	2.0	4959500	3.1	2.0	4959507	<2.0	2.0	4959507	N/A
Total Zinc (Zn)	ug/L	19	5.0	4959500	12	5.0	4959507	12	5.0	4959507	N/A

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Your P.O. #: A08530 Sampler Initials: LL

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Maxxam ID		EHA242			EHA243			
Sampling Date		2017/04/25			2017/04/25			
COC Number		606952-01-01			606952-01-01			
	UNITS	Р3	RDL	QC Batch	BACK2	RDL	QC Batch	MDL
Calculated Parameters								
Anion Sum	me/L	0.770	N/A	4957617	0.640	N/A	4957617	N/A
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	10	1.0	4957614	<1.0	1.0	4957614	0.20
Calculated TDS	mg/L	95	1.0	4957610	43	1.0	4957610	0.20
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	4957614	<1.0	1.0	4957614	0.20
Cation Sum	me/L	3.02	N/A	4957617	0.750	N/A	4957617	N/A
Hardness (CaCO3)	mg/L	88	1.0	4957615	11	1.0	4957615	1.0
lon Balance (% Difference)	%	59.4	N/A	4957616	7.91	N/A	4957616	N/A
Langelier Index (@ 20C)	N/A	-2.92		4957608	NC		4957608	
Langelier Index (@ 4C)	N/A	-3.17		4957609	NC		4957609	
Nitrate (N)	mg/L	<0.050	0.050	4957618	<0.050	0.050	4957618	N/A
Saturation pH (@ 20C)	N/A	8.93		4957608	NC		4957608	
Saturation pH (@ 4C)	N/A	9.18		4957609	NC		4957609	
Inorganics	•	•	-	•	•		•	
Total Alkalinity (Total as CaCO3)	mg/L	10	5.0	4962307	<5.0	5.0	4962307	N/A
Total Ammonia-N	mg/L	0.15	0.050	4973879	<0.050	0.050	4972947	0.0080
Dissolved Chloride (Cl)	mg/L	18	1.0	4962319	21	1.0	4962319	N/A
Colour	TCU	360 (1)	130	4962336	130 (1)	25	4962336	N/A
Nitrate + Nitrite (N)	mg/L	<0.050	0.050	4962343	<0.050	0.050	4962343	N/A
Nitrite (N)	mg/L	<0.010	0.010	4962344	<0.010	0.010	4962344	N/A
Total Organic Carbon (C)	mg/L	<50 (2)	50	4959696	11	0.50	4959696	N/A
Orthophosphate (P)	mg/L	0.031	0.010	4962341	<0.010	0.010	4962341	N/A
рН	рН	6.01	N/A	4962127	6.16	N/A	4962127	N/A
Reactive Silica (SiO2)	mg/L	1.2	0.50	4962331	2.9	0.50	4962331	N/A
Dissolved Sulphate (SO4)	mg/L	2.9	2.0	4962327	2.2	2.0	4962327	N/A
Turbidity	NTU	390	1.0	4962155	0.75	0.10	4962155	0.10
Conductivity	uS/cm	91	1.0	4962128	88	1.0	4962128	N/A
Metals								
Total Aluminum (Al)	ug/L	14000	5.0	4959507	310	5.0	4959500	N/A
Total Antimony (Sb)	ug/L	<1.0	1.0	4959507	<1.0	1.0	4959500	N/A
Total Arsenic (As)	ug/L	12	1.0	4959507	<1.0	1.0	4959500	N/A
Total Barium (Ba)	ug/L	160	1.0	4959507	7.2	1.0	4959500	N/A
PDI - Papartable Detection Limit								

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

- (1) Elevated reporting limit due to sample matrix.
- (2) Reporting limit was increased due to turbidity.

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Your P.O. #: A08530 Sampler Initials: LL

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Maxxam ID		EHA242			EHA243			
Sampling Date		2017/04/25			2017/04/25			
COC Number		606952-01-01			606952-01-01			
	UNITS	Р3	RDL	QC Batch	BACK2	RDL	QC Batch	MDL
Total Beryllium (Be)	ug/L	<1.0	1.0	4959507	<1.0	1.0	4959500	N/A
Total Bismuth (Bi)	ug/L	<2.0	2.0	4959507	<2.0	2.0	4959500	N/A
Total Boron (B)	ug/L	<50	50	4959507	<50	50	4959500	N/A
Total Cadmium (Cd)	ug/L	0.81	0.010	4959507	0.016	0.010	4959500	N/A
Total Calcium (Ca)	ug/L	25000	100	4959507	2000	100	4959500	N/A
Total Chromium (Cr)	ug/L	13	1.0	4959507	1.5	1.0	4959500	N/A
Total Cobalt (Co)	ug/L	6.0	0.40	4959507	<0.40	0.40	4959500	N/A
Total Copper (Cu)	ug/L	35	2.0	4959507	<2.0	2.0	4959500	N/A
Total Iron (Fe)	ug/L	18000	50	4959507	340	50	4959500	N/A
Total Lead (Pb)	ug/L	47	0.50	4959507	<0.50	0.50	4959500	N/A
Total Magnesium (Mg)	ug/L	6200	100	4959507	1400	100	4959500	N/A
Total Manganese (Mn)	ug/L	380	2.0	4959507	9.5	2.0	4959500	N/A
Total Molybdenum (Mo)	ug/L	4.6	2.0	4959507	<2.0	2.0	4959500	N/A
Total Nickel (Ni)	ug/L	20	2.0	4959507	<2.0	2.0	4959500	N/A
Total Phosphorus (P)	ug/L	5200	100	4959507	<100	100	4959500	N/A
Total Potassium (K)	ug/L	7600	100	4959507	1100	100	4959500	N/A
Total Selenium (Se)	ug/L	2.6	1.0	4959507	<1.0	1.0	4959500	N/A
Total Silver (Ag)	ug/L	0.61	0.10	4959507	<0.10	0.10	4959500	N/A
Total Sodium (Na)	ug/L	9300	100	4959507	11000	100	4959500	N/A
Total Strontium (Sr)	ug/L	150	2.0	4959507	13	2.0	4959500	N/A
Total Thallium (TI)	ug/L	<0.10	0.10	4959507	<0.10	0.10	4959500	N/A
Total Tin (Sn)	ug/L	<2.0	2.0	4959507	<2.0	2.0	4959500	N/A
Total Titanium (Ti)	ug/L	230	2.0	4959507	6.2	2.0	4959500	N/A
Total Uranium (U)	ug/L	1.2	0.10	4959507	<0.10	0.10	4959500	N/A
Total Vanadium (V)	ug/L	16	2.0	4959507	<2.0	2.0	4959500	N/A
Total Zinc (Zn)	ug/L	94	5.0	4959507	<5.0	5.0	4959500	N/A

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Your P.O. #: A08530 Sampler Initials: LL

RESULTS OF ANALYSES OF WATER

Maxxam ID		EHA221		EHA222			EHA223		EHA233			
Sampling Date		2017/04/26		2017/04/25			2017/04/25		2017/04/26			
COC Number		606952-01-01		606952-01-01			606952-01-01		606952-01-01			
	UNITS	SW1	RDL	SW2	RDL	QC Batch	SW3	RDL	SW14	RDL	QC Batch	MDL
Inorganics												
Total Suspended Solids	mg/L	28	5.0	<2.0	2.0	4962153	370	5.0	25	2.0	4962351	N/A

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

N/A = Not Applicable

Maxxam ID		EHA237	EHA243			
Sampling Date		2017/04/25	2017/04/25			
COC Number		606952-01-01	606952-01-01			
	UNITS	SW-DUP2	BACK2	RDL	QC Batch	MDL
Inorganics						
Total Suspended Solids	mg/L	<1.0	<1.0	1.0	4962351	N/A
RDL = Reportable Detection L	imit					

QC Batch = Quality Control Batch

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Your P.O. #: A08530 Sampler Initials: LL

MERCURY BY COLD VAPOUR AA (WATER)

Maxxam ID		EHA221	EHA222	EHA223	EHA224	EHA225	EHA226			
Sampling Date		2017/04/26	2017/04/25	2017/04/25	2017/04/26	2017/04/25	2017/04/26			
COC Number		606952-01-01	606952-01-01	606952-01-01	606952-01-01	606952-01-01	606952-01-01			
	UNITS	SW1	SW2	SW3	SW4	SW5	SW6	RDL	QC Batch	MDL
Metals										
Total Mercury (Hg)	ug/L	0.028	0.015	0.033	0.015	0.017	<0.013	0.013	4959501	N/A
RDL = Reportable Detection L		-	-							

QC Batch = Quality Control Batch

N/A = Not Applicable

Maxxam ID		EHA227	EHA228	EHA228	EHA229	EHA230	EHA231			
Sampling Date		2017/04/25	2017/04/25	2017/04/25	2017/04/25	2017/04/25	2017/04/26			
COC Number		606952-01-01	606952-01-01	606952-01-01	606952-01-01	606952-01-01	606952-01-01			
	UNITS	SW7	SW8	SW8 Lab-Dup	SW9	SW11	SW12	RDL	QC Batch	MDL
Metals										
Total Mercury (Hg)	ug/L	0.013	0.013	<0.013	0.24	0.030	0.055	0.013	4959501	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

Maxxam ID		EHA232	EHA233	EHA234	EHA235	EHA236	EHA237			
Sampling Date		2017/04/25	2017/04/26	2017/04/26	2017/04/26	2017/04/25	2017/04/25			
COC Number		606952-01-01	606952-01-01	606952-01-01	606952-01-01	606952-01-01	606952-01-01			
	UNITS	SW13	SW14	SW15	SW16	SW-DUP1	SW-DUP2	RDL	QC Batch	MDI
	OINITS	24412	30014	24412	34410	JVV-DOF1	344-DOF2	NDL	QC Battii	IVIDE
Metals	DINITS	30013	30014	30013	30010	300-0011	300-0072	KDL	QC Batch	IVIDE

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Maxxam ID		EHA238	EHA239	EHA240		EHA241	EHA242			
Sampling Date		2017/04/25	2017/04/25	2017/04/25		2017/04/25	2017/04/25			
COC Number		606952-01-01	606952-01-01	606952-01-01		606952-01-01	606952-01-01			
	UNITS	P1A	P1B	P2A	QC Batch	P2B	Р3	RDL	QC Batch	MDL
Metals	UNITS	P1A	P1B	P2A	QC Batch	P2B	Р3	RDL	QC Batch	MDL

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Your P.O. #: A08530 Sampler Initials: LL

MERCURY BY COLD VAPOUR AA (WATER)

Maxxam ID		EHA243	EHA243			
Sampling Date		2017/04/25	2017/04/25			
COC Number		606952-01-01	606952-01-01			
	UNITS	BACK2	BACK2 Lab-Dup	RDL	QC Batch	MDL
Metals		•				•
Total Mercury (Hg)	ug/L	<0.013	<0.013	0.013	4959901	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Your P.O. #: A08530 Sampler Initials: LL

ELEMENTS BY ICP/MS (WATER)

Maxxam ID		EHA221	EHA222	EHA223	EHA233	EHA237			
Sampling Date		2017/04/26	2017/04/25	2017/04/25	2017/04/26	2017/04/25			
COC Number		606952-01-01	606952-01-01	606952-01-01	606952-01-01	606952-01-01			
	UNITS	SW1	SW2	SW3	SW14	SW-DUP2	RDL	QC Batch	MDL
Metals	•	•	•	•	•	-			
Dissolved Aluminum (Al)	ug/L	590	380	610	360	310	5.0	4962508	N/A
Dissolved Antimony (Sb)	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	4962508	N/A
Dissolved Arsenic (As)	ug/L	1.1	<1.0	2.0	<1.0	<1.0	1.0	4962508	N/A
Dissolved Barium (Ba)	ug/L	2.7	3.0	8.7	4.5	6.7	1.0	4962508	N/A
Dissolved Beryllium (Be)	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	4962508	N/A
Dissolved Bismuth (Bi)	ug/L	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	4962508	N/A
Dissolved Boron (B)	ug/L	<50	<50	<50	<50	<50	50	4962508	N/A
Dissolved Cadmium (Cd)	ug/L	0.035	0.029	0.037	0.017	0.019	0.010	4962508	N/A
Dissolved Calcium (Ca)	ug/L	1000	1500	7200	2900	2100	100	4962508	N/A
Dissolved Chromium (Cr)	ug/L	<1.0	<1.0	2.5	1.7	<1.0	1.0	4962508	N/A
Dissolved Cobalt (Co)	ug/L	<0.40	<0.40	1.3	<0.40	<0.40	0.40	4962508	N/A
Dissolved Copper (Cu)	ug/L	<2.0	<2.0	3.0	<2.0	<2.0	2.0	4962508	N/A
Dissolved Iron (Fe)	ug/L	550	290	2100	530	330	50	4962508	N/A
Dissolved Lead (Pb)	ug/L	2.9	1.4	0.98	0.68	<0.50	0.50	4962508	N/A
Dissolved Magnesium (Mg)	ug/L	560	1100	2200	1500	1400	100	4962508	N/A
Dissolved Manganese (Mn)	ug/L	15	15	230	11	9.1	2.0	4962508	N/A
Dissolved Molybdenum (Mo)	ug/L	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	4962508	N/A
Dissolved Nickel (Ni)	ug/L	<2.0	<2.0	3.2	<2.0	<2.0	2.0	4962508	N/A
Dissolved Phosphorus (P)	ug/L	<100	<100	<100	<100	<100	100	4962508	N/A
Dissolved Potassium (K)	ug/L	4100	1500	7500	2600	1100	100	4962508	N/A
Dissolved Selenium (Se)	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	4962508	N/A
Dissolved Silver (Ag)	ug/L	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	4962508	N/A
Dissolved Sodium (Na)	ug/L	11000	8200	12000	21000	11000	100	4962508	N/A
Dissolved Strontium (Sr)	ug/L	7.2	10	34	20	13	2.0	4962508	N/A
Dissolved Thallium (TI)	ug/L	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	4962508	N/A
Dissolved Tin (Sn)	ug/L	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	4962508	N/A
Dissolved Titanium (Ti)	ug/L	7.9	3.8	10	5.1	5.2	2.0	4962508	N/A
Dissolved Uranium (U)	ug/L	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	4962508	N/A
Dissolved Vanadium (V)	ug/L	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	4962508	N/A
Dissolved Zinc (Zn)	ug/L	9.1	8.0	32	6.4	5.8	5.0	4962508	N/A
PDI - Papartable Detection Li	mit	<u> </u>							

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Your P.O. #: A08530 Sampler Initials: LL

ELEMENTS BY ICP/MS (WATER)

			1	I	1
Maxxam ID		EHA243			
Sampling Date		2017/04/25			
COC Number		606952-01-01			
	UNITS	BACK2	RDL	QC Batch	MDI
Metals					
Dissolved Aluminum (Al)	ug/L	310	5.0	4962508	N/A
Dissolved Antimony (Sb)	ug/L	<1.0	1.0	4962508	N/A
Dissolved Arsenic (As)	ug/L	<1.0	1.0	4962508	N/A
Dissolved Barium (Ba)	ug/L	6.7	1.0	4962508	N/A
Dissolved Beryllium (Be)	ug/L	<1.0	1.0	4962508	N/A
Dissolved Bismuth (Bi)	ug/L	<2.0	2.0	4962508	N/A
Dissolved Boron (B)	ug/L	<50	50	4962508	N/A
Dissolved Cadmium (Cd)	ug/L	0.015	0.010	4962508	N/A
Dissolved Calcium (Ca)	ug/L	2100	100	4962508	N/A
Dissolved Chromium (Cr)	ug/L	<1.0	1.0	4962508	N/A
Dissolved Cobalt (Co)	ug/L	<0.40	0.40	4962508	N/A
Dissolved Copper (Cu)	ug/L	<2.0	2.0	4962508	N/A
Dissolved Iron (Fe)	ug/L	330	50	4962508	N/A
Dissolved Lead (Pb)	ug/L	<0.50	0.50	4962508	N/A
Dissolved Magnesium (Mg)	ug/L	1400	100	4962508	N/A
Dissolved Manganese (Mn)	ug/L	8.8	2.0	4962508	N/A
Dissolved Molybdenum (Mo)	ug/L	<2.0	2.0	4962508	N/A
Dissolved Nickel (Ni)	ug/L	<2.0	2.0	4962508	N/A
Dissolved Phosphorus (P)	ug/L	<100	100	4962508	N/A
Dissolved Potassium (K)	ug/L	1100	100	4962508	N/A
Dissolved Selenium (Se)	ug/L	<1.0	1.0	4962508	N/A
Dissolved Silver (Ag)	ug/L	<0.10	0.10	4962508	N/A
Dissolved Sodium (Na)	ug/L	11000	100	4962508	N/A
Dissolved Strontium (Sr)	ug/L	14	2.0	4962508	N/A
Dissolved Thallium (TI)	ug/L	<0.10	0.10	4962508	N/A
Dissolved Tin (Sn)	ug/L	<2.0	2.0	4962508	N/A
Dissolved Titanium (Ti)	ug/L	5.2	2.0	4962508	N/A
Dissolved Uranium (U)	ug/L	<0.10	0.10	4962508	N/A
Dissolved Vanadium (V)	ug/L	<2.0	2.0	4962508	N/A
Dissolved Zinc (Zn)	ug/L	6.2	5.0	4962508	N/A
RDL = Reportable Detection Li					
QC Batch = Quality Control Ba	tch				

QC Batch = Quality Control Batch

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Your P.O. #: A08530 Sampler Initials: LL

TEST SUMMARY

Maxxam ID: EHA221 Sample ID: SW1 Matrix: Water

Collected: 2017/04/26

Shipped:

Received: 2017/04/26

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4957614	N/A	2017/05/01	Automated Statchk
Alkalinity	KONE	4962261	N/A	2017/05/02	Nancy Rogers
Chloride	KONE	4962263	N/A	2017/05/02	Nancy Rogers
Colour	KONE	4962279	N/A	2017/05/03	Nancy Rogers
Conductance - water	AT	4962126	N/A	2017/05/01	Julia McGovern
Hardness (calculated as CaCO3)		4957615	N/A	2017/05/01	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4959501	2017/04/28	2017/05/01	Arlene Rossiter
Metals Water Diss. MS (as rec'd)	CICP/MS	4962508	N/A	2017/05/02	Bryon Angevine
Metals Water Total MS	CICP/MS	4959500	2017/04/28	2017/04/29	Bryon Angevine
Ion Balance (% Difference)	CALC	4957616	N/A	2017/05/08	Automated Statchk
Anion and Cation Sum	CALC	4957617	N/A	2017/05/08	Automated Statchk
Total Ammonia-N	LACH/NH4	4973137	N/A	2017/05/08	Charles Opoku-Ware
Nitrogen - Nitrate + Nitrite	KONE	4962287	N/A	2017/05/02	Nancy Rogers
Nitrogen - Nitrite	KONE	4962292	N/A	2017/05/02	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4957618	N/A	2017/05/03	Automated Statchk
рН	AT	4962125	N/A	2017/05/01	Julia McGovern
Phosphorus - ortho	KONE	4962282	N/A	2017/05/02	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4957608	N/A	2017/05/03	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4957609	N/A	2017/05/03	Automated Statchk
Reactive Silica	KONE	4962271	N/A	2017/05/02	Nancy Rogers
Sulphate	KONE	4962266	N/A	2017/05/03	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4957610	N/A	2017/05/08	Automated Statchk
Organic carbon - Total (TOC)	TECH	4959592	N/A	2017/04/28	Soraya Merchant
Total Suspended Solids	BAL	4962153	2017/05/01	2017/05/03	Leslie Power
Turbidity	TURB	4962155	N/A	2017/05/01	Julia McGovern

Maxxam ID: EHA222 Sample ID: SW2
Matrix: Water

Collected: 2017/04/25

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4957614	N/A	2017/05/01	Automated Statchk
Alkalinity	KONE	4962261	N/A	2017/05/02	Nancy Rogers
Chloride	KONE	4962263	N/A	2017/05/02	Nancy Rogers
Colour	KONE	4962279	N/A	2017/05/03	Nancy Rogers
Conductance - water	AT	4962128	N/A	2017/05/01	Julia McGovern
Hardness (calculated as CaCO3)		4957615	N/A	2017/05/02	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4959501	2017/04/28	2017/05/01	Arlene Rossiter
Metals Water Diss. MS (as rec'd)	CICP/MS	4962508	N/A	2017/05/02	Bryon Angevine
Metals Water Total MS	CICP/MS	4959507	2017/04/28	2017/05/01	Bryon Angevine
Ion Balance (% Difference)	CALC	4957616	N/A	2017/05/09	Automated Statchk
Anion and Cation Sum	CALC	4957617	N/A	2017/05/09	Automated Statchk
Total Ammonia-N	LACH/NH4	4973879	N/A	2017/05/09	Charles Opoku-Ware

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Your P.O. #: A08530 Sampler Initials: LL

TEST SUMMARY

Maxxam ID: EHA222 Sample ID: SW2 Matrix: Water

Collected:

2017/04/25

Shipped:

Received: 2017/04/26

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Nitrogen - Nitrate + Nitrite	KONE	4962287	N/A	2017/05/02	Nancy Rogers
Nitrogen - Nitrite	KONE	4962292	N/A	2017/05/02	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4957618	N/A	2017/05/03	Automated Statchk
рН	AT	4962127	N/A	2017/05/01	Julia McGovern
Phosphorus - ortho	KONE	4962282	N/A	2017/05/02	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4957608	N/A	2017/05/03	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4957609	N/A	2017/05/03	Automated Statchk
Reactive Silica	KONE	4962271	N/A	2017/05/02	Nancy Rogers
Sulphate	KONE	4962266	N/A	2017/05/03	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4957610	N/A	2017/05/09	Automated Statchk
Organic carbon - Total (TOC)	TECH	4959592	N/A	2017/04/28	Soraya Merchant
Total Suspended Solids	BAL	4962153	2017/05/01	2017/05/03	Leslie Power
Turbidity	TURB	4962155	N/A	2017/05/01	Julia McGovern

Maxxam ID: EHA223 Sample ID: SW3

Matrix: Water

Collected:

2017/04/25

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4957614	N/A	2017/05/01	Automated Statchk
Alkalinity	KONE	4962261	N/A	2017/05/02	Nancy Rogers
Chloride	KONE	4962263	N/A	2017/05/02	Nancy Rogers
Colour	KONE	4962279	N/A	2017/05/03	Nancy Rogers
Conductance - water	AT	4962126	N/A	2017/05/01	Julia McGovern
Hardness (calculated as CaCO3)		4957615	N/A	2017/05/01	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4959501	2017/04/28	2017/05/01	Arlene Rossiter
Metals Water Diss. MS (as rec'd)	CICP/MS	4962508	N/A	2017/05/02	Bryon Angevine
Metals Water Total MS	CICP/MS	4959500	2017/04/28	2017/04/29	Bryon Angevine
Ion Balance (% Difference)	CALC	4957616	N/A	2017/05/08	Automated Statchk
Anion and Cation Sum	CALC	4957617	N/A	2017/05/08	Automated Statchk
Total Ammonia-N	LACH/NH4	4973133	N/A	2017/05/08	Charles Opoku-Ware
Nitrogen - Nitrate + Nitrite	KONE	4962287	N/A	2017/05/02	Nancy Rogers
Nitrogen - Nitrite	KONE	4962292	N/A	2017/05/02	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4957618	N/A	2017/05/03	Automated Statchk
рН	AT	4962125	N/A	2017/05/01	Julia McGovern
Phosphorus - ortho	KONE	4962282	N/A	2017/05/02	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4957608	N/A	2017/05/08	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4957609	N/A	2017/05/08	Automated Statchk
Reactive Silica	KONE	4962271	N/A	2017/05/02	Nancy Rogers
Sulphate	KONE	4962266	N/A	2017/05/03	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4957610	N/A	2017/05/08	Automated Statchk
Organic carbon - Total (TOC)	TECH	4959592	N/A	2017/04/28	Soraya Merchant
Total Suspended Solids	BAL	4962351	2017/05/01	2017/05/04	Leslie Power

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Your P.O. #: A08530 Sampler Initials: LL

TEST SUMMARY

Maxxam ID: EHA223

Collected:

2017/04/25

Sample ID: SW3 Matrix: Water Shipped:

Received: 2017/04/26

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Turbidity	TURB	4962155	N/A	2017/05/01	Iulia McGovern

Maxxam ID: EHA223 Dup

Collected: 2017/04/25

Sample ID: SW3 Matrix: Water Shipped:

Received: 2017/04/26

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Organic carbon - Total (TOC)	TECH	4959592	N/A	2017/04/28	Soraya Merchant

Maxxam ID: EHA224

Collected:

2017/04/26

Sample ID: SW4 Matrix: Water Shipped:

2017/04/26 Received:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4957614	N/A	2017/05/01	Automated Statchk
Alkalinity	KONE	4962261	N/A	2017/05/02	Nancy Rogers
Chloride	KONE	4962263	N/A	2017/05/02	Nancy Rogers
Colour	KONE	4962279	N/A	2017/05/03	Nancy Rogers
Conductance - water	AT	4962126	N/A	2017/05/01	Julia McGovern
Hardness (calculated as CaCO3)		4957615	N/A	2017/05/02	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4959501	2017/04/28	2017/05/01	Arlene Rossiter
Metals Water Total MS	CICP/MS	4959507	2017/04/28	2017/05/01	Bryon Angevine
Ion Balance (% Difference)	CALC	4957616	N/A	2017/05/08	Automated Statchk
Anion and Cation Sum	CALC	4957617	N/A	2017/05/08	Automated Statchk
Total Ammonia-N	LACH/NH4	4973133	N/A	2017/05/08	Charles Opoku-Ware
Nitrogen - Nitrate + Nitrite	KONE	4962287	N/A	2017/05/02	Nancy Rogers
Nitrogen - Nitrite	KONE	4962292	N/A	2017/05/02	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4957618	N/A	2017/05/03	Automated Statchk
рН	AT	4962125	N/A	2017/05/01	Julia McGovern
Phosphorus - ortho	KONE	4962282	N/A	2017/05/02	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4957608	N/A	2017/05/08	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4957609	N/A	2017/05/08	Automated Statchk
Reactive Silica	KONE	4962271	N/A	2017/05/02	Nancy Rogers
Sulphate	KONE	4962266	N/A	2017/05/03	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4957610	N/A	2017/05/08	Automated Statchk
Organic carbon - Total (TOC)	TECH	4959592	N/A	2017/04/28	Soraya Merchant
Turbidity	TURB	4962155	N/A	2017/05/01	Julia McGovern

Maxxam ID: EHA225 Sample ID: SW5

Matrix: Water

2017/04/25 Collected: Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4957614	N/A	2017/05/01	Automated Statchk

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Your P.O. #: A08530 Sampler Initials: LL

TEST SUMMARY

Maxxam ID: EHA225 Sample ID: SW5 Matrix: Water

Collected:

2017/04/25

Shipped: Received:

2017/04/26

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	KONE	4962261	N/A	2017/05/02	Nancy Rogers
Chloride	KONE	4962263	N/A	2017/05/02	Nancy Rogers
Colour	KONE	4962279	N/A	2017/05/03	Nancy Rogers
Conductance - water	AT	4962126	N/A	2017/05/01	Julia McGovern
Hardness (calculated as CaCO3)		4957615	N/A	2017/05/01	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4959501	2017/04/28	2017/05/01	Arlene Rossiter
Metals Water Total MS	CICP/MS	4959500	2017/04/28	2017/04/29	Bryon Angevine
Ion Balance (% Difference)	CALC	4957616	N/A	2017/05/08	Automated Statchk
Anion and Cation Sum	CALC	4957617	N/A	2017/05/08	Automated Statchk
Total Ammonia-N	LACH/NH4	4973137	N/A	2017/05/08	Charles Opoku-Ware
Nitrogen - Nitrate + Nitrite	KONE	4962287	N/A	2017/05/02	Nancy Rogers
Nitrogen - Nitrite	KONE	4962292	N/A	2017/05/02	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4957618	N/A	2017/05/03	Automated Statchk
рН	AT	4962125	N/A	2017/05/01	Julia McGovern
Phosphorus - ortho	KONE	4962282	N/A	2017/05/02	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4957608	N/A	2017/05/08	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4957609	N/A	2017/05/08	Automated Statchk
Reactive Silica	KONE	4962271	N/A	2017/05/02	Nancy Rogers
Sulphate	KONE	4962266	N/A	2017/05/03	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4957610	N/A	2017/05/08	Automated Statchk
Organic carbon - Total (TOC)	TECH	4959592	N/A	2017/04/28	Soraya Merchant
Turbidity	TURB	4962159	N/A	2017/05/01	Julia McGovern

Maxxam ID: EHA225 Dup Sample ID: SW5 Matrix: Water

Collected: Shipped:

2017/04/25

2017/04/26 Received:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Total Ammonia-N	LACH/NH4	4973137	N/A	2017/05/08	Charles Opoku-Ware

Maxxam ID: EHA226 Sample ID: SW6 Matrix: Water

Collected: 2017/04/26

Shipped:

2017/04/26 Received:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4957614	N/A	2017/05/01	Automated Statchk
Alkalinity	KONE	4962261	N/A	2017/05/02	Nancy Rogers
Chloride	KONE	4962263	N/A	2017/05/02	Nancy Rogers
Colour	KONE	4962279	N/A	2017/05/03	Nancy Rogers
Conductance - water	AT	4962128	N/A	2017/05/01	Julia McGovern
Hardness (calculated as CaCO3)		4957615	N/A	2017/05/02	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4959501	2017/04/28	2017/05/01	Arlene Rossiter
Metals Water Total MS	CICP/MS	4959507	2017/04/28	2017/05/01	Bryon Angevine

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Your P.O. #: A08530 Sampler Initials: LL

TEST SUMMARY

Maxxam ID: EHA226 Sample ID: SW6 Matrix: Water Collected:

2017/04/26

Shipped:

Received: 2017/04/26

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Ion Balance (% Difference)	CALC	4957616	N/A	2017/05/08	Automated Statchk
Anion and Cation Sum	CALC	4957617	N/A	2017/05/08	Automated Statchk
Total Ammonia-N	LACH/NH4	4973137	N/A	2017/05/08	Charles Opoku-Ware
Nitrogen - Nitrate + Nitrite	KONE	4962287	N/A	2017/05/02	Nancy Rogers
Nitrogen - Nitrite	KONE	4962292	N/A	2017/05/02	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4957618	N/A	2017/05/03	Automated Statchk
рН	AT	4962127	N/A	2017/05/01	Julia McGovern
Phosphorus - ortho	KONE	4962282	N/A	2017/05/02	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4957608	N/A	2017/05/08	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4957609	N/A	2017/05/08	Automated Statchk
Reactive Silica	KONE	4962271	N/A	2017/05/02	Nancy Rogers
Sulphate	KONE	4962266	N/A	2017/05/03	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4957610	N/A	2017/05/08	Automated Statchk
Organic carbon - Total (TOC)	TECH	4959592	N/A	2017/04/28	Soraya Merchant
Turbidity	TURB	4962159	N/A	2017/05/01	Julia McGovern

Maxxam ID: EHA227 Sample ID: SW7 Matrix: Water **Collected:** 2017/04/25

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4957614	N/A	2017/05/01	Automated Statchk
Alkalinity	KONE	4962261	N/A	2017/05/02	Nancy Rogers
Chloride	KONE	4962263	N/A	2017/05/02	Nancy Rogers
Colour	KONE	4962279	N/A	2017/05/03	Nancy Rogers
Conductance - water	AT	4962128	N/A	2017/05/01	Julia McGovern
Hardness (calculated as CaCO3)		4957615	N/A	2017/05/01	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4959501	2017/04/28	2017/05/01	Arlene Rossiter
Metals Water Total MS	CICP/MS	4959500	2017/04/28	2017/04/29	Bryon Angevine
Ion Balance (% Difference)	CALC	4957616	N/A	2017/05/08	Automated Statchk
Anion and Cation Sum	CALC	4957617	N/A	2017/05/08	Automated Statchk
Total Ammonia-N	LACH/NH4	4973137	N/A	2017/05/08	Charles Opoku-Ware
Nitrogen - Nitrate + Nitrite	KONE	4962287	N/A	2017/05/02	Nancy Rogers
Nitrogen - Nitrite	KONE	4962292	N/A	2017/05/02	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4957618	N/A	2017/05/03	Automated Statchk
pH	AT	4962127	N/A	2017/05/01	Julia McGovern
Phosphorus - ortho	KONE	4962282	N/A	2017/05/02	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4957608	N/A	2017/05/03	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4957609	N/A	2017/05/03	Automated Statchk
Reactive Silica	KONE	4962271	N/A	2017/05/02	Nancy Rogers
Sulphate	KONE	4962266	N/A	2017/05/03	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4957610	N/A	2017/05/08	Automated Statchk
Organic carbon - Total (TOC)	TECH	4959592	N/A	2017/04/28	Soraya Merchant

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Your P.O. #: A08530 Sampler Initials: LL

TEST SUMMARY

Maxxam ID: EHA227

Collected:

2017/04/25

Sample ID: SW7 Matrix: Water

Shipped: Received:

2017/04/26

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Turbidity	TURB	4962155	N/A	2017/05/01	Julia McGovern

Maxxam ID: EHA228

Collected:

2017/04/25

Sample ID: SW8 Matrix: Water Shipped:

Received: 2017/04/26

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4957614	N/A	2017/05/01	Automated Statchk
Alkalinity	KONE	4962261	N/A	2017/05/02	Nancy Rogers
Chloride	KONE	4962263	N/A	2017/05/02	Nancy Rogers
Colour	KONE	4962279	N/A	2017/05/03	Nancy Rogers
Conductance - water	AT	4962128	N/A	2017/05/01	Julia McGovern
Hardness (calculated as CaCO3)		4957615	N/A	2017/05/01	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4959501	2017/04/28	2017/05/01	Arlene Rossiter
Metals Water Total MS	CICP/MS	4959500	2017/04/28	2017/04/29	Bryon Angevine
Ion Balance (% Difference)	CALC	4957616	N/A	2017/05/08	Automated Statchk
Anion and Cation Sum	CALC	4957617	N/A	2017/05/08	Automated Statchk
Total Ammonia-N	LACH/NH4	4973137	N/A	2017/05/08	Charles Opoku-Ware
Nitrogen - Nitrate + Nitrite	KONE	4962287	N/A	2017/05/02	Nancy Rogers
Nitrogen - Nitrite	KONE	4962292	N/A	2017/05/02	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4957618	N/A	2017/05/03	Automated Statchk
рН	AT	4962127	N/A	2017/05/01	Julia McGovern
Phosphorus - ortho	KONE	4962282	N/A	2017/05/02	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4957608	N/A	2017/05/08	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4957609	N/A	2017/05/08	Automated Statchk
Reactive Silica	KONE	4962271	N/A	2017/05/02	Nancy Rogers
Sulphate	KONE	4962266	N/A	2017/05/03	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4957610	N/A	2017/05/08	Automated Statchk
Organic carbon - Total (TOC)	TECH	4959592	N/A	2017/04/28	Soraya Merchant
Turbidity	TURB	4962155	N/A	2017/05/01	Julia McGovern

Maxxam ID: EHA228 Dup

Collected: Shipped:

2017/04/25

Sample ID: SW8 Matrix: Water

Received:

2017/04/26

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Mercury - Total (CVAA,LL)	CV/AA	4959501	2017/04/28	2017/05/01	Arlene Rossiter

Maxxam ID: EHA229 Sample ID: SW9 Matrix: Water

Collected: Shipped:

2017/04/25

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4957614	N/A	2017/05/01	Automated Statchk

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Your P.O. #: A08530 Sampler Initials: LL

TEST SUMMARY

Maxxam ID: EHA229 Sample ID: SW9 Matrix: Water

Collected: 2017/04/25

Shipped:

Received: 2017/04/26

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	KONE	4962261	N/A	2017/05/02	Nancy Rogers
Chloride	KONE	4962263	N/A	2017/05/02	Nancy Rogers
Colour	KONE	4962279	N/A	2017/05/03	Nancy Rogers
Conductance - water	AT	4962128	N/A	2017/05/01	Julia McGovern
Hardness (calculated as CaCO3)		4957615	N/A	2017/05/01	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4959501	2017/04/28	2017/05/01	Arlene Rossiter
Metals Water Total MS	CICP/MS	4959500	2017/04/28	2017/04/29	Bryon Angevine
Ion Balance (% Difference)	CALC	4957616	N/A	2017/05/08	Automated Statchk
Anion and Cation Sum	CALC	4957617	N/A	2017/05/08	Automated Statchk
Total Ammonia-N	LACH/NH4	4973133	N/A	2017/05/08	Charles Opoku-Ware
Nitrogen - Nitrate + Nitrite	KONE	4962287	N/A	2017/05/02	Nancy Rogers
Nitrogen - Nitrite	KONE	4962292	N/A	2017/05/02	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4957618	N/A	2017/05/03	Automated Statchk
pH	AT	4962127	N/A	2017/05/01	Julia McGovern
Phosphorus - ortho	KONE	4962282	N/A	2017/05/02	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4957608	N/A	2017/05/08	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4957609	N/A	2017/05/08	Automated Statchk
Reactive Silica	KONE	4962271	N/A	2017/05/02	Nancy Rogers
Sulphate	KONE	4962266	N/A	2017/05/03	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4957610	N/A	2017/05/08	Automated Statchk
Organic carbon - Total (TOC)	TECH	4959592	N/A	2017/04/28	Soraya Merchant
Turbidity	TURB	4962155	N/A	2017/05/01	Julia McGovern

Maxxam ID: EHA230 Sample ID: SW11 Matrix: Water

Collected: 2017/04/25

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4957614	N/A	2017/05/01	Automated Statchk
Alkalinity	KONE	4962261	N/A	2017/05/02	Nancy Rogers
Chloride	KONE	4962263	N/A	2017/05/02	Nancy Rogers
Colour	KONE	4962279	N/A	2017/05/03	Nancy Rogers
Conductance - water	AT	4962128	N/A	2017/05/01	Julia McGovern
Hardness (calculated as CaCO3)		4957615	N/A	2017/05/01	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4959501	2017/04/28	2017/05/01	Arlene Rossiter
Metals Water Total MS	CICP/MS	4959500	2017/04/28	2017/04/29	Bryon Angevine
Ion Balance (% Difference)	CALC	4957616	N/A	2017/05/08	Automated Statchk
Anion and Cation Sum	CALC	4957617	N/A	2017/05/08	Automated Statchk
Total Ammonia-N	LACH/NH4	4972947	N/A	2017/05/08	Charles Opoku-Ware
Nitrogen - Nitrate + Nitrite	KONE	4962287	N/A	2017/05/02	Nancy Rogers
Nitrogen - Nitrite	KONE	4962292	N/A	2017/05/02	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4957618	N/A	2017/05/03	Automated Statchk
рН	AT	4962127	N/A	2017/05/01	Julia McGovern

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Your P.O. #: A08530 Sampler Initials: LL

TEST SUMMARY

Maxxam ID: EHA230 Sample ID: SW11

Collected: Shipped:

Collected: 2017/04/25

Matrix: Water

Received: 2017/04/26

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Phosphorus - ortho	KONE	4962282	N/A	2017/05/02	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4957608	N/A	2017/05/03	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4957609	N/A	2017/05/03	Automated Statchk
Reactive Silica	KONE	4962271	N/A	2017/05/02	Nancy Rogers
Sulphate	KONE	4962266	N/A	2017/05/03	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4957610	N/A	2017/05/08	Automated Statchk
Organic carbon - Total (TOC)	TECH	4959592	N/A	2017/04/28	Soraya Merchant
Turbidity	TURB	4962155	N/A	2017/05/01	Julia McGovern

Maxxam ID: EHA231 Sample ID: SW12 Matrix: Water Collected: 201

2017/04/26

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4957614	N/A	2017/05/01	Automated Statchk
Alkalinity	KONE	4962261	N/A	2017/05/02	Nancy Rogers
Chloride	KONE	4962263	N/A	2017/05/02	Nancy Rogers
Colour	KONE	4962279	N/A	2017/05/03	Nancy Rogers
Conductance - water	AT	4962128	N/A	2017/05/01	Julia McGovern
Hardness (calculated as CaCO3)		4957615	N/A	2017/05/01	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4959501	2017/04/28	2017/05/01	Arlene Rossiter
Metals Water Total MS	CICP/MS	4959500	2017/04/28	2017/04/29	Bryon Angevine
Ion Balance (% Difference)	CALC	4957616	N/A	2017/05/08	Automated Statchk
Anion and Cation Sum	CALC	4957617	N/A	2017/05/08	Automated Statchk
Total Ammonia-N	LACH/NH4	4972947	N/A	2017/05/08	Charles Opoku-Ware
Nitrogen - Nitrate + Nitrite	KONE	4962287	N/A	2017/05/02	Nancy Rogers
Nitrogen - Nitrite	KONE	4962292	N/A	2017/05/02	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4957618	N/A	2017/05/03	Automated Statchk
рН	AT	4962127	N/A	2017/05/01	Julia McGovern
Phosphorus - ortho	KONE	4962282	N/A	2017/05/02	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4957608	N/A	2017/05/03	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4957609	N/A	2017/05/03	Automated Statchk
Reactive Silica	KONE	4962271	N/A	2017/05/02	Nancy Rogers
Sulphate	KONE	4962266	N/A	2017/05/03	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4957610	N/A	2017/05/08	Automated Statchk
Organic carbon - Total (TOC)	TECH	4959592	N/A	2017/04/28	Soraya Merchant
Turbidity	TURB	4962155	N/A	2017/05/01	Julia McGovern

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Your P.O. #: A08530 Sampler Initials: LL

TEST SUMMARY

Maxxam ID: EHA232 Sample ID: SW13 Matrix: Water

Collected:

2017/04/25

Shipped:

Received: 2017/04/26

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4957614	N/A	2017/05/01	Automated Statchk
Alkalinity	KONE	4962261	N/A	2017/05/02	Nancy Rogers
Chloride	KONE	4962263	N/A	2017/05/02	Nancy Rogers
Colour	KONE	4962279	N/A	2017/05/03	Nancy Rogers
Conductance - water	AT	4962123	N/A	2017/05/01	Julia McGovern
Hardness (calculated as CaCO3)		4957615	N/A	2017/05/01	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4959501	2017/04/28	2017/05/01	Arlene Rossiter
Metals Water Total MS	CICP/MS	4959500	2017/04/28	2017/04/29	Bryon Angevine
Ion Balance (% Difference)	CALC	4957616	N/A	2017/05/08	Automated Statchk
Anion and Cation Sum	CALC	4957617	N/A	2017/05/08	Automated Statchk
Total Ammonia-N	LACH/NH4	4972947	N/A	2017/05/08	Charles Opoku-Ware
Nitrogen - Nitrate + Nitrite	KONE	4962287	N/A	2017/05/02	Nancy Rogers
Nitrogen - Nitrite	KONE	4962292	N/A	2017/05/02	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4957618	N/A	2017/05/03	Automated Statchk
рН	AT	4962122	N/A	2017/05/01	Julia McGovern
Phosphorus - ortho	KONE	4962282	N/A	2017/05/02	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4957608	N/A	2017/05/03	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4957609	N/A	2017/05/03	Automated Statchk
Reactive Silica	KONE	4962271	N/A	2017/05/02	Nancy Rogers
Sulphate	KONE	4962266	N/A	2017/05/03	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4957610	N/A	2017/05/08	Automated Statchk
Organic carbon - Total (TOC)	TECH	4959592	N/A	2017/04/28	Soraya Merchant
Turbidity	TURB	4962155	N/A	2017/05/01	Julia McGovern

Maxxam ID: EHA233 Sample ID: SW14

. Matrix: Water

Collected:

2017/04/26

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4957614	N/A	2017/05/01	Automated Statchk
Alkalinity	KONE	4962261	N/A	2017/05/02	Nancy Rogers
Chloride	KONE	4962263	N/A	2017/05/02	Nancy Rogers
Colour	KONE	4962279	N/A	2017/05/03	Nancy Rogers
Conductance - water	AT	4962128	N/A	2017/05/01	Julia McGovern
Hardness (calculated as CaCO3)		4957615	N/A	2017/05/01	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4959501	2017/04/28	2017/05/01	Arlene Rossiter
Metals Water Diss. MS (as rec'd)	CICP/MS	4962508	N/A	2017/05/02	Bryon Angevine
Metals Water Total MS	CICP/MS	4959500	2017/04/28	2017/04/29	Bryon Angevine
Ion Balance (% Difference)	CALC	4957616	N/A	2017/05/08	Automated Statchk
Anion and Cation Sum	CALC	4957617	N/A	2017/05/08	Automated Statchk
Total Ammonia-N	LACH/NH4	4972953	N/A	2017/05/08	Charles Opoku-Ware
Nitrogen - Nitrate + Nitrite	KONE	4962287	N/A	2017/05/02	Nancy Rogers
Nitrogen - Nitrite	KONE	4962292	N/A	2017/05/02	Nancy Rogers

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Your P.O. #: A08530 Sampler Initials: LL

TEST SUMMARY

Maxxam ID: EHA233 Sample ID: SW14 Collected: Shipped:

2017/04/26

Matrix: Water

Received: 2017/04/26

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Nitrogen - Nitrate (as N)	CALC	4957618	N/A	2017/05/03	Automated Statchk
рН	AT	4962127	N/A	2017/05/01	Julia McGovern
Phosphorus - ortho	KONE	4962282	N/A	2017/05/02	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4957608	N/A	2017/05/08	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4957609	N/A	2017/05/08	Automated Statchk
Reactive Silica	KONE	4962271	N/A	2017/05/02	Nancy Rogers
Sulphate	KONE	4962266	N/A	2017/05/03	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4957610	N/A	2017/05/08	Automated Statchk
Organic carbon - Total (TOC)	TECH	4959592	N/A	2017/04/28	Soraya Merchant
Total Suspended Solids	BAL	4962351	2017/05/01	2017/05/04	Leslie Power
Turbidity	TURB	4962155	N/A	2017/05/01	Julia McGovern

Maxxam ID: EHA234 Sample ID: SW15

Matrix: Water

Collected: 2017/04/26

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4957614	N/A	2017/05/01	Automated Statchk
Alkalinity	KONE	4962261	N/A	2017/05/02	Nancy Rogers
Chloride	KONE	4962263	N/A	2017/05/02	Nancy Rogers
Colour	KONE	4962279	N/A	2017/05/03	Nancy Rogers
Conductance - water	AT	4962128	N/A	2017/05/01	Julia McGovern
Hardness (calculated as CaCO3)		4957615	N/A	2017/05/02	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4959501	2017/04/28	2017/05/01	Arlene Rossiter
Metals Water Total MS	CICP/MS	4959507	2017/04/28	2017/05/01	Bryon Angevine
Ion Balance (% Difference)	CALC	4957616	N/A	2017/05/08	Automated Statchk
Anion and Cation Sum	CALC	4957617	N/A	2017/05/08	Automated Statchk
Total Ammonia-N	LACH/NH4	4972947	N/A	2017/05/08	Charles Opoku-Ware
Nitrogen - Nitrate + Nitrite	KONE	4962287	N/A	2017/05/02	Nancy Rogers
Nitrogen - Nitrite	KONE	4962292	N/A	2017/05/02	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4957618	N/A	2017/05/03	Automated Statchk
рН	AT	4962127	N/A	2017/05/01	Julia McGovern
Phosphorus - ortho	KONE	4962282	N/A	2017/05/02	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4957608	N/A	2017/05/08	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4957609	N/A	2017/05/08	Automated Statchk
Reactive Silica	KONE	4962271	N/A	2017/05/02	Nancy Rogers
Sulphate	KONE	4962266	N/A	2017/05/03	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4957610	N/A	2017/05/08	Automated Statchk
Organic carbon - Total (TOC)	TECH	4959592	N/A	2017/04/28	Soraya Merchant
Turbidity	TURB	4962155	N/A	2017/05/01	Julia McGovern

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Your P.O. #: A08530 Sampler Initials: LL

TEST SUMMARY

Maxxam ID: EHA235 Sample ID: SW16 Matrix: Water Collected:

2017/04/26

Shipped:

Received: 2017/04/26

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4957614	N/A	2017/05/01	Automated Statchk
Alkalinity	KONE	4962261	N/A	2017/05/02	Nancy Rogers
Chloride	KONE	4962263	N/A	2017/05/02	Nancy Rogers
Colour	KONE	4962279	N/A	2017/05/03	Nancy Rogers
Conductance - water	AT	4962126	N/A	2017/05/01	Julia McGovern
Hardness (calculated as CaCO3)		4957615	N/A	2017/05/01	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4959501	2017/04/28	2017/05/01	Arlene Rossiter
Metals Water Total MS	CICP/MS	4959500	2017/04/28	2017/04/29	Bryon Angevine
Ion Balance (% Difference)	CALC	4957616	N/A	2017/05/08	Automated Statchk
Anion and Cation Sum	CALC	4957617	N/A	2017/05/08	Automated Statchk
Total Ammonia-N	LACH/NH4	4972947	N/A	2017/05/08	Charles Opoku-Ware
Nitrogen - Nitrate + Nitrite	KONE	4962287	N/A	2017/05/02	Nancy Rogers
Nitrogen - Nitrite	KONE	4962292	N/A	2017/05/02	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4957618	N/A	2017/05/03	Automated Statchk
рН	AT	4962125	N/A	2017/05/01	Julia McGovern
Phosphorus - ortho	KONE	4962282	N/A	2017/05/02	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4957608	N/A	2017/05/08	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4957609	N/A	2017/05/08	Automated Statchk
Reactive Silica	KONE	4962271	N/A	2017/05/02	Nancy Rogers
Sulphate	KONE	4962266	N/A	2017/05/03	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4957610	N/A	2017/05/08	Automated Statchk
Organic carbon - Total (TOC)	TECH	4959592	N/A	2017/04/28	Soraya Merchant
Turbidity	TURB	4962155	N/A	2017/05/01	Julia McGovern

Maxxam ID: EHA236 Sample ID: SW-DUP1

Matrix: Water

Collected: 2017/04/25

Shipped: Received:

d: 2017/04/26

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4957614	N/A	2017/05/01	Automated Statchk
Alkalinity	KONE	4962261	N/A	2017/05/02	Nancy Rogers
Chloride	KONE	4962263	N/A	2017/05/02	Nancy Rogers
Colour	KONE	4962279	N/A	2017/05/03	Nancy Rogers
Conductance - water	AT	4962128	N/A	2017/05/01	Julia McGovern
Hardness (calculated as CaCO3)		4957615	N/A	2017/05/01	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4959501	2017/04/28	2017/05/01	Arlene Rossiter
Metals Water Total MS	CICP/MS	4959500	2017/04/28	2017/04/29	Bryon Angevine
Ion Balance (% Difference)	CALC	4957616	N/A	2017/05/08	Automated Statchk
Anion and Cation Sum	CALC	4957617	N/A	2017/05/08	Automated Statchk
Total Ammonia-N	LACH/NH4	4972953	N/A	2017/05/08	Charles Opoku-Ware
Nitrogen - Nitrate + Nitrite	KONE	4962287	N/A	2017/05/02	Nancy Rogers
Nitrogen - Nitrite	KONE	4962292	N/A	2017/05/02	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4957618	N/A	2017/05/03	Automated Statchk

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Your P.O. #: A08530 Sampler Initials: LL

TEST SUMMARY

Maxxam ID: EHA236 Sample ID: SW-DUP1 Matrix: Water Collected:

2017/04/25

Shipped: Received:

: 2017/04/26

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
рН	AT	4962127	N/A	2017/05/01	Julia McGovern
Phosphorus - ortho	KONE	4962282	N/A	2017/05/02	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4957608	N/A	2017/05/08	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4957609	N/A	2017/05/08	Automated Statchk
Reactive Silica	KONE	4962271	N/A	2017/05/02	Nancy Rogers
Sulphate	KONE	4962266	N/A	2017/05/03	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4957610	N/A	2017/05/08	Automated Statchk
Organic carbon - Total (TOC)	TECH	4959592	N/A	2017/04/28	Soraya Merchant
Turbidity	TURB	4962155	N/A	2017/05/01	Julia McGovern

Maxxam ID: EHA237 Sample ID: SW-DUP2 Matrix: Water **Collected:** 2017/04/25

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4957614	N/A	2017/05/01	Automated Statchk
Alkalinity	KONE	4962307	N/A	2017/05/02	Nancy Rogers
Chloride	KONE	4962319	N/A	2017/05/02	Nancy Rogers
Colour	KONE	4962336	N/A	2017/05/03	Nancy Rogers
Conductance - water	AT	4962128	N/A	2017/05/01	Julia McGovern
Hardness (calculated as CaCO3)		4957615	N/A	2017/05/01	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4959501	2017/04/28	2017/05/01	Arlene Rossiter
Metals Water Diss. MS (as rec'd)	CICP/MS	4962508	N/A	2017/05/02	Bryon Angevine
Metals Water Total MS	CICP/MS	4959500	2017/04/28	2017/04/29	Bryon Angevine
Ion Balance (% Difference)	CALC	4957616	N/A	2017/05/08	Automated Statchk
Anion and Cation Sum	CALC	4957617	N/A	2017/05/08	Automated Statchk
Total Ammonia-N	LACH/NH4	4972953	N/A	2017/05/08	Charles Opoku-Ware
Nitrogen - Nitrate + Nitrite	KONE	4962343	N/A	2017/05/02	Nancy Rogers
Nitrogen - Nitrite	KONE	4962344	N/A	2017/05/02	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4957618	N/A	2017/05/03	Automated Statchk
pH	AT	4962127	N/A	2017/05/01	Julia McGovern
Phosphorus - ortho	KONE	4962341	N/A	2017/05/02	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4957608	N/A	2017/05/03	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4957609	N/A	2017/05/03	Automated Statchk
Reactive Silica	KONE	4962331	N/A	2017/05/02	Nancy Rogers
Sulphate	KONE	4962327	N/A	2017/05/03	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4957610	N/A	2017/05/08	Automated Statchk
Organic carbon - Total (TOC)	TECH	4959696	N/A	2017/04/28	Soraya Merchant
Total Suspended Solids	BAL	4962351	2017/05/01	2017/05/04	Leslie Power
Turbidity	TURB	4962155	N/A	2017/05/01	Julia McGovern

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Your P.O. #: A08530 Sampler Initials: LL

TEST SUMMARY

Maxxam ID: EHA237 Dup Sample ID: SW-DUP2

Collected: Shipped:

2017/04/25

Matrix: Water

Received: 2017/04/26

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	KONE	4962307	N/A	2017/05/02	Nancy Rogers
Chloride	KONE	4962319	N/A	2017/05/02	Nancy Rogers
Colour	KONE	4962336	N/A	2017/05/03	Nancy Rogers
Conductance - water	AT	4962128	N/A	2017/05/01	Julia McGovern
Nitrogen - Nitrate + Nitrite	KONE	4962343	N/A	2017/05/02	Nancy Rogers
Nitrogen - Nitrite	KONE	4962344	N/A	2017/05/02	Nancy Rogers
рН	AT	4962127	N/A	2017/05/01	Julia McGovern
Phosphorus - ortho	KONE	4962341	N/A	2017/05/02	Nancy Rogers
Reactive Silica	KONE	4962331	N/A	2017/05/02	Nancy Rogers
Sulphate	KONE	4962327	N/A	2017/05/03	Nancy Rogers
Turbidity	TURB	4962155	N/A	2017/05/01	Julia McGovern

Maxxam ID: EHA238 Sample ID: P1A

Matrix: Water

Collected: 2017/04/25

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4957614	N/A	2017/05/01	Automated Statchk
Alkalinity	KONE	4962307	N/A	2017/05/02	Nancy Rogers
Chloride	KONE	4962319	N/A	2017/05/02	Nancy Rogers
Colour	KONE	4962336	N/A	2017/05/03	Nancy Rogers
Conductance - water	AT	4962128	N/A	2017/05/01	Julia McGovern
Hardness (calculated as CaCO3)		4957615	N/A	2017/05/01	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4959501	2017/04/28	2017/05/01	Arlene Rossiter
Metals Water Total MS	CICP/MS	4959500	2017/04/28	2017/04/29	Bryon Angevine
Ion Balance (% Difference)	CALC	4957616	N/A	2017/05/08	Automated Statchk
Anion and Cation Sum	CALC	4957617	N/A	2017/05/08	Automated Statchk
Total Ammonia-N	LACH/NH4	4972953	N/A	2017/05/08	Charles Opoku-Ware
Nitrogen - Nitrate + Nitrite	KONE	4962343	N/A	2017/05/02	Nancy Rogers
Nitrogen - Nitrite	KONE	4962344	N/A	2017/05/02	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4957618	N/A	2017/05/03	Automated Statchk
рН	AT	4962127	N/A	2017/05/01	Julia McGovern
Phosphorus - ortho	KONE	4962341	N/A	2017/05/02	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4957608	N/A	2017/05/08	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4957609	N/A	2017/05/08	Automated Statchk
Reactive Silica	KONE	4962331	N/A	2017/05/02	Nancy Rogers
Sulphate	KONE	4962327	N/A	2017/05/03	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4957610	N/A	2017/05/08	Automated Statchk
Organic carbon - Total (TOC)	TECH	4959696	N/A	2017/04/28	Soraya Merchant
Turbidity	TURB	4962159	N/A	2017/05/01	Julia McGovern

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Your P.O. #: A08530 Sampler Initials: LL

TEST SUMMARY

Maxxam ID: EHA239 Sample ID: P1B Matrix: Water Collected:

2017/04/25

Shipped:

Received: 2017/04/26

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4957614	N/A	2017/05/01	Automated Statchk
Alkalinity	KONE	4962307	N/A	2017/05/02	Nancy Rogers
Chloride	KONE	4962319	N/A	2017/05/02	Nancy Rogers
Colour	KONE	4962336	N/A	2017/05/03	Nancy Rogers
Conductance - water	AT	4962128	N/A	2017/05/01	Julia McGovern
Hardness (calculated as CaCO3)		4957615	N/A	2017/05/01	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4959501	2017/04/28	2017/05/01	Arlene Rossiter
Metals Water Total MS	CICP/MS	4959500	2017/04/28	2017/04/29	Bryon Angevine
Ion Balance (% Difference)	CALC	4957616	N/A	2017/05/08	Automated Statchk
Anion and Cation Sum	CALC	4957617	N/A	2017/05/08	Automated Statchk
Total Ammonia-N	LACH/NH4	4972953	N/A	2017/05/08	Charles Opoku-Ware
Nitrogen - Nitrate + Nitrite	KONE	4962343	N/A	2017/05/02	Nancy Rogers
Nitrogen - Nitrite	KONE	4962344	N/A	2017/05/02	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4957618	N/A	2017/05/03	Automated Statchk
рН	AT	4962127	N/A	2017/05/01	Julia McGovern
Phosphorus - ortho	KONE	4962341	N/A	2017/05/02	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4957608	N/A	2017/05/03	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4957609	N/A	2017/05/03	Automated Statchk
Reactive Silica	KONE	4962331	N/A	2017/05/02	Nancy Rogers
Sulphate	KONE	4962327	N/A	2017/05/03	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4957610	N/A	2017/05/08	Automated Statchk
Organic carbon - Total (TOC)	TECH	4959696	N/A	2017/04/28	Soraya Merchant
Turbidity	TURB	4962155	N/A	2017/05/01	Julia McGovern

Maxxam ID: EHA240 Sample ID: P2A Matrix: Water Collected: 2
Shipped:

2017/04/25

Received:

2017/04/26

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4957614	N/A	2017/05/01	Automated Statchk
Alkalinity	KONE	4962307	N/A	2017/05/02	Nancy Rogers
Chloride	KONE	4962319	N/A	2017/05/02	Nancy Rogers
Colour	KONE	4962336	N/A	2017/05/03	Nancy Rogers
Conductance - water	AT	4962128	N/A	2017/05/01	Julia McGovern
Hardness (calculated as CaCO3)		4957615	N/A	2017/05/02	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4959501	2017/04/28	2017/05/01	Arlene Rossiter
Metals Water Total MS	CICP/MS	4959507	2017/04/28	2017/05/01	Bryon Angevine
Ion Balance (% Difference)	CALC	4957616	N/A	2017/05/08	Automated Statchk
Anion and Cation Sum	CALC	4957617	N/A	2017/05/08	Automated Statchk
Total Ammonia-N	LACH/NH4	4972947	N/A	2017/05/08	Charles Opoku-Ware
Nitrogen - Nitrate + Nitrite	KONE	4962343	N/A	2017/05/02	Nancy Rogers
Nitrogen - Nitrite	KONE	4962344	N/A	2017/05/02	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4957618	N/A	2017/05/03	Automated Statchk

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Your P.O. #: A08530 Sampler Initials: LL

TEST SUMMARY

Maxxam ID: EHA240 Sample ID: P2A Matrix: Water Collected:

2017/04/25

Shipped:

Received: 2017/04/26

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
рН	AT	4962127	N/A	2017/05/01	Julia McGovern
Phosphorus - ortho	KONE	4962341	N/A	2017/05/02	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4957608	N/A	2017/05/08	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4957609	N/A	2017/05/08	Automated Statchk
Reactive Silica	KONE	4962331	N/A	2017/05/02	Nancy Rogers
Sulphate	KONE	4962327	N/A	2017/05/03	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4957610	N/A	2017/05/08	Automated Statchk
Organic carbon - Total (TOC)	TECH	4959696	N/A	2017/04/28	Soraya Merchant
Turbidity	TURB	4962155	N/A	2017/05/01	Julia McGovern

Maxxam ID: EHA241 Sample ID: P2B Matrix: Water **Collected:** 2017/04/25

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4957614	N/A	2017/05/01	Automated Statchk
Alkalinity	KONE	4962307	N/A	2017/05/02	Nancy Rogers
Chloride	KONE	4962319	N/A	2017/05/02	Nancy Rogers
Colour	KONE	4962336	N/A	2017/05/03	Nancy Rogers
Conductance - water	AT	4962126	N/A	2017/05/01	Julia McGovern
Hardness (calculated as CaCO3)		4957615	N/A	2017/05/02	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4959901	2017/04/28	2017/05/01	Arlene Rossiter
Metals Water Total MS	CICP/MS	4959507	2017/04/28	2017/05/01	Bryon Angevine
Ion Balance (% Difference)	CALC	4957616	N/A	2017/05/08	Automated Statchk
Anion and Cation Sum	CALC	4957617	N/A	2017/05/08	Automated Statchk
Total Ammonia-N	LACH/NH4	4972953	N/A	2017/05/08	Charles Opoku-Ware
Nitrogen - Nitrate + Nitrite	KONE	4962343	N/A	2017/05/02	Nancy Rogers
Nitrogen - Nitrite	KONE	4962344	N/A	2017/05/02	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4957618	N/A	2017/05/03	Automated Statchk
рН	AT	4962125	N/A	2017/05/01	Julia McGovern
Phosphorus - ortho	KONE	4962341	N/A	2017/05/02	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4957608	N/A	2017/05/03	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4957609	N/A	2017/05/03	Automated Statchk
Reactive Silica	KONE	4962331	N/A	2017/05/02	Nancy Rogers
Sulphate	KONE	4962327	N/A	2017/05/03	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4957610	N/A	2017/05/08	Automated Statchk
Organic carbon - Total (TOC)	TECH	4959696	N/A	2017/04/28	Soraya Merchant
Turbidity	TURB	4962159	N/A	2017/05/01	Julia McGovern

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Your P.O. #: A08530 Sampler Initials: LL

TEST SUMMARY

Maxxam ID: EHA242 Sample ID: P3 Matrix: Water

Collected:

2017/04/25

Shipped:

Received: 2017/04/26

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4957614	N/A	2017/05/01	Automated Statchk
Alkalinity	KONE	4962307	N/A	2017/05/02	Nancy Rogers
Chloride	KONE	4962319	N/A	2017/05/02	Nancy Rogers
Colour	KONE	4962336	N/A	2017/05/03	Nancy Rogers
Conductance - water	AT	4962128	N/A	2017/05/01	Julia McGovern
Hardness (calculated as CaCO3)		4957615	N/A	2017/05/03	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4959901	2017/04/28	2017/05/01	Arlene Rossiter
Metals Water Total MS	CICP/MS	4959507	2017/04/28	2017/05/02	Bryon Angevine
Ion Balance (% Difference)	CALC	4957616	N/A	2017/05/09	Automated Statchk
Anion and Cation Sum	CALC	4957617	N/A	2017/05/09	Automated Statchk
Total Ammonia-N	LACH/NH4	4973879	N/A	2017/05/09	Charles Opoku-Ware
Nitrogen - Nitrate + Nitrite	KONE	4962343	N/A	2017/05/02	Nancy Rogers
Nitrogen - Nitrite	KONE	4962344	N/A	2017/05/02	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4957618	N/A	2017/05/03	Automated Statchk
pH	AT	4962127	N/A	2017/05/01	Julia McGovern
Phosphorus - ortho	KONE	4962341	N/A	2017/05/02	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4957608	N/A	2017/05/09	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4957609	N/A	2017/05/09	Automated Statchk
Reactive Silica	KONE	4962331	N/A	2017/05/02	Nancy Rogers
Sulphate	KONE	4962327	N/A	2017/05/03	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4957610	N/A	2017/05/09	Automated Statchk
Organic carbon - Total (TOC)	TECH	4959696	N/A	2017/04/28	Soraya Merchant
Turbidity	TURB	4962155	N/A	2017/05/01	Julia McGovern

Maxxam ID: EHA243 Sample ID: BACK2

Matrix: Water

Collected:

2017/04/25

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4957614	N/A	2017/05/01	Automated Statchk
Alkalinity	KONE	4962307	N/A	2017/05/02	Nancy Rogers
Chloride	KONE	4962319	N/A	2017/05/02	Nancy Rogers
Colour	KONE	4962336	N/A	2017/05/03	Nancy Rogers
Conductance - water	AT	4962128	N/A	2017/05/01	Julia McGovern
Hardness (calculated as CaCO3)		4957615	N/A	2017/05/01	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4959901	2017/04/28	2017/05/01	Arlene Rossiter
Metals Water Diss. MS (as rec'd)	CICP/MS	4962508	N/A	2017/05/02	Bryon Angevine
Metals Water Total MS	CICP/MS	4959500	2017/04/28	2017/04/29	Bryon Angevine
Ion Balance (% Difference)	CALC	4957616	N/A	2017/05/08	Automated Statchk
Anion and Cation Sum	CALC	4957617	N/A	2017/05/08	Automated Statchk
Total Ammonia-N	LACH/NH4	4972947	N/A	2017/05/08	Charles Opoku-Ware
Nitrogen - Nitrate + Nitrite	KONE	4962343	N/A	2017/05/02	Nancy Rogers
Nitrogen - Nitrite	KONE	4962344	N/A	2017/05/02	Nancy Rogers

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Your P.O. #: A08530 Sampler Initials: LL

TEST SUMMARY

Maxxam ID: EHA243 Sample ID:

Collected:

2017/04/25

BACK2 Matrix: Water

Shipped: Received: 2017/04/26

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Nitrogen - Nitrate (as N)	CALC	4957618	N/A	2017/05/03	Automated Statchk
pH	AT	4962127	N/A	2017/05/01	Julia McGovern
Phosphorus - ortho	KONE	4962341	N/A	2017/05/02	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4957608	N/A	2017/05/03	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4957609	N/A	2017/05/03	Automated Statchk
Reactive Silica	KONE	4962331	N/A	2017/05/02	Nancy Rogers
Sulphate	KONE	4962327	N/A	2017/05/03	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4957610	N/A	2017/05/08	Automated Statchk
Organic carbon - Total (TOC)	TECH	4959696	N/A	2017/04/28	Soraya Merchant
Total Suspended Solids	BAL	4962351	2017/05/01	2017/05/04	Leslie Power
Turbidity	TURB	4962155	N/A	2017/05/01	Julia McGovern

Maxxam ID: EHA243 Dup Sample ID: BACK2 Matrix: Water

Collected: 2017/04/25

Shipped:

Received: 2017/04/26

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Mercury - Total (CVAA,LL)	CV/AA	4959901	2017/04/28	2017/05/01	Arlene Rossiter

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Your P.O. #: A08530 Sampler Initials: LL

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1	-0.7°C
Package 2	2.0°C
Package 3	3.3°C
Package 4	3.7°C

Sample EHA221 [SW1]: RCAp Ion Balance acceptable. Anion/cation agreement within 0.2 meq/L.

Sample EHA222 [SW2]: TSS:Used all of the sample provided, DL raised. RCAp Ion Balance acceptable. Anion/cation agreement within 0.2 meq/L.

Sample EHA223 [SW3]: RCAp Ion Balance acceptable. Anion/cation agreement within 0.2 meq/L.

Sample EHA227 [SW7]: RCAp Ion Balance acceptable. Anion/cation agreement within 0.2 meq/L.

Sample EHA228 [SW8]: RCAp Ion Balance acceptable. Anion/cation agreement within 0.2 meq/L.

Sample EHA229 [SW9]: Poor RCAp Ion Balance due to sample matrix. Excess cations due to presence of turbidity.

Sample EHA230 [SW11]: RCAp Ion Balance acceptable. Anion/cation agreement within 0.2 meq/L.

Sample EHA231 [SW12]: Poor RCAp Ion Balance due to sample matrix. Excess cations due to presence of turbidity.

Sample EHA232 [SW13]: RCAp Ion Balance acceptable. Anion/cation agreement within 0.2 meg/L.

Sample EHA235 [SW16]: RCAp Ion Balance acceptable. Anion/cation agreement within 0.2 meg/L.

Sample EHA236 [SW-DUP1]: Poor RCAp Ion Balance due to sample matrix. Excess cations due to presence of turbidity.

Sample EHA237 [SW-DUP2]: RCAp Ion Balance acceptable. Anion/cation agreement within 0.2 meg/L.

Sample EHA238 [P1A] : Poor RCAp Ion Balance due to sample matrix. Excess cations due to presence of turbidity.

Sample EHA239 [P1B] : Poor RCAp Ion Balance due to sample matrix. Excess cations due to presence of turbidity.

Sample EHA240 [P2A]: Poor RCAp Ion Balance due to sample matrix. Excess cations due to presence of turbidity.

Sample EHA241 [P2B]: RCAp Ion Balance acceptable. Low ionic strength sample.

Sample EHA242 [P3]: Poor RCAp Ion Balance due to sample matrix. Excess cations due to presence of turbidity.

Sample EHA243 [BACK2]: RCAp Ion Balance acceptable. Anion/cation agreement within 0.2 meq/L.

Results relate only to the items tested.

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Your P.O. #: A08530 Sampler Initials: LL

QUALITY ASSURANCE REPORT

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
4959500	BAN	Matrix Spike	Total Aluminum (AI)	2017/04/29	value	94	%	80 - 120
4333300	DAIN	Width Spike	Total Antimony (Sb)	2017/04/29		104	%	80 - 120
			Total Arsenic (As)	2017/04/29		91	%	80 - 120
			Total Barium (Ba)	2017/04/29		99	%	80 - 120
			Total Baridin (Ba)	2017/04/29		94	%	80 - 120
				·				
			Total Baran (B)	2017/04/29 2017/04/29		102	%	80 - 120
			Total Godgaines (Cd)			NC	%	80 - 120
			Total Calaium (Cd)	2017/04/29		95	%	80 - 120
			Total Calcium (Ca)	2017/04/29		98	%	80 - 120
			Total Cabalt (Ca)	2017/04/29		92	%	80 - 120
			Total Cobalt (Co)	2017/04/29		91	%	80 - 120
			Total Copper (Cu)	2017/04/29		92	%	80 - 120
			Total Iron (Fe)	2017/04/29		97	%	80 - 120
			Total Lead (Pb)	2017/04/29		98	%	80 - 120
			Total Magnesium (Mg)	2017/04/29		98	%	80 - 120
			Total Manganese (Mn)	2017/04/29		93	%	80 - 120
			Total Molybdenum (Mo)	2017/04/29		101	%	80 - 120
			Total Nickel (Ni)	2017/04/29		91	%	80 - 120
			Total Phosphorus (P)	2017/04/29		101	%	80 - 120
			Total Potassium (K)	2017/04/29		103	%	80 - 120
			Total Selenium (Se)	2017/04/29		88	%	80 - 120
			Total Silver (Ag)	2017/04/29		98	%	80 - 120
			Total Sodium (Na)	2017/04/29		NC	%	80 - 120
			Total Strontium (Sr)	2017/04/29		NC	%	80 - 120
			Total Thallium (TI)	2017/04/29		101	%	80 - 120
			Total Tin (Sn)	2017/04/29		103	%	80 - 120
			Total Titanium (Ti)	2017/04/29		96	%	80 - 120
			Total Uranium (U)	2017/04/29		104	%	80 - 120
			Total Vanadium (V)	2017/04/29		95	%	80 - 120
			Total Zinc (Zn)	2017/04/29		95	%	80 - 120
4959500	BAN	Spiked Blank	Total Aluminum (Al)	2017/04/29		94	%	80 - 120
			Total Antimony (Sb)	2017/04/29		103	%	80 - 120
			Total Arsenic (As)	2017/04/29		89	%	80 - 120
			Total Barium (Ba)	2017/04/29		98	%	80 - 120
			Total Beryllium (Be)	2017/04/29		90	%	80 - 120
			Total Bismuth (Bi)	2017/04/29		103	%	80 - 120
			Total Boron (B)	2017/04/29		90	%	80 - 120
			Total Cadmium (Cd)	2017/04/29		92	%	80 - 120
			Total Calcium (Ca)	2017/04/29		95	%	80 - 120
			Total Chromium (Cr)	2017/04/29		90	%	80 - 120
			Total Cobalt (Co)	2017/04/29		92	%	80 - 120
			Total Copper (Cu)	2017/04/29		91	%	80 - 120
			Total Iron (Fe)	2017/04/29		95	%	80 - 120
			Total Lead (Pb)	2017/04/29		95 97	% %	80 - 120
			Total Magnesium (Mg)	2017/04/29		95	% %	80 - 120 80 - 120
			Total Magnesium (Mg) Total Manganese (Mn)	2017/04/29		95 92	% %	80 - 120 80 - 120
			Total Maliganese (Mili) Total Molybdenum (Mo)					80 - 120 80 - 120
				2017/04/29		99	%	
			Total Dhashbarra (D)	2017/04/29		92	%	80 - 120
			Total Pote spinus (V)	2017/04/29		98	%	80 - 120
			Total Potassium (K)	2017/04/29		98	%	80 - 120
			Total Selenium (Se)	2017/04/29		86	%	80 - 120

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Your P.O. #: A08530 Sampler Initials: LL

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			Total Silver (Ag)	2017/04/29		95	%	80 - 120
			Total Sodium (Na)	2017/04/29		92	%	80 - 120
			Total Strontium (Sr)	2017/04/29		96	%	80 - 120
			Total Thallium (TI)	2017/04/29		101	%	80 - 120
			Total Tin (Sn)	2017/04/29		103	%	80 - 120
			Total Titanium (Ti)	2017/04/29		93	%	80 - 120
			Total Uranium (U)	2017/04/29		102	%	80 - 120
			Total Vanadium (V)	2017/04/29		94	%	80 - 120
			Total Zinc (Zn)	2017/04/29		95	%	80 - 120
4959500	BAN	Method Blank	Total Aluminum (Al)	2017/04/29	8.0,		ug/L	
					RDL=5.0 (1)			
			Total Antimony (Sb)	2017/04/29	<1.0		ug/L	
			Total Arsenic (As)	2017/04/29	<1.0		ug/L	
			Total Barium (Ba)	2017/04/29	<1.0		ug/L	
			Total Beryllium (Be)	2017/04/29	<1.0		ug/L	
			Total Bismuth (Bi)	2017/04/29	<2.0		ug/L	
			Total Boron (B)	2017/04/29	<50		ug/L	
			Total Cadmium (Cd)	2017/04/29	< 0.010		ug/L	
			Total Calcium (Ca)	2017/04/29	<100		ug/L	
			Total Chromium (Cr)	2017/04/29	<1.0		ug/L	
			Total Cobalt (Co)	2017/04/29	< 0.40		ug/L	
			Total Copper (Cu)	2017/04/29	<2.0		ug/L	
			Total Iron (Fe)	2017/04/29	<50		ug/L	
			Total Lead (Pb)	2017/04/29	<0.50		ug/L	
			Total Magnesium (Mg)	2017/04/29	<100		ug/L	
			Total Manganese (Mn)	2017/04/29	<2.0		ug/L	
			Total Molybdenum (Mo)	2017/04/29	<2.0		ug/L	
			Total Nickel (Ni)	2017/04/29	<2.0		ug/L	
			Total Phosphorus (P)	2017/04/29	<100		ug/L	
			Total Potassium (K)	2017/04/29	<100		ug/L	
			Total Selenium (Se)	2017/04/29	<1.0		ug/L	
			Total Silver (Ag)	2017/04/29	<0.10		ug/L	
			Total Sodium (Na)	2017/04/29	<100		ug/L	
			Total Strontium (Sr)	2017/04/29	<2.0		ug/L	
			Total Thallium (TI)	2017/04/29	<0.10		ug/L	
			Total Tin (Sn)	2017/04/29	<2.0		ug/L	
			Total Titanium (Ti)	2017/04/29	<2.0		ug/L	
			Total Uranium (U)	2017/04/29	<0.10		ug/L	
			Total Vanadium (V)	2017/04/29	<2.0		ug/L ug/L	
			Total Zinc (Zn)	2017/04/29	<5.0			
4959500	BAN	RPD - Sample/Sample Dup	Total Aluminum (Al)	2017/04/29	8.9		ug/L %	20
+939300	DAIN	KPD - Sample/Sample Dup	Total Antimony (Sb)					
			, , ,	2017/04/29 2017/04/29	NC NC		% %	20
			Total Arsenic (As) Total Barium (Ba)	2017/04/29	NC 2.4			20
			, ,	2017/04/29	3.4 NC		%	20
			Total Beryllium (Be)		NC NC		% %	20
			Total Bismuth (Bi)	2017/04/29	NC		%	20
			Total Boron (B)	2017/04/29	2.4		%	20
			Total Cadmium (Cd)	2017/04/29	NC		%	20
			Total Characians (Ca)	2017/04/29	2.8		%	20
			Total Calcala (Ca)	2017/04/29	NC		%	20
			Total Cobalt (Co)	2017/04/29	NC		%	20

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Your P.O. #: A08530 Sampler Initials: LL

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			Total Copper (Cu)	2017/04/29	NC		%	20
			Total Iron (Fe)	2017/04/29	2.1		%	20
			Total Lead (Pb)	2017/04/29	NC		%	20
			Total Magnesium (Mg)	2017/04/29	2.9		%	20
			Total Manganese (Mn)	2017/04/29	3.2		%	20
			Total Molybdenum (Mo)	2017/04/29	5.4		%	20
			Total Nickel (Ni)	2017/04/29	NC		%	20
			Total Phosphorus (P)	2017/04/29	NC		%	20
			Total Potassium (K)	2017/04/29	2.9		%	20
			Total Selenium (Se)	2017/04/29	NC		%	20
			Total Silver (Ag)	2017/04/29	NC		%	20
			Total Sodium (Na)	2017/04/29	3.4		%	20
			Total Strontium (Sr)	2017/04/29	2.8		%	20
			Total Thallium (TI)	2017/04/29	NC		%	20
			Total Tin (Sn)	2017/04/29	NC		%	20
			Total Titanium (Ti)	2017/04/29	NC		%	20
			Total Uranium (U)	2017/04/29	4.4		%	20
			Total Vanadium (V)	2017/04/29	NC		%	20
			Total Zinc (Zn)	2017/04/29	NC		%	20
4959501	ARS	Matrix Spike(EHA232)	Total Mercury (Hg)	2017/05/01		104	%	80 - 120
4959501	ARS	Spiked Blank	Total Mercury (Hg)	2017/05/01		102	%	80 - 120
4959501	ARS	Method Blank	Total Mercury (Hg)	2017/05/01	< 0.013		ug/L	
4959501	ARS	RPD - Sample/Sample Dup	Total Mercury (Hg)	2017/05/01	2.5		%	20
4959507	BAN	Matrix Spike	Total Aluminum (Al)	2017/05/01		93	%	80 - 120
			Total Antimony (Sb)	2017/05/01		98	%	80 - 120
			Total Arsenic (As)	2017/05/01		95	%	80 - 120
			Total Barium (Ba)	2017/05/01		95	%	80 - 120
			Total Beryllium (Be)	2017/05/01		95	%	80 - 120
			Total Bismuth (Bi)	2017/05/01		98	%	80 - 120
			Total Boron (B)	2017/05/01		101	%	80 - 120
			Total Cadmium (Cd)	2017/05/01		98	%	80 - 120
			Total Calcium (Ca)	2017/05/01		98	%	80 - 120
			Total Chromium (Cr)	2017/05/01		94	%	80 - 120
			Total Cobalt (Co)	2017/05/01		96	%	80 - 120
			Total Copper (Cu)	2017/05/01		92	%	80 - 120
			Total Iron (Fe)	2017/05/01		99	%	80 - 120
			Total Lead (Pb)	2017/05/01		93	%	80 - 120
			Total Magnesium (Mg)	2017/05/01		100	%	80 - 120
			Total Manganese (Mn)	2017/05/01		95	%	80 - 120
			Total Molybdenum (Mo)	2017/05/01		101	%	80 - 120
			Total Nickel (Ni)	2017/05/01		96	%	80 - 120
			Total Phosphorus (P)	2017/05/01		99	%	80 - 120
			Total Potassium (K)	2017/05/01		105	%	80 - 120
			Total Selenium (Se)	2017/05/01		99	%	80 - 120
			Total Silver (Ag)	2017/05/01		96	%	80 - 120
			Total Sodium (Na)	2017/05/01		98	% %	80 - 120
			Total Strontium (Sr)	2017/05/01		93	%	80 - 120
			Total Thallium (TI)	2017/05/01		99	%	80 - 120
			Total Tin (Sn)	2017/05/01		100	%	80 - 120
			Total Titanium (Ti)	2017/05/01		95	% %	80 - 120 80 - 120
			Total Uranium (11)	2017/05/01		95 102	% %	80 - 120 80 - 120
			Total Orallium (O)	2017/03/01		102	/0	00 - 120

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Your P.O. #: A08530 Sampler Initials: LL

QA/QC Batch	Init	OC Typo	Darameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
Dattii	Init	QC Type	Parameter Total Vanadium (V)	2017/05/01	value	95	%	80 - 120
			Total Zinc (Zn)	2017/05/01		96	%	80 - 120
4959507	BAN	Spiked Blank	Total Aluminum (Al)	2017/05/01		95	%	80 - 120
4333307	DAIN	эрікей Біалік	Total Antimony (Sb)	2017/05/01		93 97	%	80 - 120
			Total Aritimony (3b) Total Arsenic (As)	2017/05/01		93	% %	80 - 120 80 - 120
			Total Barium (Ba)	2017/05/01		94	%	80 - 120
			Total Baridin (Ba) Total Beryllium (Be)	2017/05/01		95 95	%	80 - 120 80 - 120
				2017/05/01		98		
			Total Bismuth (Bi) Total Boron (B)	2017/05/01		98 104	% %	80 - 120 80 - 120
			Total Boron (B) Total Cadmium (Cd)	2017/05/01		96	%	80 - 120
			Total Calcium (Ca)	2017/05/01		100	%	80 - 120
			Total Chromium (Cr)	2017/05/01		94	%	80 - 120
						94 95	% %	
			Total Copper (Cu)	2017/05/01 2017/05/01		93	% %	80 - 120 80 - 120
			Total Iron (Fo)			99		
			Total Iron (Fe) Total Lead (Pb)	2017/05/01 2017/05/01		99	%	80 - 120 80 - 120
			, ,	2017/05/01		92 99	%	
			Total Magnesium (Mg)			95	%	80 - 120
			Total Malyhdanym (Ma)	2017/05/01 2017/05/01		101	%	80 - 120 80 - 120
			Total Molybdenum (Mo)				%	
			Total Nickel (Ni) Total Phosphorus (P)	2017/05/01		95 100	% %	80 - 120 80 - 120
				2017/05/01				
			Total Potassium (K)	2017/05/01 2017/05/01		105	%	80 - 120
			Total Silver (As)			97	%	80 - 120
			Total Silver (Ag)	2017/05/01		94	%	80 - 120
			Total Sodium (Na)	2017/05/01		99 93	%	80 - 120
			Total Strontium (Sr) Total Thallium (Tl)	2017/05/01		99	%	80 - 120
			• •	2017/05/01 2017/05/01			%	80 - 120 80 - 120
			Total Tin (Sn)			101	%	
			Total Uranium (Ti)	2017/05/01		96 99	% %	80 - 120 80 - 120
			Total Vanadium (U)	2017/05/01 2017/05/01		93	%	
			Total Vanadium (V)			98	%	80 - 120
4050507	DAN	Method Blank	Total Zinc (Zn) Total Aluminum (Al)	2017/05/01 2017/05/01	F 0	96		80 - 120
4959507	BAN	метной вынк	, ,	, .	5.9, RDL=5.0 (1)		ug/L	
			Total Antimony (Sb)	2017/05/01	<1.0		ug/L	
			Total Arsenic (As)	2017/05/01	<1.0		ug/L	
			Total Barium (Ba)	2017/05/01	<1.0		ug/L	
			Total Beryllium (Be)	2017/05/01	<1.0		ug/L	
			Total Bismuth (Bi)	2017/05/01	<2.0		ug/L	
			Total Boron (B)	2017/05/01	<50		ug/L	
			Total Cadmium (Cd)	2017/05/01	<0.010		ug/L	
			Total Calcium (Ca)	2017/05/01	<100		ug/L	
			Total Chromium (Cr)	2017/05/01	<1.0		ug/L	
			Total Cobalt (Co)	2017/05/01	<0.40		ug/L	
			Total Copper (Cu)	2017/05/01	<2.0		ug/L	
			Total Iron (Fe)	2017/05/01	<50		ug/L	
			Total Lead (Pb)	2017/05/01	<0.50		ug/L	
			Total Magnesium (Mg)	2017/05/01	<100		ug/L	
			Total Manganese (Mn)	2017/05/01	<2.0		ug/L	
			Total Molybdenum (Mo)	2017/05/01	<2.0		ug/L	
			Total Nickel (Ni)	2017/05/01	<2.0		ug/L	

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Your P.O. #: A08530 Sampler Initials: LL

04/00			`	LE REPORT(CONT D)				
QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			Total Phosphorus (P)	2017/05/01	<100		ug/L	
			Total Potassium (K)	2017/05/01	<100		ug/L	
			Total Selenium (Se)	2017/05/01	<1.0		ug/L	
			Total Silver (Ag)	2017/05/01	<0.10		ug/L	
			Total Sodium (Na)	2017/05/01	<100		ug/L	
			Total Strontium (Sr)	2017/05/01	<2.0		ug/L	
			Total Thallium (TI)	2017/05/01	< 0.10		ug/L	
			Total Tin (Sn)	2017/05/01	<2.0		ug/L	
			Total Titanium (Ti)	2017/05/01	<2.0		ug/L	
			Total Uranium (U)	2017/05/01	< 0.10		ug/L	
			Total Vanadium (V)	2017/05/01	<2.0		ug/L	
			Total Zinc (Zn)	2017/05/01	<5.0		ug/L	
4959507	BAN	RPD - Sample/Sample Dup	Total Lead (Pb)	2017/05/01	4.4		%	20
4959592	SMT	Matrix Spike	Total Organic Carbon (C)	2017/04/28		101	%	80 - 120
4959592	SMT	Spiked Blank	Total Organic Carbon (C)	2017/04/28		97	%	80 - 120
4959592	SMT	Method Blank	Total Organic Carbon (C)	2017/04/28	< 0.50		mg/L	
4959592	SMT	RPD - Sample/Sample Dup	Total Organic Carbon (C)	2017/04/28	0.50 (2)		%	20
4959696	SMT	Matrix Spike	Total Organic Carbon (C)	2017/04/28	. ,	99	%	80 - 120
4959696	SMT	Spiked Blank	Total Organic Carbon (C)	2017/04/28		103	%	80 - 120
4959696	SMT	Method Blank	Total Organic Carbon (C)	2017/04/28	< 0.50		mg/L	
4959696	SMT	RPD - Sample/Sample Dup	Total Organic Carbon (C)	2017/04/28	3.7		%	20
4959901	ARS	Matrix Spike	Total Mercury (Hg)	2017/05/01		98	%	80 - 120
4959901	ARS	Spiked Blank	Total Mercury (Hg)	2017/05/01		104	%	80 - 120
4959901	ARS	Method Blank	Total Mercury (Hg)	2017/05/01	< 0.013		ug/L	
4959901	ARS	RPD - Sample/Sample Dup	Total Mercury (Hg)	2017/05/01	NC		%	20
4962122	JMV	QC Standard	pH	2017/05/01	110	100	%	97 - 103
4962122	JMV	RPD - Sample/Sample Dup	pH	2017/05/01	1.1	200	%	N/A
4962123	JMV	Spiked Blank	Conductivity	2017/05/01		100	%	80 - 120
4962123	JMV	Method Blank	Conductivity	2017/05/01	1.1,	100	uS/cm	00 120
4502125	31414	Wiction Blank	Conductivity	2017/03/01	RDL=1.0		u3/ cm	
4962123	JMV	RPD - Sample/Sample Dup	Conductivity	2017/05/01	0.86		%	25
4962125	JMV	QC Standard	рН	2017/05/01		100	%	97 - 103
4962125	JMV	RPD - Sample/Sample Dup	рН	2017/05/01	0.35		%	N/A
4962126	JMV	Spiked Blank	Conductivity	2017/05/01		100	%	80 - 120
4962126	JMV	Method Blank	Conductivity	2017/05/01	1.3, RDL=1.0		uS/cm	
4962126	JMV	RPD - Sample/Sample Dup	Conductivity	2017/05/01	0.76		%	25
4962127	JMV	QC Standard	pH	2017/05/01		100	%	97 - 103
4962127	JMV	RPD - Sample/Sample Dup	pH	2017/05/01	1.6		%	N/A
4962128	JMV	Spiked Blank	Conductivity	2017/05/01		101	%	80 - 120
4962128	JMV	Method Blank	Conductivity	2017/05/01	1.4,		uS/cm	
.502120		Medical Blank		2017/00/01	RDL=1.0		a o , a	
4962128	JMV	RPD - Sample/Sample Dup	Conductivity	2017/05/01	0.57		%	25
4962153	LPW	QC Standard	Total Suspended Solids	2017/05/03		98	%	80 - 120
4962153	LPW	Method Blank	Total Suspended Solids	2017/05/03	<1.0		mg/L	
4962153	LPW	RPD - Sample/Sample Dup	Total Suspended Solids	2017/05/03	24		%	25
4962155	JMV	QC Standard	Turbidity	2017/05/01		102	%	80 - 120
4962155	JMV	Spiked Blank	Turbidity	2017/05/01		98	%	80 - 120
4962155	JMV	Method Blank	Turbidity	2017/05/01	<0.10		NTU	
4962155	JMV	RPD - Sample/Sample Dup	Turbidity	2017/05/01	15		%	20
4962159	JMV	QC Standard	Turbidity	2017/05/01		101	%	80 - 120

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Your P.O. #: A08530 Sampler Initials: LL

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
4962159	JMV	Spiked Blank	Turbidity	2017/05/01		98	%	80 - 120
4962159	JMV	Method Blank	Turbidity	2017/05/01	< 0.10		NTU	
4962159	JMV	RPD - Sample/Sample Dup	Turbidity	2017/05/01	4.6		%	20
4962261	NRG	Matrix Spike	Total Alkalinity (Total as CaCO3)	2017/05/02		105	%	80 - 120
4962261	NRG	Spiked Blank	Total Alkalinity (Total as CaCO3)	2017/05/02		109	%	80 - 120
4962261	NRG	Method Blank	Total Alkalinity (Total as CaCO3)	2017/05/02	<5.0		mg/L	
4962261	NRG	RPD - Sample/Sample Dup	Total Alkalinity (Total as CaCO3)	2017/05/02	0.69		%	25
4962263	NRG	Matrix Spike	Dissolved Chloride (CI)	2017/05/02		97	%	80 - 120
4962263	NRG	QC Standard	Dissolved Chloride (CI)	2017/05/02		104	%	80 - 120
4962263	NRG	Spiked Blank	Dissolved Chloride (CI)	2017/05/02		104	%	80 - 120
4962263	NRG	Method Blank	Dissolved Chloride (CI)	2017/05/02	<1.0		mg/L	
4962263	NRG	RPD - Sample/Sample Dup	Dissolved Chloride (Cl)	2017/05/02	2.3		%	25
4962266	NRG	Matrix Spike	Dissolved Sulphate (SO4)	2017/05/03		115	%	80 - 120
4962266	NRG	Spiked Blank	Dissolved Sulphate (SO4)	2017/05/03		112	%	80 - 120
4962266	NRG	Method Blank	Dissolved Sulphate (SO4)	2017/05/03	<2.0		mg/L	
4962266	NRG	RPD - Sample/Sample Dup	Dissolved Sulphate (SO4)	2017/05/03	1.9		%	25
4962271	NRG	Matrix Spike	Reactive Silica (SiO2)	2017/05/02		91	%	80 - 120
4962271	NRG	Spiked Blank	Reactive Silica (SiO2)	2017/05/02		97	%	80 - 120
4962271	NRG	Method Blank	Reactive Silica (SiO2)	2017/05/02	<0.50		mg/L	
4962271	NRG	RPD - Sample/Sample Dup	Reactive Silica (SiO2)	2017/05/02	2.1		%	25
4962279	NRG	Spiked Blank	Colour	2017/05/03		104	%	80 - 120
4962279	NRG	Method Blank	Colour	2017/05/03	<5.0		TCU	
4962279	NRG	RPD - Sample/Sample Dup	Colour	2017/05/03	NC		%	20
4962282	NRG	Matrix Spike	Orthophosphate (P)	2017/05/02	110	100	%	80 - 120
4962282	NRG	Spiked Blank	Orthophosphate (P)	2017/05/02		100	%	80 - 120
4962282	NRG	Method Blank	Orthophosphate (P)	2017/05/02	<0.010	100	mg/L	00 120
4962282	NRG	RPD - Sample/Sample Dup	Orthophosphate (P)	2017/05/02	4.6		%	25
4962287	NRG	Matrix Spike	Nitrate + Nitrite (N)	2017/05/02	4.0	95	%	80 - 120
4962287	NRG	Spiked Blank	Nitrate + Nitrite (N)	2017/05/02		103	%	80 - 120
4962287	NRG	Method Blank	Nitrate + Nitrite (N)	2017/05/02	<0.050	103	∕₀ mg/L	00 - 120
4962287	NRG	RPD - Sample/Sample Dup	Nitrate + Nitrite (N)	2017/05/02	1.7		// // // // // // // // // // // // //	25
4962292	NRG	Matrix Spike	Nitrite (N)	2017/05/02	1.7	103	%	80 - 120
4962292	NRG	Spiked Blank	Nitrite (N)	2017/05/02		103	%	80 - 120
4962292	NRG	Method Blank	Nitrite (N)	2017/05/02	<0.010	101	mg/L	00 - 120
4962292	NRG	RPD - Sample/Sample Dup	Nitrite (N)	2017/05/02	NC		// // // // // // // // // // // // //	25
4962307	NRG	Matrix Spike(EHA237)	Total Alkalinity (Total as CaCO3)	2017/05/02	NC	103	%	80 - 120
4962307	NRG	Spiked Blank	Total Alkalinity (Total as CaCO3)	2017/05/03		103	%	80 - 120
4962307	NRG	•	Total Alkalinity (Total as CaCO3)	2017/05/03	<5.0	100		00 - 120
4962307	NRG	RPD - Sample/Sample Dup	Total Alkalinity (Total as CaCO3)	2017/05/02	NC		mg/L	25
		Matrix Spike(EHA237)			INC	NC	%	
4962319	NRG	,	Dissolved Chloride (CI)	2017/05/02 2017/05/02		NC	%	80 - 120
4962319	NRG	QC Standard	Dissolved Chloride (Cl)			107 99	% %	80 - 120
4962319	NRG	Spiked Blank	Dissolved Chloride (CI)	2017/05/02	-1.0	99		80 - 120
4962319	NRG	Method Blank	Dissolved Chloride (CI)	2017/05/02	<1.0		mg/L	25
4962319	NRG	RPD - Sample/Sample Dup	Dissolved Chloride (CI)	2017/05/02	1.4	420 (2)	%	25
4962327	NRG	Matrix Spike(EHA237)	Dissolved Sulphate (SO4)	2017/05/03		139 (3)	%	80 - 120
4962327	NRG	Spiked Blank	Dissolved Sulphate (SO4)	2017/05/03	.2.0	113	%	80 - 120
4962327	NRG	Method Blank	Dissolved Sulphate (SO4)	2017/05/03	<2.0		mg/L	
4962327	NRG	RPD - Sample/Sample Dup	Dissolved Sulphate (SO4)	2017/05/03	NC		%	25
4962331	NRG	Matrix Spike(EHA237)	Reactive Silica (SiO2)	2017/05/02		96	%	80 - 120
4962331	NRG	Spiked Blank	Reactive Silica (SiO2)	2017/05/02	a = -	96	%	80 - 120
4962331	NRG	Method Blank	Reactive Silica (SiO2)	2017/05/02	<0.50		mg/L	

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Your P.O. #: A08530 Sampler Initials: LL

04/06								
QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
4962331	NRG	RPD - Sample/Sample Dup	Reactive Silica (SiO2)	2017/05/02	3.8	70 NECOVERY	%	25
4962336	NRG	Spiked Blank	Colour	2017/05/03	3.0	100	%	80 - 120
4962336	NRG	Method Blank	Colour	2017/05/03	<5.0	100	TCU	00 120
4962336	NRG	RPD - Sample/Sample Dup	Colour	2017/05/03	3.7 (2)		%	20
4962341	NRG	Matrix Spike(EHA237)	Orthophosphate (P)	2017/05/02	3.7 (2)	105	%	80 - 120
4962341	NRG	Spiked Blank	Orthophosphate (P)	2017/05/02		103	%	80 - 120
4962341	NRG	Method Blank	Orthophosphate (P)	2017/05/02	<0.010	103	mg/L	00 120
4962341	NRG	RPD - Sample/Sample Dup	Orthophosphate (P)	2017/05/02	21		%	25
4962343	NRG	Matrix Spike(EHA237)	Nitrate + Nitrite (N)	2017/05/02		90	%	80 - 120
4962343	NRG	Spiked Blank	Nitrate + Nitrite (N)	2017/05/02		98	%	80 - 120
4962343	NRG	Method Blank	Nitrate + Nitrite (N)	2017/05/02	<0.050	30	mg/L	00 120
4962343	NRG	RPD - Sample/Sample Dup	Nitrate + Nitrite (N)	2017/05/02	NC		%	25
4962344	NRG	Matrix Spike(EHA237)	Nitrite (N)	2017/05/02	110	95	%	80 - 120
4962344	NRG	Spiked Blank	Nitrite (N)	2017/05/02		103	%	80 - 120
4962344	NRG	Method Blank	Nitrite (N)	2017/05/02	<0.010	103	mg/L	00 120
4962344	NRG	RPD - Sample/Sample Dup	Nitrite (N)	2017/05/02	NC		%	25
4962351	LPW	QC Standard	Total Suspended Solids	2017/05/04	140	98	%	80 - 120
4962351	LPW	Method Blank	Total Suspended Solids	2017/05/04	<1.0	30	mg/L	00 120
4962351	LPW	RPD - Sample/Sample Dup	Total Suspended Solids	2017/05/04	12		%	25
4962508	BAN	Matrix Spike	Dissolved Aluminum (Al)	2017/05/04	12	NC	%	80 - 120
4302300	DAIN	Width Spike	Dissolved Antimony (Sb)	2017/05/02		113	%	80 - 120
			Dissolved Arsenic (As)	2017/05/02		99	%	80 - 120
			Dissolved Barium (Ba)	2017/05/02		NC	%	80 - 120
			Dissolved Beryllium (Be)	2017/05/02		108	%	80 - 120
			Dissolved Bismuth (Bi)	2017/05/02		103	%	80 - 120
			Dissolved Boron (B)	2017/05/02		108	%	80 - 120
			Dissolved Cadmium (Cd)	2017/05/02		103	%	80 - 120
			Dissolved Calcium (Ca)	2017/05/02		NC	%	80 - 120
			Dissolved Chromium (Cr)	2017/05/02		95	%	80 - 120
			Dissolved Cobalt (Co)	2017/05/02		92	%	80 - 120
			Dissolved Copper (Cu)	2017/05/02		90	%	80 - 120
			Dissolved Iron (Fe)	2017/05/02		NC	%	80 - 120
			Dissolved Lead (Pb)	2017/05/02		98	%	80 - 120
			Dissolved Magnesium (Mg)	2017/05/02		NC	%	80 - 120
			Dissolved Manganese (Mn)	2017/05/02		NC	%	80 - 120
			Dissolved Molybdenum (Mo)	2017/05/02		113	%	80 - 120
			Dissolved Nickel (Ni)	2017/05/02		NC	%	80 - 120
			Dissolved Phosphorus (P)	2017/05/02		107	%	80 - 120
			Dissolved Potassium (K)	2017/05/02		NC	%	80 - 120
			Dissolved Selenium (Se)	2017/05/02		101	%	80 - 120
			Dissolved Silver (Ag)	2017/05/02		100	%	80 - 120
			Dissolved Sodium (Na)	2017/05/02		NC	%	80 - 120
			Dissolved Strontium (Sr)	2017/05/02		NC	%	80 - 120
			Dissolved Thallium (TI)	2017/05/02		102	%	80 - 120
			Dissolved Tin (Sn)	2017/05/02		116	%	80 - 120
			Dissolved Titanium (Ti)	2017/05/02		103	%	80 - 120
			Dissolved Uranium (U)	2017/05/02		112	%	80 - 120
			Dissolved Vanadium (V)	2017/05/02		99	%	80 - 120
			Dissolved Zinc (Zn)	2017/05/02		92	%	80 - 120
	BAN	Spiked Blank	Dissolved Aluminum (AI)	2017/05/02		107	%	80 - 120
4962508								

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Your P.O. #: A08530 Sampler Initials: LL

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limit
			Dissolved Arsenic (As)	2017/05/02		98	%	80 - 120
			Dissolved Barium (Ba)	2017/05/02		100	%	80 - 120
			Dissolved Beryllium (Be)	2017/05/02		105	%	80 - 120
			Dissolved Bismuth (Bi)	2017/05/02		108	%	80 - 120
			Dissolved Boron (B)	2017/05/02		105	%	80 - 120
			Dissolved Cadmium (Cd)	2017/05/02		102	%	80 - 120
			Dissolved Calcium (Ca)	2017/05/02		105	%	80 - 120
			Dissolved Chromium (Cr)	2017/05/02		97	%	80 - 120
			Dissolved Cobalt (Co)	2017/05/02		98	%	80 - 120
			Dissolved Copper (Cu)	2017/05/02		96	%	80 - 120
			Dissolved Iron (Fe)	2017/05/02		103	%	80 - 12
			Dissolved Lead (Pb)	2017/05/02		102	%	80 - 12
			Dissolved Magnesium (Mg)	2017/05/02		110	%	80 - 12
			Dissolved Manganese (Mn)	2017/05/02		103	%	80 - 12
			Dissolved Molybdenum (Mo)	2017/05/02		104	%	80 - 12
			Dissolved Nickel (Ni)	2017/05/02		98	%	80 - 12
			Dissolved Phosphorus (P)	2017/05/02		109	%	80 - 12
			Dissolved Potassium (K)	2017/05/02		111	%	80 - 12
			Dissolved Selenium (Se)	2017/05/02		101	%	80 - 12
			Dissolved Silver (Ag)	2017/05/02		100	%	80 - 12
			Dissolved Sodium (Na)	2017/05/02		105	%	80 - 12
			Dissolved Strontium (Sr)	2017/05/02		103	%	80 - 12
			Dissolved Thallium (TI)	2017/05/02		106	%	80 - 12
			Dissolved Tin (Sn)	2017/05/02		110	%	80 - 12
			Dissolved Titanium (Ti)	2017/05/02		101	%	80 - 12
			Dissolved Uranium (U)	2017/05/02		113	%	80 - 12
			Dissolved Vanadium (V)	2017/05/02		99	%	80 - 12
			Dissolved Zinc (Zn)	2017/05/02		102	%	80 - 12
962508	BAN	Method Blank	Dissolved Aluminum (AI)	2017/05/02	<5.0		ug/L	
			Dissolved Antimony (Sb)	2017/05/02	<1.0		ug/L	
			Dissolved Arsenic (As)	2017/05/02	<1.0		ug/L	
			Dissolved Barium (Ba)	2017/05/02	<1.0		ug/L	
			Dissolved Beryllium (Be)	2017/05/02	<1.0		ug/L	
			Dissolved Bismuth (Bi)	2017/05/02	<2.0		ug/L	
			Dissolved Boron (B)	2017/05/02	<50		ug/L	
			Dissolved Cadmium (Cd)	2017/05/02	< 0.010		ug/L	
			Dissolved Calcium (Ca)	2017/05/02	<100		ug/L	
			Dissolved Chromium (Cr)	2017/05/02	<1.0		ug/L	
			Dissolved Cobalt (Co)	2017/05/02	< 0.40		ug/L	
			Dissolved Copper (Cu)	2017/05/02	<2.0		ug/L	
			Dissolved Iron (Fe)	2017/05/02	<50		ug/L	
			Dissolved Lead (Pb)	2017/05/02	< 0.50		ug/L	
			Dissolved Magnesium (Mg)	2017/05/02	<100		ug/L	
			Dissolved Manganese (Mn)	2017/05/02	<2.0		ug/L	
			Dissolved Molybdenum (Mo)	2017/05/02	<2.0		ug/L	
			Dissolved Nickel (Ni)	2017/05/02	<2.0		ug/L	
		Dissolved Ph	Dissolved Phosphorus (P)	2017/05/02	<100		ug/L	
			Dissolved Potassium (K)	2017/05/02	<100		ug/L	
			Dissolved Selenium (Se)	2017/05/02	<1.0		ug/L	
			Dissolved Silver (Ag)	2017/05/02	<0.10		ug/L	
			Dissolved Sodium (Na)	2017/05/02	<100		ug/L	

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Your P.O. #: A08530 Sampler Initials: LL

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			Dissolved Strontium (Sr)	2017/05/02	<2.0		ug/L	
			Dissolved Thallium (TI)	2017/05/02	<0.10		ug/L	
			Dissolved Tin (Sn)	2017/05/02	<2.0		ug/L	
			Dissolved Titanium (Ti)	2017/05/02	<2.0		ug/L	
			Dissolved Uranium (U)	2017/05/02	< 0.10		ug/L	
			Dissolved Vanadium (V)	2017/05/02	<2.0		ug/L	
			Dissolved Zinc (Zn)	2017/05/02	<5.0		ug/L	
4962508	BAN	RPD - Sample/Sample Dup	Dissolved Aluminum (Al)	2017/05/02	0.65		%	20
			Dissolved Antimony (Sb)	2017/05/02	NC		%	20
			Dissolved Arsenic (As)	2017/05/02	0.31		%	20
			Dissolved Barium (Ba)	2017/05/02	1.1		%	20
			Dissolved Beryllium (Be)	2017/05/02	NC		%	20
			Dissolved Bismuth (Bi)	2017/05/02	NC		%	20
			Dissolved Boron (B)	2017/05/02	NC		%	20
			Dissolved Cadmium (Cd)	2017/05/02	0.47		%	20
			Dissolved Calcium (Ca)	2017/05/02	0.48		%	20
			Dissolved Chromium (Cr)	2017/05/02	3.1		%	20
			Dissolved Cobalt (Co)	2017/05/02	1.1		%	20
			Dissolved Copper (Cu)	2017/05/02	1.2		%	20
			Dissolved Iron (Fe)	2017/05/02	1.6		%	20
			Dissolved Lead (Pb)	2017/05/02	1.3		%	20
			Dissolved Magnesium (Mg)	2017/05/02	1.2		%	20
			Dissolved Manganese (Mn)	2017/05/02	0.61		%	20
			Dissolved Molybdenum (Mo)	2017/05/02	NC		%	20
			Dissolved Nickel (Ni)	2017/05/02	1.7		%	20
			Dissolved Phosphorus (P)	2017/05/02	NC		%	20
			Dissolved Potassium (K)	2017/05/02	0.32		%	20
			` '					
			Dissolved Selenium (Se)	2017/05/02	NC		%	20
			Dissolved Silver (Ag)	2017/05/02	NC 2.0		%	20
			Dissolved Sodium (Na)	2017/05/02	2.0		%	20
			Dissolved Strontium (Sr)	2017/05/02	0.60		%	20
			Dissolved Thallium (TI)	2017/05/02	NC		%	20
			Dissolved Tin (Sn)	2017/05/02	NC		%	20
			Dissolved Titanium (Ti)	2017/05/02	NC		%	20
			Dissolved Uranium (U)	2017/05/02	3.5		%	20
			Dissolved Vanadium (V)	2017/05/02	NC		%	20
			Dissolved Zinc (Zn)	2017/05/02	1.2		%	20
4972947	COP	Matrix Spike	Total Ammonia-N	2017/05/08		91	%	80 - 120
4972947	COP	Spiked Blank	Total Ammonia-N	2017/05/08		98	%	85 - 115
4972947	COP	Method Blank	Total Ammonia-N	2017/05/08	< 0.050		mg/L	
4972947	COP	RPD - Sample/Sample Dup	Total Ammonia-N	2017/05/08	9.2		%	20
4972953	COP	Matrix Spike	Total Ammonia-N	2017/05/08		98	%	80 - 120
4972953	COP	Spiked Blank	Total Ammonia-N	2017/05/08		98	%	85 - 115
4972953	COP	Method Blank	Total Ammonia-N	2017/05/08	< 0.050		mg/L	
4972953	COP	RPD - Sample/Sample Dup	Total Ammonia-N	2017/05/08	3.9		%	20
4973133	COP	Matrix Spike	Total Ammonia-N	2017/05/08		96	%	80 - 120
4973133	COP	Spiked Blank	Total Ammonia-N	2017/05/08		97	%	85 - 115
4973133	COP	Method Blank	Total Ammonia-N	2017/05/08	< 0.050		mg/L	
4973133	COP	RPD - Sample/Sample Dup	Total Ammonia-N	2017/05/08	0.98		%	20
4973137	COP	Matrix Spike(EHA225)	Total Ammonia-N	2017/05/08		91	%	80 - 120
4973137	COP	Spiked Blank	Total Ammonia-N	2017/05/08		97	%	85 - 115

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Your P.O. #: A08530 Sampler Initials: LL

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
4973137	COP	Method Blank	Total Ammonia-N	2017/05/08	< 0.050		mg/L	
4973137	COP	RPD - Sample/Sample Dup	Total Ammonia-N	2017/05/08	NC		%	20
4973879	COP	Matrix Spike	Total Ammonia-N	2017/05/09		96	%	80 - 120
4973879	COP	Spiked Blank	Total Ammonia-N	2017/05/09		98	%	85 - 115
4973879	COP	Method Blank	Total Ammonia-N	2017/05/09	< 0.050		mg/L	
4973879	COP	RPD - Sample/Sample Dup	Total Ammonia-N	2017/05/09	0.19		%	20

N/A = Not Applicable

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

- (1) Low level lab contamination. Minimal impact on sample data quality.
- (2) Elevated reporting limit due to sample matrix.
- (3) Elevated matrix spike recovery due to sample matrix, result confirmed by repeat analysis.

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Your P.O. #: A08530 Sampler Initials: LL

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Mike MacGillivray, Scientific Specialist (Inorganics)

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Page 56 of 59

	-	MANUEL IN.				Report Information	ation		ij		Project Information	formation		Laborato	Laboratory Use Only	
Company Name		Corp.		Company Name	0	100				Quotation #	B72846			Maxxam Job #	98	Bottle Order #:
Contact Name				Contact Name	Lisa Ladouceur	7	Aventa	0		#'0'#	AO	A08550		RIGHTA		
Address	9/ Iroop Ave	2000		Address						Project #	P-001090	P-0010903-0-00-205		0021010	-	606952
	Darrmouth NS B3B 2A7		4	T						Project Name				Chain Of Custody Record		Project Manager
Phone	(902) 468-6486 x Fax: Dartmouth AP@englobecorp.com		(902) 468-4919 x	Phone	lisa.ladouce	Joeur@englobecorp.com	Fax: corp.com			Site # Sampled By	Lake Ger	Lake George Road, Lake George,	te George,	C#606952-01-01		Michelle Hill
Regulatory Criteria:	riteria:			Special	Special instructions				ANAL	ANALYSIS REQUESTED (PLEASE BE SPECIFIC)	E BE SPECIFI	(0		Tumaround Time (TAT) Required:	(TAT) Required:	
							ш						Regul	Please provide advance notice for tush projects Reouler (Standard) TAT:	notice for rush project	
* Specify Ma	strix: Surface/Ground/Law	katertSewado/Effl.umUSeawaler				pav		(VV'FF)	spilo	SW			(wift b Stand Pleas doys	Virginia (version) 1717 is not specified): Standard TAT = 5.7 Working days for most leate. Please note: Standard TAT for certain tests such as BOD and Dioxins/Furins are > 5 days - confact your Project Managal for details.	osts. such as BOD and Dio ifs.	Schaffurans are >
	Potable/Nonpotable/Tissu	Poutlankorpotatka/TexueiSoli/SkdgeNetal				asar9 & be	eniupeA no	/O) latoT	S babnad	ater Diss.			Job Date F	Job Specific Rush TAT (if applies to entire submission) Date Required:	re submission) Time Required:	
	SAMPLES MUST BE KEP	SAMPLES MUST BE KEPT COOL (< 10°C.) FROM TIME OF SAMPLING UNTIL DELIVERY TO MAXXAM	OF SAMPLING	UNTIL DELIVERY T	O MAXXAM	Pallia	Filtration Plant	_	isns i	W SIE						
Sample	Sample Barcode Label	Sample (Location) Identification		Date Sampless	Time Sampled	Matrix	deJ	Water	sto∓	Mets			Bothes		Sammens / Pazards / Omer Required Analysis	siske
		SW1	20	30/4/13		Sw 70	×	×	×	×			0			
2		SWZ	6	41/4/56		Sw 8	×	×	×	×			9			
0		SW3	- 0	41141136		Sw N	×	×	×	×			٥			
9		SW4	18	26/2/13		SWA	×	×					7			
		SW5	- 75	41/14/58		SWN	×	×					I			
		SW6	5.7	36/4/13		SE	×	×					I			
		SW7	- 0	75/4/17		SUX	×	×					7			
		SW8	. 6	35/4/17		Sw	×	×					7,	t.		
6		SW9	- 6	35/4/17		500 0	×	×					I	ند		
10	1	- SW10	7	1		SON	2	×	1				I	1 Dey		
RELIE	RELINQUISHED BY: (Signature/Print)	(Print)	Date: (YYMMYDD)		11/1	RECEIVED	RECEIVED BY: (Signature/Print)	e/Print)	1	Date: (YY/MM/DD)	Time	# jars used and not submitted	The families	Lab Use Only	Overload Sand Indiana and Constant	of our Contact
(tuck	Tanker Com		11 (17	مرود التاميد	1	~	212	1000	0			_		Terrorentary (1) on Record	Yes	No

Maxxam Analytics International Corporation ola Maxxam Analytics

Page 57 of 59

Company Name Comp	Project Information	Laboratory Use Only	
Accounts Payable Accounts Pa	872846	Maxxam Job II Bo	Bottle Order#:
Darfmouth AP@englobecorp.com Special instructions Part Second instructions Part Second instructions Second instruction	A085520	- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Secret S	P-0010903-0-00-205	1	606952
Special Institution AP@englobecorp.com Email Special Institution Special Institu		Chain Of Gustody Record	Project Manager
Special instructions Special instructions	Lake George Road, Lake George,	C#606952-02-01	Michello Hill
Solids Swingling Swingli	PLEASE BE SPECIFIC)	Tumeround Time (TAT) Required:	
3 3 3 3 3 3 3 3 3 3		Pleaso provide advance notice for rush projects	jects
Date Sampure Unit Delivery Total Curin Delivery T		Regular (Standard) TAT: The bapping to the 27 You'ng days for most tests. Standard TAT = 5.7 Working days for most tests. Please note: Standard TAT for certain lesses such as BOD and Dioxinuffurance are = 5 days - contact your Project Manager for daisais.	Dioxins/Furans are *
SW11 SW12 SW14 SW14 SW16 SW16 SW16 SW16 SW16 SW16 SW17 SW17 SW17 SW17 SW16 SW17 SW16 SW17		Job Specific Rush TAT (if applies to entire submission) Date Required: Time Required:	
Switz			
35/4/79 36/4/79 36/4/79 36/4/79 560 % × × × × × × × × × × × × × × × × × ×		# of Comments / Mazards / Other Required Analysis Bottless	d Analysis
36/4/19 36/4/19 50. 38		T	
25/4/17 36/		Н	
36/4/17 36/		7	
		9	
35/4/13 35/4/13 35/4/13 5W X X X X X X X X X X X X X X X X X X X		7	
× × × × × × × × × × × × × × × × × × ×		1	
35/4/13 SW X X X X X X X X X X X X X X X X X X		H	
× × × 50		9	
		7	
PIB JS/4/17 SW X X X		· J	}
*: (VY/MM/DD) Time RECEIVED BY: (Signature	Time # jars used and	Lab Use Only	4000
12 1 1 1 0 00 1 1 1 1 1 1 1 1 1 1 1 1 1	_	Temperature ("C) on Receipt	Yes No

nel Corporation of a Maxxam Analytics Maxxam Analytics Into

		HAORE IO			nepoli modmano	annu				Projec	Project Information			Laboratory Use Only	y Use Only
Company Name	#41009 Englobe Corp.	be Corp.	Company Name		,				Quotation #	B72846	9			Muxxam Job #	Bottle Order II:
Contact Name	Accounts Payable	ile	Contact Nimo	Lisa Ladouceur	AA/	son Col	9		P.O.#	.)	A08530	30		010	
Address	97 Troop Ave		Address		,				Project #	P-0010	P-0010903-0-00-205	205		5+84766	
	Dartmouth NS B3B 2A7								Project Name					Chain Of Custody Record	Project Manager
	(902) 468-6486 x	(902) 468-6486 x Fax. (902) 468-4919 x	919 x Phone	Fac.	negonopopo	Fac			Site #	Lake C	Beorge Ros	Lake George Road, Lake George,	orge,		Michalle Hitt
Regulatory Criteria:	eria:			Special Instructions				ANALYS	ANALYSIS REQUESTED (PLEASE BE SPECIFIC)	A EASE BE SPEC	IFIC)	1000		Turnaround Time (TAT) Required:	AT) Required:
														Please provide advance notice for rush projects	ice for rush projects
and other	or Cardend County	Provided Planter of Fill meet I Consuction			pev		(T)'VV/	spilo	SW				Regular ((will be op Standard Please nd dayse-cod	Rogular (Standard) TAT: (will be applied if Rush TAT is not specified): Standard TAT = \$5' Workfold Glys for most leats Types are their standard TAT for extent tests such as BDD and DiocinsFrans are > 5 Glys-context year Physical Mampur Not details.	ta ch as BOD and DownsFruns are >
	Potable/Nonpotable/Tis	Potatral Porposither Tissue Soil/Studge/Netal			eser9 & t	eniupaA r	VO) Isto	S papua	er Diss.				Job Specific Date Required:	Rush TAT (if applies to entire	submission) Time Required:
en.	AMPLES MUST BE KE	SAMPLES MUST BE KEPT COOL (< 10°C) FROM TIME OF SAMPLING UNTIL DELIVERY TO MAXXAM	MPLING UNTIL DELIVERY T	D MAXOGAM	MINERAL	iltration tic RC		dsns	IsW a						
Sample	Sample Bavoode Lobel	Sample (Locator)) Identification	Date Sampled	Tires Sampled	Marris	Lab F		lstoT	Metal				Bottles	Contracts / Hazard	Comments / Nazards / Other Requend Analysis
		P2A	71/4/SE		Sw >	×	×						I		
		P2B	SSHVA		SW N	×	×						7		
		P3	35/4/4		543 8	×	×						7		
		C.BACKT	1	A	SS	×	×	1	1	1	1	1	5	- DRV	
		BACK2	35/4/14	72	SLUX	×	×	×	×				9	,	
													-		7.01828.1512
RELING	- RELINQUISHED BY: (Signature Print)		Date: (YY/MMM/DD) Time		RECEIVED	RECEIVED BY: (Signature/Print)	(Print)		Date: (YY/MM/DD)	(DD) Time	_	# Jars used and		Lab Use Only	
1.6	1	7	JE491 -JE141	164	9	KION	12.00C	CE			nota	2	Ne Salvanive Ty	Temperature (PC) on Receipt	Putaci
14p	TAMERICA	1		,									7	1 to the content	Vos. No

Maxxam Analytics International Corporation o/a Maxxam Analytics

	2	A V
	_	Corre
	5	470
1	X	93.00
	X	1
	0	Berraie
	5	4
	_	

ADDITIONAL COOLER TEMPERATURE RECORD

CHAIN-OF-CUSTODY RECORD

COURT OBSERVATIONS: COURTS
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Your Project #: P-0010903-0-00-205 Site#: Lake George Road, Lake George,

Site Location: Lake George Road, Lake George, NS

Your C.O.C. #: 606945-01-01, 606945-02-01

Attention:Lisa Ladouceur

Englobe Corp.
97 Troop Ave
Dartmouth, NS
CANADA B3B 2A7

Report Date: 2017/05/09

Report #: R4453428 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B784339 Received: 2017/04/26, 16:25

Sample Matrix: Water # Samples Received: 18

·		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Carbonate, Bicarbonate and Hydroxide	17	N/A	2017/05/02	N/A	SM 22 4500-CO2 D
Carbonate, Bicarbonate and Hydroxide	1	N/A	2017/05/03	N/A	SM 22 4500-CO2 D
Alkalinity	16	N/A	2017/05/02	ATL SOP 00013	EPA 310.2 R1974 m
Alkalinity	2	N/A	2017/05/03	ATL SOP 00013	EPA 310.2 R1974 m
Chloride	18	N/A	2017/05/02	ATL SOP 00014	SM 22 4500-Cl- E m
Colour	18	N/A	2017/05/03	ATL SOP 00020	SM 22 2120C m
Conductance - water	17	N/A	2017/05/02	ATL SOP 00004	SM 22 2510B m
Conductance - water	1	N/A	2017/05/03	ATL SOP 00004	SM 22 2510B m
Hardness (calculated as CaCO3)	18	N/A	2017/05/02	ATL SOP 00048	SM 22 2340 B
Mercury - Total (CVAA,LL)	17	2017/04/28	2017/05/01	ATL SOP 00026	EPA 245.1 R3 m
Mercury - Total (CVAA,LL)	1	2017/05/02	2017/05/03	ATL SOP 00026	EPA 245.1 R3 m
Metals Water Diss. MS (2)	13	N/A	2017/05/02	ATL SOP 00058	EPA 6020A R1 m
Metals Water Diss. MS (as rec'd)	5	N/A	2017/05/02	ATL SOP 00058	EPA 6020A R1 m
Metals Water Total MS	16	2017/05/01	2017/05/01	ATL SOP 00058	EPA 6020A R1 m
Metals Water Total MS	1	2017/05/01	2017/05/02	ATL SOP 00058	EPA 6020A R1 m
Metals Water Total MS	1	2017/05/02	2017/05/02	ATL SOP 00058	EPA 6020A R1 m
Ion Balance (% Difference)	18	N/A	2017/05/08	N/A	Auto Calc.
Anion and Cation Sum	18	N/A	2017/05/08	N/A	Auto Calc.
Total Ammonia-N (1)	18	N/A	2017/05/08	CAM SOP-00441	EPA GS I-2522-90 m
Nitrogen - Nitrate + Nitrite	18	N/A	2017/05/02	ATL SOP 00016	USGS SOPINCF0452.2 m
Nitrogen - Nitrite	18	N/A	2017/05/02	ATL SOP 00017	SM 22 4500-NO2- B m
Nitrogen - Nitrate (as N)	18	N/A	2017/05/03	ATL SOP 00018	ASTM D3867-16
pH (3)	17	N/A	2017/05/02	ATL SOP 00003	SM 22 4500-H+ B m
pH (3)	1	N/A	2017/05/03	ATL SOP 00003	SM 22 4500-H+ B m
Phosphorus - ortho	18	N/A	2017/05/02	ATL SOP 00021	EPA 365.2 m
Sat. pH and Langelier Index (@ 20C)	18	N/A	2017/05/08	ATL SOP 00049	Auto Calc.
Sat. pH and Langelier Index (@ 4C)	18	N/A	2017/05/08	ATL SOP 00049	Auto Calc.
Reactive Silica	18	N/A	2017/05/02	ATL SOP 00022	EPA 366.0 m
Sulphate	18	N/A	2017/05/03	ATL SOP 00023	ASTMD516-11 m
Total Dissolved Solids (TDS calc)	18	N/A	2017/05/08	N/A	Auto Calc.

Your Project #: P-0010903-0-00-205 Site#: Lake George Road, Lake George,

Site Location: Lake George Road, Lake George, NS

Your C.O.C. #: 606945-01-01, 606945-02-01

Attention:Lisa Ladouceur

Englobe Corp.
97 Troop Ave
Dartmouth, NS
CANADA B3B 2A7

Report Date: 2017/05/09

Report #: R4453428 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B784339 Received: 2017/04/26, 16:25

Sample Matrix: Water # Samples Received: 18

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Organic carbon - Total (TOC) (4)	6	N/A	2017/04/28	ATL SOP 00037	SM 22 5310C m
Organic carbon - Total (TOC) (4)	12	N/A	2017/05/01	ATL SOP 00037	SM 22 5310C m
Turbidity	3	N/A	2017/05/01	ATL SOP 00011	EPA 180.1 R2 m
Turbidity	15	N/A	2017/05/02	ATL SOP 00011	EPA 180.1 R2 m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported: unless indicated otherwise, associated sample data are not blank corrected.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) This test was performed by Maxxam Analytics Mississauga
- (2) Sample filtered in laboratory prior to analysis for dissolved metals.
- (3) The APHA Standard Method require pH to be analyzed within 15 minutes of sampling and therefore field analysis is required for compliance. All Laboratory pH analyses in this report are reported past the APHA Standard Method holding time.
- (4) TOC / DOC present in the sample should be considered as non-purgeable TOC / DOC.

Attention:Lisa Ladouceur

Englobe Corp. 97 Troop Ave Dartmouth, NS CANADA B3B 2A7 Your Project #: P-0010903-0-00-205 Site#: Lake George Road, Lake George,

Site Location: Lake George Road, Lake George, NS

Your C.O.C. #: 606945-01-01, 606945-02-01

Report Date: 2017/05/09

Report #: R4453428 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B784339 Received: 2017/04/26, 16:25

Encryption Key

Maxxam 09 May 2017 09:45:45

Please direct all questions regarding this Certificate of Analysis Series Project Manager.

Michelle Hill, Project Manager Email: MHill@maxxam.ca Phone# (902)420-0203 Ext:289

This report has been generated and distributed using a secure automated process.

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Sampler Initials: LL

ATL. RCAP-MS DISSOLVED (LABFILT) IN W

Maxxam ID		EHA561			EHA563	EHA563			
Sampling Date		2017/04/26			2017/04/26	2017/04/26			
COC Number		606945-01-01			606945-01-01	606945-01-01			
	UNITS	MW1S	RDL	QC Batch	MW2S	MW2S Lab-Dup	RDL	QC Batch	MDL
Calculated Parameters									
Anion Sum	me/L	2.35	N/A	4959333	3.27		N/A	4959333	N/A
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	83	1.0	4959329	120		1.0	4959329	0.20
Calculated TDS	mg/L	210	1.0	4959338	190		1.0	4959338	0.20
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	4959329	<1.0		1.0	4959329	0.20
Cation Sum	me/L	4.88	N/A	4959333	3.05		N/A	4959333	N/A
Hardness (CaCO3)	mg/L	87	1.0	4959568	91		1.0	4959568	1.0
Ion Balance (% Difference)	%	35.0	N/A	4959332	3.48		N/A	4959332	N/A
Langelier Index (@ 20C)	N/A	-1.81		4959336	-0.743			4959336	
Langelier Index (@ 4C)	N/A	-2.06		4959337	-0.993			4959337	
Nitrate (N)	mg/L	<0.050	0.050	4959709	0.26		0.050	4959709	N/A
Saturation pH (@ 20C)	N/A	8.18		4959336	7.78			4959336	
Saturation pH (@ 4C)	N/A	8.43		4959337	8.03			4959337	
Inorganics	•		•	•			•	•	•
Total Alkalinity (Total as CaCO3)	mg/L	83	5.0	4962307	120 (1)		25	4962307	N/A
Dissolved Chloride (CI)	mg/L	24	1.0	4962319	16		1.0	4962319	N/A
Colour	TCU	540 (1)	250	4962336	16		5.0	4962336	N/A
Nitrate + Nitrite (N)	mg/L	<0.050	0.050	4962343	0.26		0.050	4962343	N/A
Nitrite (N)	mg/L	<0.010	0.010	4962344	<0.010		0.010	4962344	N/A
Total Organic Carbon (C)	mg/L	64 (1)	5.0	4960076	<50 (2)	<50 (2)	50	4962358	N/A
Orthophosphate (P)	mg/L	0.018	0.010	4962341	<0.010		0.010	4962341	N/A
рН	рН	6.37	N/A	4963693	7.04		N/A	4963693	N/A
Reactive Silica (SiO2)	mg/L	15	0.50	4962331	5.9		0.50	4962331	N/A
Dissolved Sulphate (SO4)	mg/L	<2.0	2.0	4962327	22		2.0	4962327	N/A
Turbidity	NTU	>1000	1.0	4963703	>1000		1.0	4963703	0.10
Conductivity	uS/cm	410	1.0	4963694	300		1.0	4963694	N/A
Metals	•		•				•		
Total Mercury (Hg)	ug/L	<0.013	0.013	4959901	0.017		0.013	4959901	N/A
Dissolved Aluminum (AI)	ug/L	47	5.0	4962494	49		5.0	4962494	N/A
Dissolved Antimony (Sb)	ug/L	<1.0	1.0	4962494	<1.0		1.0	4962494	N/A
Dissolved Arsenic (As)	ug/L	1.4	1.0	4962494	<1.0		1.0	4962494	N/A
Dissolved Barium (Ba)	ug/L	43	1.0	4962494	29		1.0	4962494	N/A
	•	•			•	•			

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

- (1) Elevated reporting limit due to sample matrix.
- (2) Reporting limit was increased due to turbidity.

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Sampler Initials: LL

ATL. RCAP-MS DISSOLVED (LABFILT) IN W

Maxxam ID		EHA561			EHA563	EHA563			
Sampling Date		2017/04/26			2017/04/26	2017/04/26			
COC Number		606945-01-01			606945-01-01	606945-01-01			
	UNITS	MW1S	RDL	QC Batch	MW2S	MW2S Lab-Dup	RDL	QC Batch	MDL
Dissolved Beryllium (Be)	ug/L	<1.0	1.0	4962494	<1.0		1.0	4962494	N/A
Dissolved Bismuth (Bi)	ug/L	<2.0	2.0	4962494	<2.0		2.0	4962494	N/A
Dissolved Boron (B)	ug/L	<50	50	4962494	200		50	4962494	N/A
Dissolved Cadmium (Cd)	ug/L	0.11	0.010	4962494	0.034		0.010	4962494	N/A
Dissolved Calcium (Ca)	ug/L	20000	100	4962494	34000		100	4962494	N/A
Dissolved Chromium (Cr)	ug/L	1.8	1.0	4962494	<1.0		1.0	4962494	N/A
Dissolved Cobalt (Co)	ug/L	54	0.40	4962494	1.5		0.40	4962494	N/A
Dissolved Copper (Cu)	ug/L	<2.0	2.0	4962494	23		2.0	4962494	N/A
Dissolved Iron (Fe)	ug/L	70000	50	4962494	58		50	4962494	N/A
Dissolved Lead (Pb)	ug/L	<0.50	0.50	4962494	<0.50		0.50	4962494	N/A
Dissolved Magnesium (Mg)	ug/L	9300	100	4962494	1600		100	4962494	N/A
Dissolved Manganese (Mn)	ug/L	8200	2.0	4962494	610		2.0	4962494	N/A
Dissolved Molybdenum (Mo)	ug/L	<2.0	2.0	4962494	<2.0		2.0	4962494	N/A
Dissolved Nickel (Ni)	ug/L	12	2.0	4962494	<2.0		2.0	4962494	N/A
Dissolved Phosphorus (P)	ug/L	<100	100	4962494	<100		100	4962494	N/A
Dissolved Potassium (K)	ug/L	5000	100	4962494	13000		100	4962494	N/A
Dissolved Selenium (Se)	ug/L	<1.0	1.0	4962494	<1.0		1.0	4962494	N/A
Dissolved Silver (Ag)	ug/L	<0.10	0.10	4962494	<0.10		0.10	4962494	N/A
Dissolved Sodium (Na)	ug/L	6000	100	4962494	21000		100	4962494	N/A
Dissolved Strontium (Sr)	ug/L	220	2.0	4962494	91		2.0	4962494	N/A
Dissolved Thallium (TI)	ug/L	<0.10	0.10	4962494	<0.10		0.10	4962494	N/A
Dissolved Tin (Sn)	ug/L	<2.0	2.0	4962494	<2.0		2.0	4962494	N/A
Dissolved Titanium (Ti)	ug/L	<2.0	2.0	4962494	<2.0		2.0	4962494	N/A
Dissolved Uranium (U)	ug/L	0.24	0.10	4962494	0.24		0.10	4962494	N/A
Dissolved Vanadium (V)	ug/L	<2.0	2.0	4962494	<2.0		2.0	4962494	N/A
Dissolved Zinc (Zn)	ug/L	11	5.0	4962494	5.7		5.0	4962494	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Sampler Initials: LL

ATL. RCAP-MS DISSOLVED (LABFILT) IN W

Maxxam ID		EHA565	EHA565			EHA567			
Sampling Date		2017/04/25	2017/04/25			2017/04/26			
COC Number		606945-01-01	606945-01-01			606945-01-01			
	UNITS	MW3S	MW3S Lab-Dup	RDL	QC Batch	MW4S	RDL	QC Batch	MDL
Calculated Parameters									
Anion Sum	me/L	6.64		N/A	4959708	1.20	N/A	4959708	N/A
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	290		1.0	4959705	12	1.0	4959705	0.20
Calculated TDS	mg/L	340		1.0	4959712	77	1.0	4959712	0.20
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0		1.0	4959705	<1.0	1.0	4959705	0.20
Cation Sum	me/L	6.04		N/A	4959708	0.960	N/A	4959708	N/A
Hardness (CaCO3)	mg/L	270		1.0	4959568	32	1.0	4959568	1.0
Ion Balance (% Difference)	%	4.73		N/A	4959707	11.1	N/A	4959707	N/A
Langelier Index (@ 20C)	N/A	-0.331			4959710	-3.50		4959710	
Langelier Index (@ 4C)	N/A	-0.580			4959711	-3.75		4959711	
Nitrate (N)	mg/L	0.072		0.050	4959709	1.2	0.050	4959709	N/A
Saturation pH (@ 20C)	N/A	7.20			4959710	9.31		4959710	
Saturation pH (@ 4C)	N/A	7.45			4959711	9.56		4959711	
Inorganics	•				•		•		•
Total Alkalinity (Total as CaCO3)	mg/L	290 (1)		25	4962307	12	5.0	4962307	N/A
Dissolved Chloride (CI)	mg/L	21		1.0	4962319	25	1.0	4962319	N/A
Colour	TCU	<5.0		5.0	4962336	<5.0	5.0	4962336	N/A
Nitrate + Nitrite (N)	mg/L	0.072		0.050	4962343	1.2	0.050	4962343	N/A
Nitrite (N)	mg/L	<0.010		0.010	4962344	<0.010	0.010	4962344	N/A
Total Organic Carbon (C)	mg/L	<25 (2)		25	4960076	53 (2)	50	4962358	N/A
Orthophosphate (P)	mg/L	<0.010		0.010	4962341	<0.010	0.010	4962341	N/A
рН	рН	6.87		N/A	4963693	5.81	N/A	4963693	N/A
Reactive Silica (SiO2)	mg/L	18		0.50	4962331	7.3	0.50	4962331	N/A
Dissolved Sulphate (SO4)	mg/L	11		2.0	4962327	8.0	2.0	4962327	N/A
Turbidity	NTU	>1000		1.0	4963703	>1000	1.0	4963703	0.10
Conductivity	uS/cm	540		1.0	4963694	130	1.0	4963694	N/A
Metals									
Total Mercury (Hg)	ug/L	<0.013		0.013	4959901	0.037	0.013	4959901	N/A
Dissolved Aluminum (AI)	ug/L	6.3	6.0	5.0	4962494	100	5.0	4962494	N/A
Dissolved Antimony (Sb)	ug/L	<1.0	<1.0	1.0	4962494	<1.0	1.0	4962494	N/A
Dissolved Arsenic (As)	ug/L	1.1	1.1	1.0	4962494	<1.0	1.0	4962494	N/A
Dissolved Barium (Ba)	ug/L	16	15	1.0	4962494	32	1.0	4962494	N/A
I									

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

- (1) Elevated reporting limit due to sample matrix.
- (2) Reporting limit was increased due to turbidity.

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Sampler Initials: LL

ATL. RCAP-MS DISSOLVED (LABFILT) IN W

Maxxam ID		EHA565	EHA565			EHA567			
Sampling Date		2017/04/25	2017/04/25			2017/04/26			
COC Number		606945-01-01	606945-01-01			606945-01-01			
	UNITS	MW3S	MW3S Lab-Dup	RDL	QC Batch	MW4S	RDL	QC Batch	MDL
Dissolved Beryllium (Be)	ug/L	<1.0	<1.0	1.0	4962494	<1.0	1.0	4962494	N/A
Dissolved Bismuth (Bi)	ug/L	<2.0	<2.0	2.0	4962494	<2.0	2.0	4962494	N/A
Dissolved Boron (B)	ug/L	<50	<50	50	4962494	<50	50	4962494	N/A
Dissolved Cadmium (Cd)	ug/L	0.094	0.083	0.010	4962494	0.14	0.010	4962494	N/A
Dissolved Calcium (Ca)	ug/L	58000	57000	100	4962494	8600	100	4962494	N/A
Dissolved Chromium (Cr)	ug/L	<1.0	<1.0	1.0	4962494	<1.0	1.0	4962494	N/A
Dissolved Cobalt (Co)	ug/L	6.4	6.2	0.40	4962494	26	0.40	4962494	N/A
Dissolved Copper (Cu)	ug/L	3.4	3.1	2.0	4962494	12	2.0	4962494	N/A
Dissolved Iron (Fe)	ug/L	<50	<50	50	4962494	79	50	4962494	N/A
Dissolved Lead (Pb)	ug/L	<0.50	<0.50	0.50	4962494	<0.50	0.50	4962494	N/A
Dissolved Magnesium (Mg)	ug/L	29000	29000	100	4962494	2500	100	4962494	N/A
Dissolved Manganese (Mn)	ug/L	7800	7700	2.0	4962494	5000	2.0	4962494	N/A
Dissolved Molybdenum (Mo)	ug/L	<2.0	<2.0	2.0	4962494	<2.0	2.0	4962494	N/A
Dissolved Nickel (Ni)	ug/L	7.0	6.8	2.0	4962494	6.0	2.0	4962494	N/A
Dissolved Phosphorus (P)	ug/L	<100	<100	100	4962494	<100	100	4962494	N/A
Dissolved Potassium (K)	ug/L	3100	3100	100	4962494	2200	100	4962494	N/A
Dissolved Selenium (Se)	ug/L	<1.0	<1.0	1.0	4962494	<1.0	1.0	4962494	N/A
Dissolved Silver (Ag)	ug/L	<0.10	<0.10	0.10	4962494	<0.10	0.10	4962494	N/A
Dissolved Sodium (Na)	ug/L	14000	14000	100	4962494	5800	100	4962494	N/A
Dissolved Strontium (Sr)	ug/L	360	350	2.0	4962494	34	2.0	4962494	N/A
Dissolved Thallium (TI)	ug/L	<0.10	<0.10	0.10	4962494	<0.10	0.10	4962494	N/A
Dissolved Tin (Sn)	ug/L	<2.0	<2.0	2.0	4962494	<2.0	2.0	4962494	N/A
Dissolved Titanium (Ti)	ug/L	<2.0	<2.0	2.0	4962494	<2.0	2.0	4962494	N/A
Dissolved Uranium (U)	ug/L	0.60	0.59	0.10	4962494	<0.10	0.10	4962494	N/A
Dissolved Vanadium (V)	ug/L	<2.0	<2.0	2.0	4962494	<2.0	2.0	4962494	N/A
Dissolved Zinc (Zn)	ug/L	<5.0	<5.0	5.0	4962494	20	5.0	4962494	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Sampler Initials: LL

ATL. RCAP-MS DISSOLVED (LABFILT) IN W

	1							1	
Maxxam ID		EHA569		EHA570		EHA580			
Sampling Date		2017/04/26		2017/04/26		2017/04/26			
COC Number		606945-01-01		606945-01-01		606945-02-01			
	UNITS	MW5	RDL	MW6S	RDL	MW6D	RDL	QC Batch	MDL
Calculated Parameters									
Anion Sum	me/L	2.24	N/A	6.06	N/A	1.83	N/A	4959708	N/A
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	94	1.0	250	1.0	55	1.0	4959705	0.20
Calculated TDS	mg/L	140	1.0	380	1.0	120	1.0	4959712	0.20
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	<1.0	1.0	<1.0	1.0	4959705	0.20
Cation Sum	me/L	2.38	N/A	7.70	N/A	1.62	N/A	4959708	N/A
Hardness (CaCO3)	mg/L	72	1.0	230	1.0	40	1.0	4959568	1.0
Ion Balance (% Difference)	%	3.03	N/A	11.9	N/A	6.09	N/A	4959707	N/A
Langelier Index (@ 20C)	N/A	-1.64		-0.959		-1.15		4959710	
Langelier Index (@ 4C)	N/A	-1.89		-1.21		-1.40		4959711	
Nitrate (N)	mg/L	<0.050	0.050	<0.050	0.050	<0.050	0.050	4959709	N/A
Saturation pH (@ 20C)	N/A	8.10		7.31		8.56		4959710	
Saturation pH (@ 4C)	N/A	8.35		7.56		8.82		4959711	
Inorganics	•		•		•		•		•
Total Alkalinity (Total as CaCO3)	mg/L	94	5.0	250 (1)	25	55	5.0	4962307	N/A
Dissolved Chloride (CI)	mg/L	13	1.0	40	1.0	16	1.0	4962319	N/A
Colour	TCU	<130 (1)	130	680 (1)	250	<5.0	5.0	4962336	N/A
Nitrate + Nitrite (N)	mg/L	<0.050	0.050	<0.050	0.050	<0.050	0.050	4962343	N/A
Nitrite (N)	mg/L	<0.010	0.010	<0.010	0.010	<0.010	0.010	4962344	N/A
Total Organic Carbon (C)	mg/L	26 (1)	5.0	110 (2)	5.0	<50 (3)	50	4960076	N/A
Orthophosphate (P)	mg/L	0.031	0.010	0.011	0.010	<0.010	0.010	4962341	N/A
рН	рН	6.45	N/A	6.35	N/A	7.41	N/A	4963693	N/A
Reactive Silica (SiO2)	mg/L	24	0.50	30	1.0	21	0.50	4962331	N/A
Dissolved Sulphate (SO4)	mg/L	<2.0	2.0	<2.0	2.0	13	2.0	4962327	N/A
Turbidity	NTU	>1000	1.0	>1000	1.0	>1000	1.0	4963703	0.10
Conductivity	uS/cm	200	1.0	570	1.0	170	1.0	4963694	N/A
Metals									
Total Mercury (Hg)	ug/L	<0.013	0.013	0.062	0.013	<0.013	0.013	4959901	N/A
Dissolved Aluminum (Al)	ug/L	86	5.0	86	5.0	<5.0	5.0	4962494	N/A
Dissolved Antimony (Sb)	ug/L	<1.0	1.0	<1.0	1.0	<1.0	1.0	4962494	N/A
Dissolved Arsenic (As)	ug/L	11	1.0	7.4	1.0	<1.0	1.0	4962494	N/A
Dissolved Barium (Ba)	ug/L	50	1.0	55	1.0	1.8	1.0	4962494	N/A
DDI Danastalila Datastian Limit	•								

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

- (1) Elevated reporting limit due to sample matrix.
- (2) Analysis performed on decanted sample due to sediment content.
- (3) Reporting limit was increased due to turbidity.

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Sampler Initials: LL

ATL. RCAP-MS DISSOLVED (LABFILT) IN W

Maxxam ID		EHA569		EHA570		EHA580			
Sampling Date		2017/04/26		2017/04/26		2017/04/26			
COC Number		606945-01-01		606945-01-01		606945-02-01			
	UNITS	MW5	RDL	MW6S	RDL	MW6D	RDL	QC Batch	MDL
Dissolved Beryllium (Be)	ug/L	<1.0	1.0	<1.0	1.0	<1.0	1.0	4962494	N/A
Dissolved Bismuth (Bi)	ug/L	<2.0	2.0	<2.0	2.0	<2.0	2.0	4962494	N/A
Dissolved Boron (B)	ug/L	<50	50	<50	50	<50	50	4962494	N/A
Dissolved Cadmium (Cd)	ug/L	<0.010	0.010	0.15	0.010	<0.010	0.010	4962494	N/A
Dissolved Calcium (Ca)	ug/L	20000	100	54000	100	11000	100	4962494	N/A
Dissolved Chromium (Cr)	ug/L	<1.0	1.0	2.6	1.0	<1.0	1.0	4962494	N/A
Dissolved Cobalt (Co)	ug/L	4.6	0.40	16	0.40	<0.40	0.40	4962494	N/A
Dissolved Copper (Cu)	ug/L	<2.0	2.0	<2.0	2.0	4.3	2.0	4962494	N/A
Dissolved Iron (Fe)	ug/L	4700	50	45000	50	<50	50	4962494	N/A
Dissolved Lead (Pb)	ug/L	<0.50	0.50	<0.50	0.50	<0.50	0.50	4962494	N/A
Dissolved Magnesium (Mg)	ug/L	5600	100	23000	100	3000	100	4962494	N/A
Dissolved Manganese (Mn)	ug/L	980	2.0	5200	2.0	41	2.0	4962494	N/A
Dissolved Molybdenum (Mo)	ug/L	<2.0	2.0	<2.0	2.0	2.2	2.0	4962494	N/A
Dissolved Nickel (Ni)	ug/L	4.3	2.0	13	2.0	<2.0	2.0	4962494	N/A
Dissolved Phosphorus (P)	ug/L	<100	100	<100	100	<100	100	4962494	N/A
Dissolved Potassium (K)	ug/L	6800	100	6000	100	320	100	4962494	N/A
Dissolved Selenium (Se)	ug/L	<1.0	1.0	<1.0	1.0	<1.0	1.0	4962494	N/A
Dissolved Silver (Ag)	ug/L	<0.10	0.10	<0.10	0.10	<0.10	0.10	4962494	N/A
Dissolved Sodium (Na)	ug/L	12000	100	21000	100	18000	100	4962494	N/A
Dissolved Strontium (Sr)	ug/L	96	2.0	250	2.0	43	2.0	4962494	N/A
Dissolved Thallium (TI)	ug/L	<0.10	0.10	<0.10	0.10	<0.10	0.10	4962494	N/A
Dissolved Tin (Sn)	ug/L	<2.0	2.0	<2.0	2.0	<2.0	2.0	4962494	N/A
Dissolved Titanium (Ti)	ug/L	<2.0	2.0	2.8	2.0	<2.0	2.0	4962494	N/A
Dissolved Uranium (U)	ug/L	<0.10	0.10	1.5	0.10	<0.10	0.10	4962494	N/A
Dissolved Vanadium (V)	ug/L	<2.0	2.0	2.4	2.0	<2.0	2.0	4962494	N/A
Dissolved Zinc (Zn)	ug/L	13	5.0	7.7	5.0	<5.0	5.0	4962494	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Sampler Initials: LL

ATL. RCAP-MS DISSOLVED (LABFILT) IN W

Calculated Parameters Anion Sum	Maxxam ID		EHA581			EHA582			EHA583			
Calculated Parameters	Sampling Date		2017/04/26			2017/04/26			2017/04/25			
Calculated Parameters Anion Sum	COC Number		606945-02-01			606945-02-01			606945-02-01			
Anion Sum me/L 3.60 N/A 4959708 2.43 N/A 4959708 1.54 N/A 4959708 N/A 8Icarb. Alkalinity (calc. as CaCO3) mg/L 150 1.0 4959705 100 1.0 4959705 20 1.0 4959705 0.20 Calculated TDS mg/L 200 1.0 4959712 140 1.0 4959715 96 1.0 4959705 0.20 Calculated TDS mg/L 2.10 1.0 4959712 140 1.0 4959715 96 1.0 4959705 0.20 Carb. Alkalinity (calc. as CaCO3) mg/L 2.10 1.0 4959705 2.10 1.0 4959705 2.10 1.0 4959705 0.20 Cation Sum me/L 3.39 N/A 4959708 2.37 N/A 4959708 1.26 N/A 4959708 N/A Hardness (CaCO3) mg/L 140 1.0 4959568 81 1.0 4959568 36 1.0 4959568 1.0 Ion Balance (% Difference) % 3.00 N/A 4959707 1.25 N/A 4959707 1.00 N/A 4959707 N/A Langelier Index (@ 2OC) N/A 0.4247 4959710 1.181 4959711 3.33 4 4959711 Nitrate (N) mg/L 0.17 0.050 495970 4.050 0.050 495970 0.13 0.050 495971 1.81 4.959711 3.35 4 4959711 Nitrate (N) mg/L 0.17 0.050 495970 4.050 0.050 495970 0.13 0.050 4959710 1.00 alta description (Calc. a) N/A 7.64 4.959710 1.8.29 4.959711 1.8.29 4.959711 9.43 4.959710 1.00 alta description (Calc. a) N/A 7.64 4.959710 1.00 0.050 495970 0.13 0.050 495970 0.13 0.050 495970 0.13 0.050 4959710 1.00 alta description (Calc. a) N/A 7.64 4.959711 1.8.29 4.959711 1.00 0.050 495970 0.13 0.050 4959710 0.050 495970 0.050 0.050 495970 0.13 0.050 4959710 0.050 4959710 0.050 4959710 0.050 4959710 0.050 4959710 0.050 4959710 0.050 4959710 0.050 4959710 0.050 4959710 0.050 4959710 0.050 4959710 0.050 4959710 0.050 4952340 0.050 0.050 4952340 0.050 0.050 4952340 0.050 0.050 4952340 0.050 0.050 4952340 0.050 0.050 4952340 0.050 0.050 4952340 0.050 0.050 4952340 0.050 0.050 4952340 0.050 0.050 4952341 0.050 0.0		UNITS	MW7	RDL	QC Batch	MW8	RDL	QC Batch	MW9	RDL	QC Batch	MDL
Bicarb. Alkalinity (calc. as CaCO3) mg/L 150 1.0 4959705 100 1.0 4959705 20 1.0 4959705 0.20 Calculated TDS mg/L 200 1.0 4959712 140 1.0 4959712 96 1.0 4959712 0.20 Carb. Alkalinity (calc. as CaCO3) mg/L 1.0 1.0 4959705 <1.0 1.0 4959705 <1.0 1.0 4959705 <1.0 1.0 4959705 0.20 Cation Sum me/L 3.39 N/A 4959708 2.37 N/A 4959708 1.26 N/A 4959708 N/A 4959710 N/A 4959708 N/A 4959710 N/A 4959708 N/A 4959710 N	Calculated Parameters											
Calculated TDS mg/L 200 1.0 4959712 140 1.0 4959712 96 1.0 4959712 0.20 Carb. Alkalinity (calc. as CaCO3) mg/L < 1.0 1.0 4959705 < 1.0 1.0 4959705 < 1.0 1.0 4959705 < 1.0 1.0 4959705	Anion Sum	me/L	3.60	N/A	4959708	2.43	N/A	4959708	1.54	N/A	4959708	N/A
Carb. Alkalinity (calc. as CaCO3)	Bicarb. Alkalinity (calc. as CaCO3)	mg/L	150	1.0	4959705	100	1.0	4959705	20	1.0	4959705	0.20
Cation Sum me/L 3.39 N/A 4959708 2.37 N/A 4959708 1.26 N/A 4959708 N/A Hardness (CaCO3) mg/L 140 1.0 495968 81 1.0 4959568 36 1.0 4959568 1.0 Ion Balance (% Difference) % 3.00 N/A 4959707 1.25 N/A 4959707 10.0 N/A 4959707 N/A Langelier Index (@ 2OC) N/A -0.247 4959710 -1.56 4959710 -3.28 4959710 -1.3	Calculated TDS	mg/L	200	1.0	4959712	140	1.0	4959712	96	1.0	4959712	0.20
Hardness (CaCO3) mg/L 140 1.0 4959568 81 1.0 4959568 36 1.0 4959570 N/A Langelier Index (@ 2OC) N/A -0.247 4959707 1.25 N/A 4959707 1.0.0 N/A 4959707 N/A Langelier Index (@ 2OC) N/A -0.247 4959710 -1.56 4959710 -3.28 4959710 -3.28 4959710 Langelier Index (@ 4C) N/A -0.497 4959711 -1.81 4959711 -3.53 4959711 -	Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	4959705	<1.0	1.0	4959705	<1.0	1.0	4959705	0.20
Indicate Marcial Mar	Cation Sum	me/L	3.39	N/A	4959708	2.37	N/A	4959708	1.26	N/A	4959708	N/A
Langelier Index (@ 20C) N/A -0.247	Hardness (CaCO3)	mg/L	140	1.0	4959568	81	1.0	4959568	36	1.0	4959568	1.0
Langelier Index (@ 4C) N/A -0.497	Ion Balance (% Difference)	%	3.00	N/A	4959707	1.25	N/A	4959707	10.0	N/A	4959707	N/A
Nitrate (N)	Langelier Index (@ 20C)	N/A	-0.247		4959710	-1.56		4959710	-3.28		4959710	
Saturation pH (@ 20C) N/A 7.64 4959710 8.04 4959710 9.18 4959710 Saturation pH (@ 4C) N/A 7.89 4959711 8.29 4959711 9.43 4959711 9.43 4959711 100 100 100 4959711 9.43 4959711 4959711 100 100 4959711 9.43 4959711 4959711 100 100 4959711 9.43 4959711 4959711 100 100 4959711 9.43 4959711 4959711 100 100 4959711 9.43 4959711 4959711 100 100 4959711 9.43 4959711 4959711 100 100 4962307 20 5.0 4962347 N/A 700 700 4962319 10 1.0 4962319 26 1.0 4962349 N/A 4962349 N/A 962336 <5.0 5.0 4962336 <5.0 5.0 4962336 <5.0 5.0 4962345 N/A 962343 0.13 0.10<	Langelier Index (@ 4C)	N/A	-0.497		4959711	-1.81		4959711	-3.53		4959711	
Saturation pH (@ 4C) N/A 7.89 4959711 8.29 4959711 9.43 4959711 Inorganics Total Alkalinity (Total as CaCO3) mg/L 150 (1) 25 4962307 100 (1) 10 4962307 20 5.0 4962347 N/A Dissolved Chloride (Cl) mg/L 14 1.0 4962319 10 1.0 4962319 26 1.0 4962349 N/A Colour TCU <5.0 5.0 4962343 <5.0 5.0 4962336 <5.0 5.0 4962336 <5.0 5.0 4962336 N/A Nitrate + Nitrite (N) mg/L 0.17 0.050 4962343 <0.050 0.050 4962343 0.13 0.050 4962365 N/A Nitrite (N) mg/L <0.010 0.010 4962344 <0.010 0.010 4962344 <0.010 0.010 4962344 <0.010 0.010 4962344 <0.010 0.010 4962344 <0.010 0.010 4962345 N/A Orthophosphate (P) mg/L 0.027 0.010 4962341 0.038 0.010 4962341 <0.010 0.010 4962361 N/A PH 7.39 N/A 4963693 6.48 N/A 4963693 5.91 N/A 4963693 N/A Reactive Silica (SiO2) mg/L 21 0.50 4962331 19 0.50 496237 19 2.0 4962352 N/A Dissolved Sulphate (SO4) mg/L 8.8 2.0 4962327 6.9 2.0 496237 19 2.0 4962352 N/A Turbidity NTU >1000 1.0 4963703 870 1.0 4962161 470 1.0 4963703 0.10 Conductivity us/cm 320 1.0 4963694 220 1.0 4963694 160 1.0 4963694 N/A Metals Total Mercury (Hg) ug/L 0.022 0.013 4959901 <0.013 0.013 4959901 0.013 0.013 4959901 N/A Dissolved Aluminum (Al) ug/L <5.0 5.0 4962494 <5.0 5.0 4962494 71 5.0 4962494 N/A	Nitrate (N)	mg/L	0.17	0.050	4959709	<0.050	0.050	4959709	0.13	0.050	4959709	N/A
Inorganics Total Alkalinity (Total as CaCO3) mg/L 150 (1) 25 4962307 100 (1) 10 4962307 20 5.0 4962347 N/A	Saturation pH (@ 20C)	N/A	7.64		4959710	8.04		4959710	9.18		4959710	
Total Alkalinity (Total as CaCO3) mg/L 150 (1) 25 4962307 100 (1) 10 4962307 20 5.0 4962347 N/A Dissolved Chloride (Cl) mg/L 14 1.0 4962319 10 1.0 4962319 26 1.0 4962349 N/A Colour TCU <5.0 5.0 4962336 <5.0 5.0 4962336 <5.0 5.0 4962336 <5.0 5.0 4962336 N/A Nitrate + Nitrite (N) mg/L 0.17 0.050 4962343 <0.050 0.050 4962343 0.13 0.050 4962365 N/A Nitrite (N) mg/L <0.010 0.010 4962344 <0.010 0.010 4962344 <0.010 0.010 4962344 <0.010 0.010 4962344 <0.010 0.010 4962344 <0.010 0.010 4962358 N/A Total Organic Carbon (C) mg/L <25 (2) 25 4962358 <25 (2) 25 4962358 2.8 0.50 4962358 N/A Orthophosphate (P) mg/L 0.027 0.010 4962341 0.038 0.010 4962341 <0.010 0.010 4962361 N/A Reactive Silica (SiO2) mg/L 21 0.50 4962331 19 0.50 4962331 11 0.50 4962354 N/A Dissolved Sulphate (SO4) mg/L 8.8 2.0 4962327 6.9 2.0 4962327 19 2.0 4962352 N/A Turbidity NTU >1000 1.0 4963693 870 1.0 4963694 160 1.0 4963703 0.10 Conductivity us/cm 320 1.0 4963694 220 1.0 4963694 160 1.0 4963694 N/A Metals Total Mercury (Hg) ug/L 0.022 0.013 4959901 <0.013 0.013 4959901 0.013 0.013 4959901 N/A Dissolved Aluminum (Al) ug/L <5.0 5.0 4962494 <5.0 5.0 4962494 71 5.0 4962494 N/A	Saturation pH (@ 4C)	N/A	7.89		4959711	8.29		4959711	9.43		4959711	
Dissolved Chloride (CI)	Inorganics											,
Colour TCU <5.0 5.0 4962336 <5.0 5.0 4962336 <5.0 5.0 4962336 N/A Nitrate + Nitrite (N) mg/L 0.17 0.050 4962343 <0.050 0.050 4962343 0.13 0.050 4962365 N/A Nitrite (N) mg/L <0.010 0.010 4962344 <0.010 0.010 4962344 <0.010 0.010 4962344 <0.010 0.010 4962344 <0.010 0.010 4962344 <0.010 0.010 4962344 <0.010 0.010 4962344 <0.010 0.010 4962344 <0.010 0.010 4962344 <0.010 0.010 4962344 <0.010 0.010 4962344 <0.010 0.010 4962341 <0.010 0.010 4962358 N/A Orthophosphate (P) mg/L 0.027 0.010 4962341 0.038 0.010 4962341 <0.010 0.010 4962361 N/A PH 7.39 N/A 4963693 6.48 N/A 4963693 5.91 N/A 4963693 N/A Reactive Silica (SiO2) mg/L 21 0.50 4962331 19 0.50 4962331 11 0.50 4962354 N/A Dissolved Sulphate (SO4) mg/L 8.8 2.0 4962327 6.9 2.0 4962327 19 2.0 4962352 N/A Turbidity NTU >1000 1.0 4963703 870 1.0 4962161 470 1.0 4963703 0.10 Conductivity uS/cm 320 1.0 4963694 220 1.0 4963694 160 1.0 4963694 N/A Metals Total Mercury (Hg) ug/L 0.022 0.013 4959901 <0.013 0.013 4959901 0.013 0.013 4959901 N/A Dissolved Aluminum (Al) ug/L <5.0 5.0 4962494 <5.0 5.0 4962494 71 5.0 4962494 N/A	Total Alkalinity (Total as CaCO3)	mg/L	150 (1)	25	4962307	100 (1)	10	4962307	20	5.0	4962347	N/A
Nitrate + Nitrite (N) mg/L 0.17 0.050 4962343 <0.050 0.050 4962343 0.13 0.050 4962365 N/A Nitrite (N) mg/L <0.010 0.010 4962344 <0.010 0.010 4962344 <0.010 0.010 4962344 <0.010 0.010 4962344 <0.010 0.010 4962344 <0.010 0.010 4962344 <0.010 0.010 4962344 <0.010 0.010 4962345	Dissolved Chloride (CI)	mg/L	14	1.0	4962319	10	1.0	4962319	26	1.0	4962349	N/A
Nitrite (N) mg/L	Colour	TCU	<5.0	5.0	4962336	<5.0	5.0	4962336	<5.0	5.0	4962356	N/A
Total Organic Carbon (C) mg/L <25 (2) 25 4962358 <25 (2) 25 4962358	Nitrate + Nitrite (N)	mg/L	0.17	0.050	4962343	<0.050	0.050	4962343	0.13	0.050	4962365	N/A
Orthophosphate (P) mg/L 0.027 0.010 4962341 0.038 0.010 4962341 <0.010 0.010 4962361 N/A pH 7.39 N/A 4963693 6.48 N/A 4963693 5.91 N/A 4963693 N/A Reactive Silica (SiO2) mg/L 21 0.50 4962331 19 0.50 4962331 11 0.50 4962354 N/A Dissolved Sulphate (SO4) mg/L 8.8 2.0 4962327 6.9 2.0 4962327 19 2.0 4962352 N/A Turbidity NTU >1000 1.0 4963703 870 1.0 4962161 470 1.0 4963694 N/A Conductivity uS/cm 320 1.0 4963694 220 1.0 4963694 160 1.0 4963694 N/A Metals Total Mercury (Hg) ug/L 0.022 0.013 4959901 <0.013	Nitrite (N)	mg/L	<0.010	0.010	4962344	<0.010	0.010	4962344	<0.010	0.010	4962366	N/A
pH	Total Organic Carbon (C)	mg/L	<25 (2)	25	4962358	<25 (2)	25	4962358	2.8	0.50	4962358	N/A
Reactive Silica (SiO2) mg/L 21 0.50 4962331 19 0.50 4962331 11 0.50 4962354 N/A Dissolved Sulphate (SO4) mg/L 8.8 2.0 4962327 6.9 2.0 4962327 19 2.0 4962352 N/A Turbidity NTU >1000 1.0 4963703 870 1.0 4962161 470 1.0 4963703 0.10 Conductivity us/cm 320 1.0 4963694 220 1.0 4963694 160 1.0 4963694 N/A Metals Total Mercury (Hg) ug/L 0.022 0.013 4959901 <0.013 0.013 4959901 0.013 0.013 4959901 N/A Dissolved Aluminum (Al) ug/L <5.0 5.0 4962494 <5.0 5.0 4962494 71 5.0 4962494 N/A	Orthophosphate (P)	mg/L	0.027	0.010	4962341	0.038	0.010	4962341	<0.010	0.010	4962361	N/A
Dissolved Sulphate (SO4) mg/L 8.8 2.0 4962327 6.9 2.0 4962327 19 2.0 4962352 N/A Turbidity NTU >1000 1.0 4963703 870 1.0 4962161 470 1.0 4963703 0.10 Conductivity uS/cm 320 1.0 4963694 220 1.0 4963694 160 1.0 4963694 N/A Metals Total Mercury (Hg) ug/L 0.022 0.013 4959901 <0.013 0.013 4959901 0.013 0.013 4959901 N/A Dissolved Aluminum (Al) ug/L <5.0 5.0 4962494 <5.0 5.0 4962494 71 5.0 4962494 N/A	рН	рН	7.39	N/A	4963693	6.48	N/A	4963693	5.91	N/A	4963693	N/A
Turbidity NTU >1000 1.0 4963703 870 1.0 4962161 470 1.0 4963703 0.10 Conductivity uS/cm 320 1.0 4963694 220 1.0 4963694 160 1.0 4963694 N/A Metals Total Mercury (Hg) ug/L 0.022 0.013 4959901 <0.013 0.013 4959901 0.013 0.013 4959901 N/A Dissolved Aluminum (Al) ug/L <5.0 5.0 4962494 <5.0 5.0 4962494 71 5.0 4962494 N/A	Reactive Silica (SiO2)	mg/L	21	0.50	4962331	19	0.50	4962331	11	0.50	4962354	N/A
Conductivity uS/cm 320 1.0 4963694 220 1.0 4963694 160 1.0 4963694 N/A Metals Total Mercury (Hg) ug/L 0.022 0.013 4959901 <0.013	Dissolved Sulphate (SO4)	mg/L	8.8	2.0	4962327	6.9	2.0	4962327	19	2.0	4962352	N/A
Metals Total Mercury (Hg) ug/L 0.022 0.013 4959901 <0.013	Turbidity	NTU	>1000	1.0	4963703	870	1.0	4962161	470	1.0	4963703	0.10
Total Mercury (Hg) ug/L 0.022 0.013 4959901 <0.013 0.013 4959901 0.013 0.013 4959901 N/A Dissolved Aluminum (Al) ug/L <5.0 5.0 4962494 <5.0 5.0 4962494 71 5.0 4962494 N/A	Conductivity	uS/cm	320	1.0	4963694	220	1.0	4963694	160	1.0	4963694	N/A
Dissolved Aluminum (Al) ug/L <5.0 5.0 4962494 <5.0 5.0 4962494 71 5.0 4962494 N/A	Metals											
	Total Mercury (Hg)	ug/L	0.022	0.013	4959901	<0.013	0.013	4959901	0.013	0.013	4959901	N/A
Dissolved Antimony (Sb)	Dissolved Aluminum (AI)	ug/L	<5.0	5.0	4962494	<5.0	5.0	4962494	71	5.0	4962494	N/A
5,	Dissolved Antimony (Sb)	ug/L	<1.0	1.0	4962494	<1.0	1.0	4962494	<1.0	1.0	4962494	N/A
Dissolved Arsenic (As) ug/L 1.8 1.0 4962494 <1.0 1.0 4962494 <1.0 1.0 4962494 N/A	Dissolved Arsenic (As)	ug/L	1.8	1.0	4962494	<1.0	1.0	4962494	<1.0	1.0	4962494	N/A
Dissolved Barium (Ba) ug/L 16 1.0 4962494 13 1.0 4962494 19 1.0 4962494 N/A	Dissolved Barium (Ba)	ug/L	16	1.0	4962494	13	1.0	4962494	19	1.0	4962494	N/A
Dissolved Beryllium (Be) ug/L <1.0 1.0 4962494 <1.0 1.0 4962494 <1.0 1.0 4962494 N/A	Dissolved Beryllium (Be)	ug/L	<1.0	1.0	4962494	<1.0	1.0	4962494	<1.0	1.0	4962494	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

- (1) Elevated reporting limit due to sample matrix.
- (2) Reporting limit was increased due to turbidity.

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Sampler Initials: LL

ATL. RCAP-MS DISSOLVED (LABFILT) IN W

Maxxam ID		EHA581			EHA582			EHA583			
Sampling Date		2017/04/26			2017/04/26			2017/04/25			
COC Number		606945-02-01			606945-02-01			606945-02-01			
	UNITS	MW7	RDL	QC Batch	MW8	RDL	QC Batch	MW9	RDL	QC Batch	MDL
Dissolved Bismuth (Bi)	ug/L	<2.0	2.0	4962494	<2.0	2.0	4962494	<2.0	2.0	4962494	N/A
Dissolved Boron (B)	ug/L	<50	50	4962494	<50	50	4962494	<50	50	4962494	N/A
Dissolved Cadmium (Cd)	ug/L	0.022	0.010	4962494	0.045	0.010	4962494	0.10	0.010	4962494	N/A
Dissolved Calcium (Ca)	ug/L	37000	100	4962494	21000	100	4962494	7300	100	4962494	N/A
Dissolved Chromium (Cr)	ug/L	<1.0	1.0	4962494	<1.0	1.0	4962494	<1.0	1.0	4962494	N/A
Dissolved Cobalt (Co)	ug/L	0.74	0.40	4962494	3.7	0.40	4962494	8.1	0.40	4962494	N/A
Dissolved Copper (Cu)	ug/L	<2.0	2.0	4962494	<2.0	2.0	4962494	<2.0	2.0	4962494	N/A
Dissolved Iron (Fe)	ug/L	<50	50	4962494	<50	50	4962494	<50	50	4962494	N/A
Dissolved Lead (Pb)	ug/L	<0.50	0.50	4962494	<0.50	0.50	4962494	<0.50	0.50	4962494	N/A
Dissolved Magnesium (Mg)	ug/L	11000	100	4962494	7000	100	4962494	4200	100	4962494	N/A
Dissolved Manganese (Mn)	ug/L	220	2.0	4962494	520	2.0	4962494	2500	2.0	4962494	N/A
Dissolved Molybdenum (Mo)	ug/L	<2.0	2.0	4962494	<2.0	2.0	4962494	<2.0	2.0	4962494	N/A
Dissolved Nickel (Ni)	ug/L	<2.0	2.0	4962494	3.9	2.0	4962494	5.7	2.0	4962494	N/A
Dissolved Phosphorus (P)	ug/L	<100	100	4962494	<100	100	4962494	<100	100	4962494	N/A
Dissolved Potassium (K)	ug/L	2800	100	4962494	1600	100	4962494	970	100	4962494	N/A
Dissolved Selenium (Se)	ug/L	<1.0	1.0	4962494	<1.0	1.0	4962494	<1.0	1.0	4962494	N/A
Dissolved Silver (Ag)	ug/L	<0.10	0.10	4962494	<0.10	0.10	4962494	<0.10	0.10	4962494	N/A
Dissolved Sodium (Na)	ug/L	13000	100	4962494	16000	100	4962494	12000	100	4962494	N/A
Dissolved Strontium (Sr)	ug/L	120	2.0	4962494	120	2.0	4962494	51	2.0	4962494	N/A
Dissolved Thallium (TI)	ug/L	<0.10	0.10	4962494	<0.10	0.10	4962494	<0.10	0.10	4962494	N/A
Dissolved Tin (Sn)	ug/L	<2.0	2.0	4962494	<2.0	2.0	4962494	<2.0	2.0	4962494	N/A
Dissolved Titanium (Ti)	ug/L	<2.0	2.0	4962494	<2.0	2.0	4962494	<2.0	2.0	4962494	N/A
Dissolved Uranium (U)	ug/L	0.85	0.10	4962494	<0.10	0.10	4962494	<0.10	0.10	4962494	N/A
Dissolved Vanadium (V)	ug/L	<2.0	2.0	4962494	<2.0	2.0	4962494	<2.0	2.0	4962494	N/A
Dissolved Zinc (Zn)	ug/L	<5.0	5.0	4962494	<5.0	5.0	4962494	<5.0	5.0	4962494	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Sampler Initials: LL

ATL. RCAP-MS DISSOLVED (LABFILT) IN W

Cock Cock												
COC Number COC	Maxxam ID		EHA584	EHA584		EHA585			EHA586			
Calculated Parameters Anion Sum me/L 3.83 N/A 2.39 N/A 4959708 0.970 N/A 4959707 0.070	Sampling Date		2017/04/26	2017/04/26		2017/04/26			2017/04/26			
Calculated Parameters	COC Number		606945-02-01	606945-02-01		606945-02-01			606945-02-01			
Anion Sum Me/L 3.83 N/A 2.39 N/A 4959708 0.970 N/A 4959708 N/A 4959708 N/A 4959708 N/A 4959708 N/A 4959708 N/A 4959705 N/A 4959705 N/A 4959705 N/A 4959705 N/A 4959705 N/A 4959705 N/A		UNITS	MW10		RDL	MW11	RDL	QC Batch	MW12	RDL	QC Batch	MDL
Bicarb. Alkalinity (calc. as CaCO3) mg/L 150	Calculated Parameters											
Calculated TDS mg/L 230 1.0 1.40 1.0 4959712 77 1.0 4959717 0.2 Carb. Alkalinity (calc. as CaCO3) mg/L 4.1.0 1.0 4.1.0 1.0 4.1.0 1.0 4959705 4.1.0 1.0 4959705 0.2 Cation Sum me/L 4.23 N/A 2.08 N/A 4959708 1.34 N/A 4959708 N 1.4 N/A 4959708 N 1.4 N/A 4959708 N 1.4 N/A 4959708 N 1.4 N/A 4959708 N 1.4 N/A 4959708 N 1.4 N/A 4959708 N 1.4 N/A 4959708 N 1.4 N/A 4959708 N 1.4 N/A 4959708 N 1.4 N/A 4959708 N 1.4 N/A 4959708 N 1.4 N/A 4959708 N 1.4 N/A 4959708 N 1.4 N/A 4959707 N 1.0 4959568 1 N/A 4959707 N 1.0 4959568 N 1.0 N/A 4959707 N 1.0 N/A 4959707 N 1.0 N/A 4959707 N 1.0 N/A 4959707 N 1.0 N/A 4959707 N 1.0 N/A 4959707 N 1.0 N/A 4959710 N 1.1 N/A 4959707 N 1.0 N/A 4959710 N 1.1 N/A 4959710	Anion Sum	me/L	3.83		N/A	2.39	N/A	4959708	0.970	N/A	4959708	N/A
Carb. Alkalinity (calc. as CaCO3) mg/L < 1.0	Bicarb. Alkalinity (calc. as CaCO3)	mg/L	150		1.0	32	1.0	4959705	18	1.0	4959705	0.20
Cation Sum me/L 4.23 N/A 2.08 N/A 4959708 1.34 N/A 4959708 N Hardness (CaCO3) mg/L 110 1.0 77 1.0 4959568 8.1 1.0 4959568 1 Ion Balance (% Difference) % 4.96 N/A 6.94 N/A 4959707 16.0 N/A 4959707 N Langelier Index (@ 20C) N/A -0.857 -2.58 4959710 -3.81 4959710 N Langelier Index (@ 4C) N/A -1.11 -2.283 4959710 -3.81 4959710 N Langelier Index (@ 4C) N/A -1.11 -2.283 4959711 -4.07 4959711 N Itrate (N) mg/L <0.050 0.050 1.1 0.050 4959709 0.069 0.050 4959709 N Saturation PH (@ 20C) N/A 7.91 8.86 4959711 9.99 4959710 N Saturation PH (@ 4C) N/A 7.91 8.86 4959711 9.99 4959710 N Casturation PH (@ 4C) N/A 7.91 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	Calculated TDS	mg/L	230		1.0	140	1.0	4959712	77	1.0	4959712	0.20
Hardness (CaCO3) mg/L 110 1.0 77 1.0 4959568 8.1 1.0 4959568 1.0 In Balance (% Difference) % 4.96 N/A 6.94 N/A 4959707 16.0 N/A 4959707 N. Langelier Index (@ 20C) N/A -0.857 -2.58 4959710 -3.81 4959710 N. Langelier Index (@ 4C) N/A -1.11 -2.83 4959710 -3.81 4959710 N. Langelier Index (@ 4C) N/A -1.11 -2.83 4959710 -3.81 4959710 N. Langelier Index (@ 4C) N/A -7.66 -7.66 N. R. Langelier Index (@ 4C) N/A -7.66 N. R. Langelier Index (@ 4C) N/A -7.66 N. R. Langelier Index (@ 4C) N/A -7.66 N. R. Langelier Index (@ 4C) N/A -7.66 N. R. Langelier Index (@ 4C) N/A -7.91 N. R. R. R. Langelier Index (@ 4C) N/A -7.91 N. R. R. R. Langelier Index (@ 4C) N/A -7.91 N. R. R. R. Langelier Index (@ 4C) N/A -7.91 N. R. R. R. R. Langelier Index (@ 4C) N/A -7.91 N. R. R. R. R. Langelier Index (@ 4C) N/A -7.91 N. R. R. R. R. R. Langelier Index (@ 4C) N/A -7.91 N. R. R. R. R. R. R. R. R. R. R. R. R. R.	Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0		1.0	<1.0	1.0	4959705	<1.0	1.0	4959705	0.20
None	Cation Sum	me/L	4.23		N/A	2.08	N/A	4959708	1.34	N/A	4959708	N/A
Langelier Index (@ 20C)	Hardness (CaCO3)	mg/L	110		1.0	77	1.0	4959568	8.1	1.0	4959568	1.0
Langelier Index (@ 4C) N/A -1.11	Ion Balance (% Difference)	%	4.96		N/A	6.94	N/A	4959707	16.0	N/A	4959707	N/A
Nitrate (N)	Langelier Index (@ 20C)	N/A	-0.857			-2.58		4959710	-3.81		4959710	
Saturation pH (@ 20C) N/A 7.66 8.61 4959710 9.74 4959710 Saturation pH (@ 4C) N/A 7.91 8.86 4959711 9.99 4959711 Saturation pH (@ 4C) N/A 7.91 8.86 4959711 9.99 4959711 Saturation pH (@ 4C) N/A 7.91 8.86 4959711 9.99 4959711 Saturation pH (@ 4C) N/A 7.91 8.86 4959711 9.99 4959711 Saturation pH (@ 4C) N/A 7.91 8.86 4959711 9.99 4959711 Saturation pH (@ 4C) N/A 7.91 8.86 4959711 9.99 4959711 Saturation pH (@ 4C) N/A 7.91 8.86 4959711 9.99 4959711 Saturation pH (@ 4C) N/A 7.91 8.86 4959711 9.99 4959711 Saturation pH (@ 4C) N/A 7.91 8.86 4959711 9.99 4959710 Saturation pH (@ 4C) N/A 7.91 8.86 4959711 9.99 4959711 Saturation pH (@ 4C) N/A 7.91 8.86 4959711 9.99 4959711 Saturation pH (@ 4C) N/A 7.91 8.86 4959711 9.99 4959711 Saturation pH (@ 4C) N/A 7.91 8.86 4959711 9.99 4952347 Saturation pH (@ 4C) N/A 7.91 8.86 4959711 9.99 4952347 Saturation pH (@ 4C) N/A 7.91 8.86 4959711 9.99 4952347 Saturation pH (@ 4C) N/A 7.91 8.86 4959711 9.99 4952347 Saturation pH (@ 4C) N/A 7.91 8.86 4959711 9.99 495234 Saturation pH (@ 4C) N/A 965341 N/A 6.03 N/A 496369 5.92 N/A 4965358 N/A 4965728 N/A 6.03 N/A 496369 5.92 N/A 4965728 N/A 6.03 N/A 496369 5.92 N/A 4965728 N/A 6.03 N/A 496369 5.92 N/A 4965728 N/A 6.03 N/A 496369 5.92 N/A 4965728 N/A 6.03 N/A 496369 5.92 N/A 4965728 N/A 6.03 N/A 496369 9.9 N/A 4965728 N/A 6.03 N/A 496369 9.9 N/A 4965729 N/A 6.03 N/A 496369 9.9 N/A 4965729 N/A 6.03 N/A 496369 9.9 N/A 4965729 N/A 6.03 N/A 496369 9.9 N/A 4965729 N/A 6.03 N/A 496369 9.9 N/A 4965729 N/A 6.03 N/A 496369 9.9 N/A 4965729 N/A 6.03 N/A 496369 9.9 N/A 4965729 N/A	Langelier Index (@ 4C)	N/A	-1.11			-2.83		4959711	-4.07		4959711	
Saturation pH (@ 4C)	Nitrate (N)	mg/L	<0.050		0.050	1.1	0.050	4959709	0.069	0.050	4959709	N/A
Total Alkalinity (Total as CaCO3) mg/L 150 (1) 25 32 5.0 4962347 18 5.0 4962347 No.	Saturation pH (@ 20C)	N/A	7.66			8.61		4959710	9.74		4959710	
Total Alkalinity (Total as CaCO3) mg/L 150 (1) 25 32 5.0 4962347 18 5.0 4962347 N Dissolved Chloride (Cl) mg/L 22 1.0 50 1.0 4962349 12 1.0 4962349 N Colour TCU 560 (1) 130 <5.0 5.0 4962356 8.8 5.0 4962356 N Nitrate + Nitrite (N) mg/L <0.050 0.050 1.1 0.050 4962365 0.069 0.050 4962365 N Nitrite (N) mg/L <0.010 0.010 <0.010 0.010 4962366 <0.010 0.010 4962366 N Total Organic Carbon (C) mg/L 36 (2) 25 <25 (2) 25 4962358 10 (2) 5.0 4962358 N Orthophosphate (P) mg/L 0.10 0.010 0.016 0.010 4962361 <0.010 0.010 4962361 N PH 6.81 N/A 6.03 N/A 4963693 5.92 N/A 4965728 N Reactive Silica (SiO2) mg/L 8.3 0.50 12 0.50 4962354 7.7 0.50 4962354 N Dissolved Sulphate (SO4) mg/L 13 2.0 13 2.0 4962352 13 2.0 4962352 N Turbidity NTU 230 230 1.0 >100 0.10 496369 99 1.0 4962516 0. Conductivity us/cm 350 1.0 240 1.0 496369 99 1.0 4965729 N Metals Total Mercury (Hg) ug/L 0.017 0.013 0.11 0.013 4959901 <0.013 0.013 4959901 N Dissolved Aluminum (Al) ug/L 460 5.0 34 5.0 4962494 53 5.0 4962494 N Dissolved Arsenic (As) ug/L 5.2 1.0 <1.0 1.0 4962494 1.5 1.0 4962494 N Dissolved Arsenic (As) ug/L 5.2 1.0 <1.0 1.0 4962494 1.5 1.0 4962494 N	Saturation pH (@ 4C)	N/A	7.91			8.86		4959711	9.99		4959711	
Dissolved Chloride (Cl) mg/L 22 1.0 50 1.0 4962349 12 1.0 4962349 No.	Inorganics											
Colour TCU 560 (1) 130 <5.0 5.0 4962356 8.8 5.0 4962356 N Nitrate + Nitrite (N) mg/L <0.050 0.050 1.1 0.050 4962365 0.069 0.050 4962365 N Nitrite (N) mg/L <0.010 0.010 <0.010 4962365 0.069 0.050 4962365 N Total Organic Carbon (C) mg/L 36 (2) 25 <25 (2) 25 4962358 10 (2) 5.0 4962361 N Orthophosphate (P) mg/L 0.10 0.010 0.016 0.010 4962361 <0.010 0.010 4962361 N PH pH 6.81 N/A 6.03 N/A 4963693 5.92 N/A 4965728 N Reactive Silica (SiO2) mg/L 8.3 0.50 12 0.50 4962354 7.7 0.50 4962354 N Dissolved Sulphate (SO4) mg/L 13 2.0 13 2.0 4962352 13 2.0 4962352 N Turbidity NTU 230 230 1.0 >100 0.10 4963694 99 1.0 4965729 N Metals Total Mercury (Hg) ug/L 0.017 0.013 0.11 0.013 4959901 <0.013 0.013 4959901 N Dissolved Aluminum (Al) ug/L 460 5.0 34 5.0 4962494 53 5.0 4962494 N Dissolved Antimony (Sb) ug/L <1.0 1.0 <1.0 1.0 4962494 <1.0 1.0 4962494 N Dissolved Arsenic (As) ug/L 5.2 1.0 <1.0 <1.0 4962494 1.5 1.0 4962494 N	Total Alkalinity (Total as CaCO3)	mg/L	150 (1)		25	32	5.0	4962347	18	5.0	4962347	N/A
Nitrate + Nitrite (N)	Dissolved Chloride (CI)	mg/L	22		1.0	50	1.0	4962349	12	1.0	4962349	N/A
Nitrite (N)	Colour	TCU	560 (1)		130	<5.0	5.0	4962356	8.8	5.0	4962356	N/A
Total Organic Carbon (C) mg/L 36 (2) 25 < <25 (2) 25	Nitrate + Nitrite (N)	mg/L	<0.050		0.050	1.1	0.050	4962365	0.069	0.050	4962365	N/A
Orthophosphate (P) mg/L 0.10 0.010 0.016 0.010 4962361 <0.010 0.010 4962361 N pH pH 6.81 N/A 6.03 N/A 4963693 5.92 N/A 4965728 N Reactive Silica (SiO2) mg/L 8.3 0.50 12 0.50 4962354 7.7 0.50 4962354 N Dissolved Sulphate (SO4) mg/L 13 2.0 13 2.0 4962352 13 2.0 4962352 N Turbidity NTU 230 230 1.0 >1000 0.10 4963703 470 1.0 4962161 0. Conductivity uS/cm 350 1.0 240 1.0 4963694 99 1.0 4965729 N Metals Total Mercury (Hg) ug/L 0.017 0.013 0.11 0.013 4959901 <0.013	Nitrite (N)	mg/L	<0.010		0.010	<0.010	0.010	4962366	<0.010	0.010	4962366	N/A
pH pH 6.81 N/A 6.03 N/A 4963693 5.92 N/A 4965728 N Reactive Silica (SiO2) mg/L 8.3 0.50 12 0.50 4962354 7.7 0.50 4962354 N Dissolved Sulphate (SO4) mg/L 13 2.0 13 2.0 4962352 13 2.0 4962352 N Turbidity NTU 230 230 1.0 >100 0.10 4963703 470 1.0 4962161 0. Conductivity uS/cm 350 1.0 240 1.0 4963694 99 1.0 4965729 N Metals Total Mercury (Hg) ug/L 0.017 0.013 0.11 0.013 4959901 <0.013 0.013 4959901 N Dissolved Aluminum (Al) ug/L 460 5.0 34 5.0 4962494 53 5.0 4962494 N Dissolved Antimony (Sb) ug/L <1.0 1.0 <1.0 1.0 4962494 <1.0 1.0 4962494 N Dissolved Arsenic (As) ug/L 5.2 1.0 <1.0 1.0 4962494 1.5 1.0 4962494 N	Total Organic Carbon (C)	mg/L	36 (2)		25	<25 (2)	25	4962358	10 (2)	5.0	4962358	N/A
Reactive Silica (SiO2) mg/L 8.3 0.50 12 0.50 4962354 7.7 0.50 4962354 N Dissolved Sulphate (SO4) mg/L 13 2.0 4962352 13 2.0 4962352 N Turbidity NTU 230 230 1.0 >100 0.10 4963703 470 1.0 4962161 0. Conductivity us/cm 350 1.0 240 1.0 4963694 99 1.0 4965729 N Metals Total Mercury (Hg) ug/L 0.017 0.013 0.11 0.013 4959901 <0.013 0.013 4959901 N Dissolved Aluminum (Al) ug/L 460 5.0 34 5.0 4962494 53 5.0 4962494 N Dissolved Antimony (Sb) ug/L <1.0 1.0 <1.0 1.0 4962494 <1.0 1.0 4962494 N Dissolved Arsenic (As) ug/L 5.2 1.0 <1.0 1.0 4962494 1.5 1.0 4962494 N	Orthophosphate (P)	mg/L	0.10		0.010	0.016	0.010	4962361	<0.010	0.010	4962361	N/A
Dissolved Sulphate (SO4) mg/L 13 2.0 13 2.0 4962352 13 2.0 4962352 N Turbidity NTU 230 230 1.0 >1000 0.10 4963703 470 1.0 4962161 0. Conductivity uS/cm 350 1.0 240 1.0 4963694 99 1.0 4965729 N Metals Total Mercury (Hg) ug/L 0.017 0.013 0.11 0.013 4959901 <0.013 0.013 4959901 N Dissolved Aluminum (Al) ug/L 460 5.0 34 5.0 4962494 53 5.0 4962494 N Dissolved Antimony (Sb) ug/L <1.0 1.0 <1.0 1.0 4962494 <1.0 1.0 4962494 N Dissolved Arsenic (As) ug/L 5.2 1.0 <1.0 1.0 4962494 1.5 1.0 4962494 N	рН	рН	6.81		N/A	6.03	N/A	4963693	5.92	N/A	4965728	N/A
Turbidity NTU 230 230 1.0 >1000 0.10 4963703 470 1.0 4962161 0. Conductivity uS/cm 350 1.0 240 1.0 4963694 99 1.0 4965729 N Metals Total Mercury (Hg) ug/L 0.017 0.013 0.11 0.013 4959901 <0.013 0.013 4959901 N Dissolved Aluminum (Al) ug/L 460 5.0 34 5.0 4962494 53 5.0 4962494 N Dissolved Antimony (Sb) ug/L <1.0 1.0 <1.0 1.0 4962494 <1.0 1.0 4962494 N Dissolved Arsenic (As) ug/L 5.2 1.0 <1.0 1.0 4962494 1.5 1.0 4962494 N	Reactive Silica (SiO2)	mg/L	8.3		0.50	12	0.50	4962354	7.7	0.50	4962354	N/A
Conductivity uS/cm 350 1.0 240 1.0 4963694 99 1.0 4965729 N Metals Total Mercury (Hg) ug/L 0.017 0.013 0.11 0.013 4959901 <0.013	Dissolved Sulphate (SO4)	mg/L	13		2.0	13	2.0	4962352	13	2.0	4962352	N/A
Metals Total Mercury (Hg) ug/L 0.017 0.013 0.11 0.013 4959901 <0.013 0.013 4959901 N Dissolved Aluminum (Al) ug/L 460 5.0 34 5.0 4962494 53 5.0 4962494 N Dissolved Antimony (Sb) ug/L <1.0	Turbidity	NTU	230	230	1.0	>1000	0.10	4963703	470	1.0	4962161	0.10
Total Mercury (Hg) ug/L 0.017 0.013 0.11 0.013 4959901 <0.013 0.013 4959901 N Dissolved Aluminum (Al) ug/L 460 5.0 34 5.0 4962494 53 5.0 4962494 N Dissolved Antimony (Sb) ug/L <1.0	Conductivity	uS/cm	350		1.0	240	1.0	4963694	99	1.0	4965729	N/A
Dissolved Aluminum (Al) ug/L 460 5.0 34 5.0 4962494 53 5.0 4962494 N Dissolved Antimony (Sb) ug/L <1.0	Metals	•	•	•	-	•	-	•	•	-	•	•
Dissolved Antimony (Sb) ug/L <1.0 1.0 <1.0 1.0 4962494 <1.0 1.0 4962494 N Dissolved Arsenic (As) ug/L 5.2 1.0 <1.0 1.0 4962494 1.5 1.0 4962494 N	Total Mercury (Hg)	ug/L	0.017		0.013	0.11	0.013	4959901	<0.013	0.013	4959901	N/A
Dissolved Arsenic (As) ug/L 5.2 1.0 <1.0 1.0 4962494 1.5 1.0 4962494 N	Dissolved Aluminum (AI)	ug/L	460		5.0	34	5.0	4962494	53	5.0	4962494	N/A
	Dissolved Antimony (Sb)	ug/L	<1.0		1.0	<1.0	1.0	4962494	<1.0	1.0	4962494	N/A
Dissolved Barium (Ba) ug/L 38 1.0 19 1.0 4962494 15 1.0 4962494 N	Dissolved Arsenic (As)	ug/L	5.2		1.0	<1.0	1.0	4962494	1.5	1.0	4962494	N/A
	Dissolved Barium (Ba)	ug/L	38		1.0	19	1.0	4962494	15	1.0	4962494	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

- (1) Elevated reporting limit due to sample matrix.
- (2) Reporting limit was increased due to turbidity.

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Sampler Initials: LL

ATL. RCAP-MS DISSOLVED (LABFILT) IN W

Maxxam ID		EHA584	EHA584		EHA585			EHA586			
Sampling Date		2017/04/26	2017/04/26		2017/04/26			2017/04/26			
COC Number		606945-02-01	606945-02-01		606945-02-01			606945-02-01			
	UNITS	MW10	MW10 Lab-Dup	RDL	MW11	RDL	QC Batch	MW12	RDL	QC Batch	MDL
Dissolved Beryllium (Be)	ug/L	<1.0		1.0	<1.0	1.0	4962494	<1.0	1.0	4962494	N/A
Dissolved Bismuth (Bi)	ug/L	<2.0		2.0	<2.0	2.0	4962494	<2.0	2.0	4962494	N/A
Dissolved Boron (B)	ug/L	62		50	<50	50	4962494	<50	50	4962494	N/A
Dissolved Cadmium (Cd)	ug/L	<0.10 (1)		0.10	0.17	0.010	4962494	0.015	0.010	4962494	N/A
Dissolved Calcium (Ca)	ug/L	37000		100	18000	100	4962494	2200	100	4962494	N/A
Dissolved Chromium (Cr)	ug/L	1.4		1.0	<1.0	1.0	4962494	1.1	1.0	4962494	N/A
Dissolved Cobalt (Co)	ug/L	9.7		0.40	1.5	0.40	4962494	7.2	0.40	4962494	N/A
Dissolved Copper (Cu)	ug/L	8.0		2.0	<2.0	2.0	4962494	<2.0	2.0	4962494	N/A
Dissolved Iron (Fe)	ug/L	12000		50	<50	50	4962494	12000	50	4962494	N/A
Dissolved Lead (Pb)	ug/L	2.0		0.50	<0.50	0.50	4962494	<0.50	0.50	4962494	N/A
Dissolved Magnesium (Mg)	ug/L	4400		100	7700	100	4962494	640	100	4962494	N/A
Dissolved Manganese (Mn)	ug/L	1500		2.0	5200	2.0	4962494	420	2.0	4962494	N/A
Dissolved Molybdenum (Mo)	ug/L	<2.0		2.0	<2.0	2.0	4962494	<2.0	2.0	4962494	N/A
Dissolved Nickel (Ni)	ug/L	6.7		2.0	<2.0	2.0	4962494	3.5	2.0	4962494	N/A
Dissolved Phosphorus (P)	ug/L	150		100	<100	100	4962494	<100	100	4962494	N/A
Dissolved Potassium (K)	ug/L	23000		100	810	100	4962494	2400	100	4962494	N/A
Dissolved Selenium (Se)	ug/L	<1.0		1.0	<1.0	1.0	4962494	<1.0	1.0	4962494	N/A
Dissolved Silver (Ag)	ug/L	<0.10		0.10	<0.10	0.10	4962494	<0.10	0.10	4962494	N/A
Dissolved Sodium (Na)	ug/L	22000		100	12000	100	4962494	14000	100	4962494	N/A
Dissolved Strontium (Sr)	ug/L	120		2.0	80	2.0	4962494	23	2.0	4962494	N/A
Dissolved Thallium (TI)	ug/L	<0.10		0.10	<0.10	0.10	4962494	<0.10	0.10	4962494	N/A
Dissolved Tin (Sn)	ug/L	<2.0		2.0	<2.0	2.0	4962494	<2.0	2.0	4962494	N/A
Dissolved Titanium (Ti)	ug/L	17		2.0	<2.0	2.0	4962494	<2.0	2.0	4962494	N/A
Dissolved Uranium (U)	ug/L	0.45		0.10	<0.10	0.10	4962494	0.26	0.10	4962494	N/A
Dissolved Vanadium (V)	ug/L	4.6		2.0	<2.0	2.0	4962494	<2.0	2.0	4962494	N/A
Dissolved Zinc (Zn)	ug/L	18		5.0	<5.0	5.0	4962494	10	5.0	4962494	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

(1) Elevated reporting limit due to sample matrix.

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Sampler Initials: LL

ATL. RCAP-MS DISSOLVED (LABFILT) IN W

Maxxam ID		EHA586			
Sampling Date		2017/04/26			
COC Number		606945-02-01			
	UNITS	MW12 Lab-Dup	RDL	QC Batch	MDL
Inorganics					
рН	рН	5.92	N/A	4965728	N/A
Conductivity	uS/cm	99	1.0	4965729	N/A
RDL = Reportable Detection Limit					
QC Batch = Quality Control Batch					
Lab-Dup = Laboratory Initiated Dur					

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Sampler Initials: LL

AT. RCAP-MS DISSOLVED (FIELDFILT) IN W

Maxxam ID		EHA562			EHA564		EHA566			
Sampling Date		2017/04/26			2017/04/26		2017/04/25			
COC Number		606945-01-01			606945-01-01		606945-01-01			
	UNITS	MW1D	RDL	QC Batch	MW2D	QC Batch	MW3D	RDL	QC Batch	MDL
Calculated Parameters										
Anion Sum	me/L	10.0	N/A	4959333	3.04	4959708	3.96	N/A	4959708	N/A
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	480	1.0	4959329	120	4959705	170	1.0	4959705	0.20
Calculated TDS	mg/L	530	1.0	4959338	170	4959712	230	1.0	4959712	0.20
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	4959329	1.3	4959705	<1.0	1.0	4959705	0.20
Cation Sum	me/L	10.4	N/A	4959333	2.88	4959708	4.07	N/A	4959708	N/A
Hardness (CaCO3)	mg/L	440	1.0	4959568	110	4959568	150	1.0	4959568	1.0
Ion Balance (% Difference)	%	1.86	N/A	4959332	2.70	4959707	1.37	N/A	4959707	N/A
Langelier Index (@ 20C)	N/A	0.582		4959336	0.160	4959710	-0.972		4959710	
Langelier Index (@ 4C)	N/A	0.334		4959337	-0.0900	4959711	-1.22		4959711	
Nitrate (N)	mg/L	<0.050	0.050	4959709	<0.050	4959709	<0.050	0.050	4959709	N/A
Saturation pH (@ 20C)	N/A	6.75		4959336	7.89	4959710	7.62		4959710	
Saturation pH (@ 4C)	N/A	7.00		4959337	8.14	4959711	7.87		4959711	
Inorganics										
Total Alkalinity (Total as CaCO3)	mg/L	480 (1)	100	4962307	120 (1)	4962307	170 (1)	25	4962307	N/A
Dissolved Chloride (CI)	mg/L	13	1.0	4962319	11	4962319	16	1.0	4962319	N/A
Colour	TCU	<5.0	5.0	4962336	<5.0	4962336	<5.0	5.0	4962336	N/A
Nitrate + Nitrite (N)	mg/L	<0.050	0.050	4962343	<0.050	4962343	<0.050	0.050	4962343	N/A
Nitrite (N)	mg/L	<0.010	0.010	4962344	<0.010	4962344	<0.010	0.010	4962344	N/A
Total Organic Carbon (C)	mg/L	2.7	0.50	4962358	<5.0 (2)	4962358	<5.0 (2)	5.0	4962358	N/A
Orthophosphate (P)	mg/L	<0.010	0.010	4962341	0.028	4962341	0.019	0.010	4962341	N/A
рН	рН	7.33	N/A	4963693	8.05	4963699	6.65	N/A	4963693	N/A
Reactive Silica (SiO2)	mg/L	27	1.0	4962331	19	4962331	25	0.50	4962331	N/A
Dissolved Sulphate (SO4)	mg/L	7.0	2.0	4962327	15	4962327	8.2	2.0	4962327	N/A
Turbidity	NTU	60	0.10	4963703	970	4962161	170	1.0	4963703	0.10
Conductivity	uS/cm	880	1.0	4963694	280	4963701	340	1.0	4963694	N/A
Metals										_
Total Mercury (Hg)	ug/L	<0.013	0.013	4959901	< 0.013	4959901	<0.013	0.013	4959901	N/A
Dissolved Aluminum (AI)	ug/L	<5.0	5.0	4962508	6.9	4962508	8.3	5.0	4962508	N/A
Dissolved Antimony (Sb)	ug/L	<1.0	1.0	4962508	<1.0	4962508	<1.0	1.0	4962508	N/A
Dissolved Arsenic (As)	ug/L	5.0	1.0	4962508	10	4962508	9.0	1.0	4962508	N/A
Dissolved Barium (Ba)	ug/L	300	1.0	4962508	33	4962508	18	1.0	4962508	N/A
Dissolved Beryllium (Be)	ug/L	<1.0	1.0	4962508	<1.0	4962508	<1.0	1.0	4962508	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

- (1) Elevated reporting limit due to sample matrix.
- (2) Reporting limit was increased due to turbidity.

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Sampler Initials: LL

AT. RCAP-MS DISSOLVED (FIELDFILT) IN W

Maxxam ID		EHA562			EHA564		EHA566			
Sampling Date		2017/04/26			2017/04/26		2017/04/25			
COC Number		606945-01-01			606945-01-01		606945-01-01			
	UNITS	MW1D	RDL	QC Batch	MW2D	QC Batch	MW3D	RDL	QC Batch	MDL
Dissolved Bismuth (Bi)	ug/L	<2.0	2.0	4962508	<2.0	4962508	<2.0	2.0	4962508	N/A
Dissolved Boron (B)	ug/L	<50	50	4962508	1100	4962508	<50	50	4962508	N/A
Dissolved Cadmium (Cd)	ug/L	0.045	0.010	4962508	<0.010	4962508	<0.010	0.010	4962508	N/A
Dissolved Calcium (Ca)	ug/L	110000	100	4962508	26000	4962508	36000	100	4962508	N/A
Dissolved Chromium (Cr)	ug/L	<1.0	1.0	4962508	<1.0	4962508	<1.0	1.0	4962508	N/A
Dissolved Cobalt (Co)	ug/L	0.71	0.40	4962508	<0.40	4962508	6.3	0.40	4962508	N/A
Dissolved Copper (Cu)	ug/L	17	2.0	4962508	<2.0	4962508	<2.0	2.0	4962508	N/A
Dissolved Iron (Fe)	ug/L	<50	50	4962508	<50	4962508	700	50	4962508	N/A
Dissolved Lead (Pb)	ug/L	<0.50	0.50	4962508	<0.50	4962508	<0.50	0.50	4962508	N/A
Dissolved Magnesium (Mg)	ug/L	40000	100	4962508	12000	4962508	15000	100	4962508	N/A
Dissolved Manganese (Mn)	ug/L	530	2.0	4962508	64	4962508	420	2.0	4962508	N/A
Dissolved Molybdenum (Mo)	ug/L	<2.0	2.0	4962508	<2.0	4962508	<2.0	2.0	4962508	N/A
Dissolved Nickel (Ni)	ug/L	3.3	2.0	4962508	<2.0	4962508	12	2.0	4962508	N/A
Dissolved Phosphorus (P)	ug/L	<100	100	4962508	<100	4962508	<100	100	4962508	N/A
Dissolved Potassium (K)	ug/L	11000	100	4962508	2900	4962508	3600	100	4962508	N/A
Dissolved Selenium (Se)	ug/L	<1.0	1.0	4962508	<1.0	4962508	<1.0	1.0	4962508	N/A
Dissolved Silver (Ag)	ug/L	<0.10	0.10	4962508	<0.10	4962508	<0.10	0.10	4962508	N/A
Dissolved Sodium (Na)	ug/L	29000	100	4962508	13000	4962508	22000	100	4962508	N/A
Dissolved Strontium (Sr)	ug/L	420	2.0	4962508	160	4962508	190	2.0	4962508	N/A
Dissolved Thallium (TI)	ug/L	<0.10	0.10	4962508	<0.10	4962508	<0.10	0.10	4962508	N/A
Dissolved Tin (Sn)	ug/L	<2.0	2.0	4962508	<2.0	4962508	<2.0	2.0	4962508	N/A
Dissolved Titanium (Ti)	ug/L	<2.0	2.0	4962508	<2.0	4962508	<2.0	2.0	4962508	N/A
Dissolved Uranium (U)	ug/L	3.6	0.10	4962508	1.2	4962508	0.20	0.10	4962508	N/A
Dissolved Vanadium (V)	ug/L	<2.0	2.0	4962508	<2.0	4962508	<2.0	2.0	4962508	N/A
Dissolved Zinc (Zn)	ug/L	58	5.0	4962508	5.5	4962508	15	5.0	4962508	N/A

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Sampler Initials: LL

AT. RCAP-MS DISSOLVED (FIELDFILT) IN W

Maxxam ID		EHA568			EHA587			
Sampling Date		2017/04/26			2017/04/26			
COC Number		606945-01-01			606945-02-01			
	UNITS	MW4D	RDL	QC Batch	MW-DUP	RDL	QC Batch	MDL
Calculated Parameters								
Anion Sum	me/L	1.44	N/A	4959708	2.99	N/A	4959708	N/A
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	14	1.0	4959705	120	1.0	4959705	0.20
Calculated TDS	mg/L	96	1.0	4959712	170	1.0	4959712	0.20
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	4959705	<1.0	1.0	4959705	0.20
Cation Sum	me/L	1.33	N/A	4959708	2.90	N/A	4959708	N/A
Hardness (CaCO3)	mg/L	42	1.0	4959568	110	1.0	4959568	1.0
Ion Balance (% Difference)	%	3.97	N/A	4959707	1.53	N/A	4959707	N/A
Langelier Index (@ 20C)	N/A	-3.33		4959710	-0.101		4959710	
Langelier Index (@ 4C)	N/A	-3.58		4959711	-0.352		4959711	
Nitrate (N)	mg/L	0.19	0.050	4959709	<0.050	0.050	4959709	N/A
Saturation pH (@ 20C)	N/A	9.17		4959710	7.89		4959710	
Saturation pH (@ 4C)	N/A	9.42		4959711	8.14		4959711	
Inorganics								
Total Alkalinity (Total as CaCO3)	mg/L	14	5.0	4962307	120 (1)	25	4962347	N/A
Dissolved Chloride (CI)	mg/L	29	1.0	4962319	11	1.0	4962349	N/A
Colour	TCU	130 (1)	25	4962336	<5.0	5.0	4962356	N/A
Nitrate + Nitrite (N)	mg/L	0.19	0.050	4962343	<0.050	0.050	4962365	N/A
Nitrite (N)	mg/L	<0.010	0.010	4962344	<0.010	0.010	4962366	N/A
Total Organic Carbon (C)	mg/L	1.3	0.50	4960076	<5.0 (2)	5.0	4962358	N/A
Orthophosphate (P)	mg/L	<0.010	0.010	4962341	0.031	0.010	4962361	N/A
рН	рН	5.84	N/A	4963693	7.79	N/A	4963693	N/A
Reactive Silica (SiO2)	mg/L	13	0.50	4962331	19	0.50	4962354	N/A
Dissolved Sulphate (SO4)	mg/L	15	2.0	4962327	14	2.0	4962352	N/A
Turbidity	NTU	>1000	1.0	4963703	390	1.0	4963703	0.10
Conductivity	uS/cm	160	1.0	4963694	270	1.0	4963694	N/A
Metals								
Total Mercury (Hg)	ug/L	<0.013	0.013	4959901	<0.013	0.013	4964407	N/A
Dissolved Aluminum (AI)	ug/L	67	5.0	4962508	<5.0	5.0	4962508	N/A
Dissolved Antimony (Sb)	ug/L	<1.0	1.0	4962508	<1.0	1.0	4962508	N/A
Dissolved Arsenic (As)	ug/L	<1.0	1.0	4962508	10	1.0	4962508	N/A
Dissolved Barium (Ba)	ug/L	23	1.0	4962508	32	1.0	4962508	N/A
Dissolved Beryllium (Be)	ug/L	<1.0	1.0	4962508	<1.0	1.0	4962508	N/A
	-							

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

- (1) Elevated reporting limit due to sample matrix.
- (2) Reporting limit was increased due to turbidity.

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Sampler Initials: LL

AT. RCAP-MS DISSOLVED (FIELDFILT) IN W

Maxxam ID		EHA568			EHA587			
Sampling Date		2017/04/26			2017/04/26			
COC Number		606945-01-01			606945-02-01			
	UNITS	MW4D	RDL	QC Batch	MW-DUP	RDL	QC Batch	MDL
Dissolved Bismuth (Bi)	ug/L	<2.0	2.0	4962508	<2.0	2.0	4962508	N/A
Dissolved Boron (B)	ug/L	<50	50	4962508	1100	50	4962508	N/A
Dissolved Cadmium (Cd)	ug/L	0.084	0.010	4962508	<0.010	0.010	4962508	N/A
Dissolved Calcium (Ca)	ug/L	10000	100	4962508	26000	100	4962508	N/A
Dissolved Chromium (Cr)	ug/L	<1.0	1.0	4962508	<1.0	1.0	4962508	N/A
Dissolved Cobalt (Co)	ug/L	3.1	0.40	4962508	<0.40	0.40	4962508	N/A
Dissolved Copper (Cu)	ug/L	7.8	2.0	4962508	<2.0	2.0	4962508	N/A
Dissolved Iron (Fe)	ug/L	560	50	4962508	<50	50	4962508	N/A
Dissolved Lead (Pb)	ug/L	<0.50	0.50	4962508	<0.50	0.50	4962508	N/A
Dissolved Magnesium (Mg)	ug/L	4000	100	4962508	12000	100	4962508	N/A
Dissolved Manganese (Mn)	ug/L	2100	2.0	4962508	66	2.0	4962508	N/A
Dissolved Molybdenum (Mo)	ug/L	<2.0	2.0	4962508	<2.0	2.0	4962508	N/A
Dissolved Nickel (Ni)	ug/L	4.7	2.0	4962508	<2.0	2.0	4962508	N/A
Dissolved Phosphorus (P)	ug/L	<100	100	4962508	<100	100	4962508	N/A
Dissolved Potassium (K)	ug/L	1100	100	4962508	2800	100	4962508	N/A
Dissolved Selenium (Se)	ug/L	<1.0	1.0	4962508	<1.0	1.0	4962508	N/A
Dissolved Silver (Ag)	ug/L	<0.10	0.10	4962508	<0.10	0.10	4962508	N/A
Dissolved Sodium (Na)	ug/L	10000	100	4962508	13000	100	4962508	N/A
Dissolved Strontium (Sr)	ug/L	86	2.0	4962508	160	2.0	4962508	N/A
Dissolved Thallium (TI)	ug/L	<0.10	0.10	4962508	<0.10	0.10	4962508	N/A
Dissolved Tin (Sn)	ug/L	<2.0	2.0	4962508	<2.0	2.0	4962508	N/A
Dissolved Titanium (Ti)	ug/L	<2.0	2.0	4962508	<2.0	2.0	4962508	N/A
Dissolved Uranium (U)	ug/L	<0.10	0.10	4962508	1.2	0.10	4962508	N/A
Dissolved Vanadium (V)	ug/L	<2.0	2.0	4962508	<2.0	2.0	4962508	N/A
Dissolved Zinc (Zn)	ug/L	19	5.0	4962508	<5.0	5.0	4962508	N/A
PDI - Papartable Detection Limit	-							

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Sampler Initials: LL

RESULTS OF ANALYSES OF WATER

Maxxam ID		EHA561		EHA562		EHA563			
Sampling Date		2017/04/26		2017/04/26		2017/04/26			
COC Number		606945-01-01		606945-01-01		606945-01-01			
	UNITS	MW1S	QC Batch	MW1D	QC Batch	MW2S	RDL	QC Batch	MDL
Inorganics									
Total Ammonia-N	mg/L	3.4	4972953	<0.050	4973235	0.12	0.050	4973133	0.0080
RDL = Reportable Detection L	imit								
QC Batch = Quality Control Ba	itch								

Maxxam ID		EHA564	EHA565	EHA566	EHA567		EHA568				
Sampling Date		2017/04/26	2017/04/25	2017/04/25	2017/04/26		2017/04/26				
COC Number		606945-01-01	606945-01-01	606945-01-01	606945-01-01		606945-01-01				
	UNITS	MW2D	MW3S	MW3D	MW4S	QC Batch	MW4D	RDL	QC Batch	MDL	
Inorganics											
Total Ammonia-N	mg/L	<0.050	0.25	<0.050	0.26	4973235	<0.050	0.050	4973133	0.0080	
RDL = Reportable Detection L	imit										

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam ID		EHA569		EHA570			EHA580				
Sampling Date		2017/04/26		2017/04/26			2017/04/26				
COC Number		606945-01-01		606945-01-01			606945-02-01				
	UNITS	MW5	RDL	MW6S	RDL	QC Batch	MW6D	RDL	QC Batch	MDL	
Inorganics											
Inorganics											
Inorganics Total Ammonia-N	mg/L	1.2	0.050	5.9	0.25	4973235	0.13	0.050	4973133	0.0080	
		1.2	0.050	5.9	0.25	4973235	0.13	0.050	4973133	0.0080	

Maxxam ID		EHA581		EHA582		EHA583	EHA584			
Sampling Date		2017/04/26		2017/04/26		2017/04/25	2017/04/26			
COC Number		606945-02-01		606945-02-01		606945-02-01	606945-02-01			
	UNITS	MW7	QC Batch	MW8	QC Batch	MW9	MW10	RDL	QC Batch	MDL
					40 - 0.00				40 - 0.00.	
Inorganics					4			1	40 - 50 - 50	
Inorganics Total Ammonia-N	mg/L	0.11	4973235	<0.050	4973133	<0.050	-		4972947	0.0080

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam ID		EHA585	EHA586	EHA587						
Sampling Date		2017/04/26	2017/04/26	2017/04/26						
COC Number		606945-02-01	606945-02-01	606945-02-01						
	UNITS	MW11	MW12	MW-DUP	RDL	QC Batch	MDL			
Inorganics										
Total Ammonia-N	mg/L	<0.050	1.0	<0.050	0.050	4972947	0.0080			
RDL = Reportable Detection Limit										

RDL = Reportable Detection Limit
QC Batch = Quality Control Batch

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Sampler Initials: LL

ELEMENTS BY ICP/MS (WATER)

Maxxam ID		EHA561	EHA562	EHA563	EHA564	EHA565	EHA566			
Sampling Date		2017/04/26	2017/04/26	2017/04/26	2017/04/26	2017/04/25	2017/04/25			
COC Number		606945-01-01	606945-01-01	606945-01-01	606945-01-01	606945-01-01	606945-01-01			
			B 41A / 4 D	B 414/2C		B 414/26	B 414/2D		000	MADI
	UNITS	MW1S	MW1D	MW2S	MW2D	MW3S	MW3D	KDL	QC Batch	MIDL
Metals	UNITS	MW15	MW1D	IVIW25	MW2D	IVIW35	MW3D	KDL	QC Batch	MDL

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Maxxam ID		EHA567		EHA568	EHA569			EHA570			
Sampling Date		2017/04/26		2017/04/26	2017/04/26			2017/04/26			
COC Number		606945-01-01		606945-01-01	606945-01-01			606945-01-01			
	UNITS	MW4S	RDL	MW4D	MW5	RDL	QC Batch	MW6S	RDL	QC Batch	MDL
Metals	UNITS	MW4S	RDL	MW4D	MW5	RDL	QC Batch	MW6S	RDL	QC Batch	MDL

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

N/A = Not Applicable

Maxxam ID		EHA580		EHA581		EHA582	EHA583	EHA584			
Sampling Date		2017/04/26		2017/04/26		2017/04/26	2017/04/25	2017/04/26			
COC Number		606945-02-01		606945-02-01		606945-02-01	606945-02-01	606945-02-01			
	UNITS	MW6D	RDL	MW7	RDL	MW8	MW9	MW10	RDL	QC Batch	MDL
Metals											

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

N/A = Not Applicable

Maxxam ID		EHA585		EHA586	EHA587			
Sampling Date		2017/04/26		2017/04/26	2017/04/26			
COC Number		606945-02-01		606945-02-01	606945-02-01			
	UNITS	MW11	RDL	MW12	MW-DUP	RDL	QC Batch	MDL
Metals								
Total Lead (Pb)	ug/L	52	5.0	9.4	13	0.50	4962132	N/A

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Sampler Initials: LL

TEST SUMMARY

Maxxam ID: EHA561 Sample ID: MW1S Matrix: Water **Collected:** 2017/04/26

Shipped:

Received: 2017/04/26

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4959329	N/A	2017/05/02	Automated Statchk
Alkalinity	KONE	4962307	N/A	2017/05/02	Nancy Rogers
Chloride	KONE	4962319	N/A	2017/05/02	Nancy Rogers
Colour	KONE	4962336	N/A	2017/05/03	Nancy Rogers
Conductance - water	AT	4963694	N/A	2017/05/02	Julia McGovern
Hardness (calculated as CaCO3)		4959568	N/A	2017/05/02	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4959901	2017/04/28	2017/05/01	Arlene Rossiter
Metals Water Diss. MS	CICP/MS	4962494	N/A	2017/05/02	Bryon Angevine
Metals Water Total MS	CICP/MS	4962130	2017/05/01	2017/05/01	Bryon Angevine
Ion Balance (% Difference)	CALC	4959332	N/A	2017/05/08	Automated Statchk
Anion and Cation Sum	CALC	4959333	N/A	2017/05/08	Automated Statchk
Total Ammonia-N	LACH/NH4	4972953	N/A	2017/05/08	Charles Opoku-Ware
Nitrogen - Nitrate + Nitrite	KONE	4962343	N/A	2017/05/02	Nancy Rogers
Nitrogen - Nitrite	KONE	4962344	N/A	2017/05/02	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4959709	N/A	2017/05/03	Automated Statchk
рН	AT	4963693	N/A	2017/05/02	Julia McGovern
Phosphorus - ortho	KONE	4962341	N/A	2017/05/02	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4959336	N/A	2017/05/08	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4959337	N/A	2017/05/08	Automated Statchk
Reactive Silica	KONE	4962331	N/A	2017/05/02	Nancy Rogers
Sulphate	KONE	4962327	N/A	2017/05/03	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4959338	N/A	2017/05/08	Automated Statchk
Organic carbon - Total (TOC)	TECH	4960076	N/A	2017/04/28	Soraya Merchant
Turbidity	TURB	4963703	N/A	2017/05/02	Julia McGovern

Maxxam ID: EHA562 Sample ID: MW1D Matrix: Water **Collected:** 2017/04/26 **Shipped:**

Shipped: Received:

2017/04/26

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4959329	N/A	2017/05/02	Automated Statchk
Alkalinity	KONE	4962307	N/A	2017/05/03	Nancy Rogers
Chloride	KONE	4962319	N/A	2017/05/02	Nancy Rogers
Colour	KONE	4962336	N/A	2017/05/03	Nancy Rogers
Conductance - water	AT	4963694	N/A	2017/05/02	Julia McGovern
Hardness (calculated as CaCO3)		4959568	N/A	2017/05/02	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4959901	2017/04/28	2017/05/01	Arlene Rossiter
Metals Water Diss. MS (as rec'd)	CICP/MS	4962508	N/A	2017/05/02	Bryon Angevine
Metals Water Total MS	CICP/MS	4962130	2017/05/01	2017/05/01	Bryon Angevine
Ion Balance (% Difference)	CALC	4959332	N/A	2017/05/08	Automated Statchk
Anion and Cation Sum	CALC	4959333	N/A	2017/05/08	Automated Statchk
Total Ammonia-N	LACH/NH4	4973235	N/A	2017/05/08	Anastasia Hamanov
Nitrogen - Nitrate + Nitrite	KONE	4962343	N/A	2017/05/02	Nancy Rogers
Nitrogen - Nitrite	KONE	4962344	N/A	2017/05/02	Nancy Rogers

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Sampler Initials: LL

TEST SUMMARY

Maxxam ID: EHA562 Sample ID: MW1D Matrix: Water

2017/04/26 Collected:

Shipped:

Received: 2017/04/26

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Nitrogen - Nitrate (as N)	CALC	4959709	N/A	2017/05/03	Automated Statchk
рН	AT	4963693	N/A	2017/05/02	Julia McGovern
Phosphorus - ortho	KONE	4962341	N/A	2017/05/02	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4959336	N/A	2017/05/08	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4959337	N/A	2017/05/08	Automated Statchk
Reactive Silica	KONE	4962331	N/A	2017/05/02	Nancy Rogers
Sulphate	KONE	4962327	N/A	2017/05/03	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4959338	N/A	2017/05/08	Automated Statchk
Organic carbon - Total (TOC)	TECH	4962358	N/A	2017/05/01	Soraya Merchant
Turbidity	TURB	4963703	N/A	2017/05/02	Julia McGovern

Maxxam ID: EHA563 Sample ID: MW2S Matrix: Water

2017/04/26 Collected: Shipped:

Received: 2017/04/26

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4959329	N/A	2017/05/02	Automated Statchk
Alkalinity	KONE	4962307	N/A	2017/05/02	Nancy Rogers
Chloride	KONE	4962319	N/A	2017/05/02	Nancy Rogers
Colour	KONE	4962336	N/A	2017/05/03	Nancy Rogers
Conductance - water	AT	4963694	N/A	2017/05/02	Julia McGovern
Hardness (calculated as CaCO3)		4959568	N/A	2017/05/02	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4959901	2017/04/28	2017/05/01	Arlene Rossiter
Metals Water Diss. MS	CICP/MS	4962494	N/A	2017/05/02	Bryon Angevine
Metals Water Total MS	CICP/MS	4962130	2017/05/01	2017/05/01	Bryon Angevine
Ion Balance (% Difference)	CALC	4959332	N/A	2017/05/08	Automated Statchk
Anion and Cation Sum	CALC	4959333	N/A	2017/05/08	Automated Statchk
Total Ammonia-N	LACH/NH4	4973133	N/A	2017/05/08	Charles Opoku-Ware
Nitrogen - Nitrate + Nitrite	KONE	4962343	N/A	2017/05/02	Nancy Rogers
Nitrogen - Nitrite	KONE	4962344	N/A	2017/05/02	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4959709	N/A	2017/05/03	Automated Statchk
рН	AT	4963693	N/A	2017/05/02	Julia McGovern
Phosphorus - ortho	KONE	4962341	N/A	2017/05/02	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4959336	N/A	2017/05/08	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4959337	N/A	2017/05/08	Automated Statchk
Reactive Silica	KONE	4962331	N/A	2017/05/02	Nancy Rogers
Sulphate	KONE	4962327	N/A	2017/05/03	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4959338	N/A	2017/05/08	Automated Statchk
Organic carbon - Total (TOC)	TECH	4962358	N/A	2017/05/01	Soraya Merchant
Turbidity	TURB	4963703	N/A	2017/05/02	Julia McGovern

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Sampler Initials: LL

TEST SUMMARY

Maxxam ID: EHA563 Dup Sample ID: MW2S

Collected: 201

2017/04/26

Matrix: Water

Shipped: Received:

Received: 2017/04/26

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Organic carbon - Total (TOC)	TECH	4962358	N/A	2017/05/01	Soraya Merchant

Maxxam ID: EHA564 Sample ID: MW2D Matrix: Water **Collected:** 2017/04/26

Shipped:

Received: 2017/04/26

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4959705	N/A	2017/05/02	Automated Statchk
Alkalinity	KONE	4962307	N/A	2017/05/02	Nancy Rogers
Chloride	KONE	4962319	N/A	2017/05/02	Nancy Rogers
Colour	KONE	4962336	N/A	2017/05/03	Nancy Rogers
Conductance - water	AT	4963701	N/A	2017/05/02	Julia McGovern
Hardness (calculated as CaCO3)		4959568	N/A	2017/05/02	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4959901	2017/04/28	2017/05/01	Arlene Rossiter
Metals Water Diss. MS (as rec'd)	CICP/MS	4962508	N/A	2017/05/02	Bryon Angevine
Metals Water Total MS	CICP/MS	4962130	2017/05/01	2017/05/01	Bryon Angevine
Ion Balance (% Difference)	CALC	4959707	N/A	2017/05/08	Automated Statchk
Anion and Cation Sum	CALC	4959708	N/A	2017/05/08	Automated Statchk
Total Ammonia-N	LACH/NH4	4973235	N/A	2017/05/08	Anastasia Hamanov
Nitrogen - Nitrate + Nitrite	KONE	4962343	N/A	2017/05/02	Nancy Rogers
Nitrogen - Nitrite	KONE	4962344	N/A	2017/05/02	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4959709	N/A	2017/05/03	Automated Statchk
Н	AT	4963699	N/A	2017/05/02	Julia McGovern
Phosphorus - ortho	KONE	4962341	N/A	2017/05/02	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4959710	N/A	2017/05/08	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4959711	N/A	2017/05/08	Automated Statchk
Reactive Silica	KONE	4962331	N/A	2017/05/02	Nancy Rogers
Sulphate	KONE	4962327	N/A	2017/05/03	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4959712	N/A	2017/05/08	Automated Statchk
Organic carbon - Total (TOC)	TECH	4962358	N/A	2017/05/01	Soraya Merchant
Turbidity	TURB	4962161	N/A	2017/05/01	Julia McGovern

Maxxam ID: EHA565 Sample ID: MW3S Matrix: Water **Collected:** 2017/04/25

Shipped:

Received: 2017/04/26

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4959705	N/A	2017/05/02	Automated Statchk
Alkalinity	KONE	4962307	N/A	2017/05/02	Nancy Rogers
Chloride	KONE	4962319	N/A	2017/05/02	Nancy Rogers
Colour	KONE	4962336	N/A	2017/05/03	Nancy Rogers
Conductance - water	AT	4963694	N/A	2017/05/02	Julia McGovern
Hardness (calculated as CaCO3)		4959568	N/A	2017/05/02	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4959901	2017/04/28	2017/05/01	Arlene Rossiter

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Sampler Initials: LL

TEST SUMMARY

Maxxam ID: EHA565 Sample ID: MW3S Matrix: Water **Collected:** 2017/04/25

Shipped:

Received: 2017/04/26

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Metals Water Diss. MS	CICP/MS	4962494	N/A	2017/05/02	Bryon Angevine
Metals Water Total MS	CICP/MS	4962130	2017/05/01	2017/05/01	Bryon Angevine
Ion Balance (% Difference)	CALC	4959707	N/A	2017/05/08	Automated Statchk
Anion and Cation Sum	CALC	4959708	N/A	2017/05/08	Automated Statchk
Total Ammonia-N	LACH/NH4	4973235	N/A	2017/05/08	Anastasia Hamanov
Nitrogen - Nitrate + Nitrite	KONE	4962343	N/A	2017/05/02	Nancy Rogers
Nitrogen - Nitrite	KONE	4962344	N/A	2017/05/02	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4959709	N/A	2017/05/03	Automated Statchk
рН	AT	4963693	N/A	2017/05/02	Julia McGovern
Phosphorus - ortho	KONE	4962341	N/A	2017/05/02	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4959710	N/A	2017/05/08	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4959711	N/A	2017/05/08	Automated Statchk
Reactive Silica	KONE	4962331	N/A	2017/05/02	Nancy Rogers
Sulphate	KONE	4962327	N/A	2017/05/03	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4959712	N/A	2017/05/08	Automated Statchk
Organic carbon - Total (TOC)	TECH	4960076	N/A	2017/04/28	Soraya Merchant
Turbidity	TURB	4963703	N/A	2017/05/02	Julia McGovern

Maxxam ID: EHA565 Dup Sample ID: MW3S

Water

Matrix:

Collected: 2017/04/25

Shipped:

Received: 2017/04/26

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Metals Water Diss. MS	CICP/MS	4962494	N/A	2017/05/02	Bryon Angevine

Maxxam ID: EHA566 Sample ID: MW3D Matrix: Water **Collected:** 2017/04/25

Shipped: Received:

2017/04/26

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4959705	N/A	2017/05/02	Automated Statchk
Alkalinity	KONE	4962307	N/A	2017/05/02	Nancy Rogers
Chloride	KONE	4962319	N/A	2017/05/02	Nancy Rogers
Colour	KONE	4962336	N/A	2017/05/03	Nancy Rogers
Conductance - water	AT	4963694	N/A	2017/05/02	Julia McGovern
Hardness (calculated as CaCO3)		4959568	N/A	2017/05/02	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4959901	2017/04/28	2017/05/01	Arlene Rossiter
Metals Water Diss. MS (as rec'd)	CICP/MS	4962508	N/A	2017/05/02	Bryon Angevine
Metals Water Total MS	CICP/MS	4962130	2017/05/01	2017/05/01	Bryon Angevine
Ion Balance (% Difference)	CALC	4959707	N/A	2017/05/08	Automated Statchk
Anion and Cation Sum	CALC	4959708	N/A	2017/05/08	Automated Statchk
Total Ammonia-N	LACH/NH4	4973235	N/A	2017/05/08	Anastasia Hamanov
Nitrogen - Nitrate + Nitrite	KONE	4962343	N/A	2017/05/02	Nancy Rogers
Nitrogen - Nitrite	KONE	4962344	N/A	2017/05/02	Nancy Rogers

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Sampler Initials: LL

TEST SUMMARY

Maxxam ID: EHA566 Sample ID: MW3D Matrix: Water **Collected:** 2017/04/25

Shipped:

Received: 2017/04/26

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Nitrogen - Nitrate (as N)	CALC	4959709	N/A	2017/05/03	Automated Statchk
рН	AT	4963693	N/A	2017/05/02	Julia McGovern
Phosphorus - ortho	KONE	4962341	N/A	2017/05/02	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4959710	N/A	2017/05/08	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4959711	N/A	2017/05/08	Automated Statchk
Reactive Silica	KONE	4962331	N/A	2017/05/02	Nancy Rogers
Sulphate	KONE	4962327	N/A	2017/05/03	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4959712	N/A	2017/05/08	Automated Statchk
Organic carbon - Total (TOC)	TECH	4962358	N/A	2017/05/01	Soraya Merchant
Turbidity	TURB	4963703	N/A	2017/05/02	Julia McGovern

Maxxam ID: EHA567 Sample ID: MW4S Matrix: Water **Collected:** 2017/04/26

Shipped:

Received: 2017/04/26

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4959705	N/A	2017/05/02	Automated Statchk
Alkalinity	KONE	4962307	N/A	2017/05/02	Nancy Rogers
Chloride	KONE	4962319	N/A	2017/05/02	Nancy Rogers
Colour	KONE	4962336	N/A	2017/05/03	Nancy Rogers
Conductance - water	AT	4963694	N/A	2017/05/02	Julia McGovern
Hardness (calculated as CaCO3)		4959568	N/A	2017/05/02	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4959901	2017/04/28	2017/05/01	Arlene Rossiter
Metals Water Diss. MS	CICP/MS	4962494	N/A	2017/05/02	Bryon Angevine
Metals Water Total MS	CICP/MS	4962130	2017/05/01	2017/05/02	Bryon Angevine
Ion Balance (% Difference)	CALC	4959707	N/A	2017/05/08	Automated Statchk
Anion and Cation Sum	CALC	4959708	N/A	2017/05/08	Automated Statchk
Total Ammonia-N	LACH/NH4	4973235	N/A	2017/05/08	Anastasia Hamanov
Nitrogen - Nitrate + Nitrite	KONE	4962343	N/A	2017/05/02	Nancy Rogers
Nitrogen - Nitrite	KONE	4962344	N/A	2017/05/02	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4959709	N/A	2017/05/03	Automated Statchk
рН	AT	4963693	N/A	2017/05/02	Julia McGovern
Phosphorus - ortho	KONE	4962341	N/A	2017/05/02	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4959710	N/A	2017/05/08	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4959711	N/A	2017/05/08	Automated Statchk
Reactive Silica	KONE	4962331	N/A	2017/05/02	Nancy Rogers
Sulphate	KONE	4962327	N/A	2017/05/03	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4959712	N/A	2017/05/08	Automated Statchk
Organic carbon - Total (TOC)	TECH	4962358	N/A	2017/05/01	Soraya Merchant
Turbidity	TURB	4963703	N/A	2017/05/02	Julia McGovern

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Sampler Initials: LL

TEST SUMMARY

Maxxam ID: EHA568 Sample ID: MW4D Matrix: Water **Collected:** 2017/04/26

Shipped:

Collected:

2017/04/26

2017/04/26

Received: 2017/04/26

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4959705	N/A	2017/05/02	Automated Statchk
Alkalinity	KONE	4962307	N/A	2017/05/02	Nancy Rogers
Chloride	KONE	4962319	N/A	2017/05/02	Nancy Rogers
Colour	KONE	4962336	N/A	2017/05/03	Nancy Rogers
Conductance - water	AT	4963694	N/A	2017/05/02	Julia McGovern
Hardness (calculated as CaCO3)		4959568	N/A	2017/05/02	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4959901	2017/04/28	2017/05/01	Arlene Rossiter
Metals Water Diss. MS (as rec'd)	CICP/MS	4962508	N/A	2017/05/02	Bryon Angevine
Metals Water Total MS	CICP/MS	4962130	2017/05/01	2017/05/01	Bryon Angevine
Ion Balance (% Difference)	CALC	4959707	N/A	2017/05/08	Automated Statchk
Anion and Cation Sum	CALC	4959708	N/A	2017/05/08	Automated Statchk
Total Ammonia-N	LACH/NH4	4973133	N/A	2017/05/08	Charles Opoku-Ware
Nitrogen - Nitrate + Nitrite	KONE	4962343	N/A	2017/05/02	Nancy Rogers
Nitrogen - Nitrite	KONE	4962344	N/A	2017/05/02	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4959709	N/A	2017/05/03	Automated Statchk
рН	AT	4963693	N/A	2017/05/02	Julia McGovern
Phosphorus - ortho	KONE	4962341	N/A	2017/05/02	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4959710	N/A	2017/05/08	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4959711	N/A	2017/05/08	Automated Statchk
Reactive Silica	KONE	4962331	N/A	2017/05/02	Nancy Rogers
Sulphate	KONE	4962327	N/A	2017/05/03	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4959712	N/A	2017/05/08	Automated Statchk
Organic carbon - Total (TOC)	TECH	4960076	N/A	2017/04/28	Soraya Merchant
Turbidity	TURB	4963703	N/A	2017/05/02	Julia McGovern

Maxxam ID: EHA569 Sample ID: MW5

mple ID: MW5 Shipped:
Matrix: Water Received:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4959705	N/A	2017/05/02	Automated Statchk
Alkalinity	KONE	4962307	N/A	2017/05/02	Nancy Rogers
Chloride	KONE	4962319	N/A	2017/05/02	Nancy Rogers
Colour	KONE	4962336	N/A	2017/05/03	Nancy Rogers
Conductance - water	AT	4963694	N/A	2017/05/02	Julia McGovern
Hardness (calculated as CaCO3)		4959568	N/A	2017/05/02	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4959901	2017/04/28	2017/05/01	Arlene Rossiter
Metals Water Diss. MS	CICP/MS	4962494	N/A	2017/05/02	Bryon Angevine
Metals Water Total MS	CICP/MS	4962130	2017/05/01	2017/05/01	Bryon Angevine
Ion Balance (% Difference)	CALC	4959707	N/A	2017/05/08	Automated Statchk
Anion and Cation Sum	CALC	4959708	N/A	2017/05/08	Automated Statchk
Total Ammonia-N	LACH/NH4	4973235	N/A	2017/05/08	Anastasia Hamanov
Nitrogen - Nitrate + Nitrite	KONE	4962343	N/A	2017/05/02	Nancy Rogers
Nitrogen - Nitrite	KONE	4962344	N/A	2017/05/02	Nancy Rogers

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Sampler Initials: LL

TEST SUMMARY

Maxxam ID: EHA569 Sample ID: MW5 Matrix: Water **Collected:** 2017/04/26

Shipped:

Received: 2017/04/26

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Nitrogen - Nitrate (as N)	CALC	4959709	N/A	2017/05/03	Automated Statchk
рН	AT	4963693	N/A	2017/05/02	Julia McGovern
Phosphorus - ortho	KONE	4962341	N/A	2017/05/02	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4959710	N/A	2017/05/08	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4959711	N/A	2017/05/08	Automated Statchk
Reactive Silica	KONE	4962331	N/A	2017/05/02	Nancy Rogers
Sulphate	KONE	4962327	N/A	2017/05/03	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4959712	N/A	2017/05/08	Automated Statchk
Organic carbon - Total (TOC)	TECH	4960076	N/A	2017/04/28	Soraya Merchant
Turbidity	TURB	4963703	N/A	2017/05/02	Julia McGovern

Maxxam ID: EHA570 Sample ID: MW6S Matrix: Water **Collected:** 2017/04/26

Shipped:

Received: 2017/04/26

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4959705	N/A	2017/05/02	Automated Statchk
Alkalinity	KONE	4962307	N/A	2017/05/02	Nancy Rogers
Chloride	KONE	4962319	N/A	2017/05/02	Nancy Rogers
Colour	KONE	4962336	N/A	2017/05/03	Nancy Rogers
Conductance - water	AT	4963694	N/A	2017/05/02	Julia McGovern
Hardness (calculated as CaCO3)		4959568	N/A	2017/05/02	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4959901	2017/04/28	2017/05/01	Arlene Rossiter
Metals Water Diss. MS	CICP/MS	4962494	N/A	2017/05/02	Bryon Angevine
Metals Water Total MS	CICP/MS	4963727	2017/05/02	2017/05/02	Mike Leblanc
Ion Balance (% Difference)	CALC	4959707	N/A	2017/05/08	Automated Statchk
Anion and Cation Sum	CALC	4959708	N/A	2017/05/08	Automated Statchk
Total Ammonia-N	LACH/NH4	4973235	N/A	2017/05/08	Anastasia Hamanov
Nitrogen - Nitrate + Nitrite	KONE	4962343	N/A	2017/05/02	Nancy Rogers
Nitrogen - Nitrite	KONE	4962344	N/A	2017/05/02	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4959709	N/A	2017/05/03	Automated Statchk
pH	AT	4963693	N/A	2017/05/02	Julia McGovern
Phosphorus - ortho	KONE	4962341	N/A	2017/05/02	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4959710	N/A	2017/05/08	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4959711	N/A	2017/05/08	Automated Statchk
Reactive Silica	KONE	4962331	N/A	2017/05/02	Nancy Rogers
Sulphate	KONE	4962327	N/A	2017/05/03	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4959712	N/A	2017/05/08	Automated Statchk
Organic carbon - Total (TOC)	TECH	4960076	N/A	2017/04/28	Soraya Merchant
Turbidity	TURB	4963703	N/A	2017/05/02	Julia McGovern

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Sampler Initials: LL

TEST SUMMARY

Maxxam ID: EHA580 Sample ID: MW6D Matrix: Water **Collected:** 2017/04/26

Shipped:

Received: 2017/04/26

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4959705	N/A	2017/05/02	Automated Statchk
Alkalinity	KONE	4962307	N/A	2017/05/02	Nancy Rogers
Chloride	KONE	4962319	N/A	2017/05/02	Nancy Rogers
Colour	KONE	4962336	N/A	2017/05/03	Nancy Rogers
Conductance - water	AT	4963694	N/A	2017/05/02	Julia McGovern
Hardness (calculated as CaCO3)		4959568	N/A	2017/05/02	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4959901	2017/04/28	2017/05/01	Arlene Rossiter
Metals Water Diss. MS	CICP/MS	4962494	N/A	2017/05/02	Bryon Angevine
Metals Water Total MS	CICP/MS	4962132	2017/05/01	2017/05/01	Bryon Angevine
Ion Balance (% Difference)	CALC	4959707	N/A	2017/05/08	Automated Statchk
Anion and Cation Sum	CALC	4959708	N/A	2017/05/08	Automated Statchk
Total Ammonia-N	LACH/NH4	4973133	N/A	2017/05/08	Charles Opoku-Ware
Nitrogen - Nitrate + Nitrite	KONE	4962343	N/A	2017/05/02	Nancy Rogers
Nitrogen - Nitrite	KONE	4962344	N/A	2017/05/02	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4959709	N/A	2017/05/03	Automated Statchk
рН	AT	4963693	N/A	2017/05/02	Julia McGovern
Phosphorus - ortho	KONE	4962341	N/A	2017/05/02	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4959710	N/A	2017/05/08	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4959711	N/A	2017/05/08	Automated Statchk
Reactive Silica	KONE	4962331	N/A	2017/05/02	Nancy Rogers
Sulphate	KONE	4962327	N/A	2017/05/03	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4959712	N/A	2017/05/08	Automated Statchk
Organic carbon - Total (TOC)	TECH	4960076	N/A	2017/04/28	Soraya Merchant
Turbidity	TURB	4963703	N/A	2017/05/02	Julia McGovern

Maxxam ID: EHA581 Sample ID: MW7

Matrix: Water

Collected: 2017/04/26 **Shipped:**

Received: 2017/04/26

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4959705	N/A	2017/05/02	Automated Statchk
Alkalinity	KONE	4962307	N/A	2017/05/02	Nancy Rogers
Chloride	KONE	4962319	N/A	2017/05/02	Nancy Rogers
Colour	KONE	4962336	N/A	2017/05/03	Nancy Rogers
Conductance - water	AT	4963694	N/A	2017/05/02	Julia McGovern
Hardness (calculated as CaCO3)		4959568	N/A	2017/05/02	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4959901	2017/04/28	2017/05/01	Arlene Rossiter
Metals Water Diss. MS	CICP/MS	4962494	N/A	2017/05/02	Bryon Angevine
Metals Water Total MS	CICP/MS	4962132	2017/05/01	2017/05/01	Bryon Angevine
Ion Balance (% Difference)	CALC	4959707	N/A	2017/05/08	Automated Statchk
Anion and Cation Sum	CALC	4959708	N/A	2017/05/08	Automated Statchk
Total Ammonia-N	LACH/NH4	4973235	N/A	2017/05/08	Anastasia Hamanov
Nitrogen - Nitrate + Nitrite	KONE	4962343	N/A	2017/05/02	Nancy Rogers
Nitrogen - Nitrite	KONE	4962344	N/A	2017/05/02	Nancy Rogers

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Sampler Initials: LL

TEST SUMMARY

Maxxam ID: EHA581 Sample ID: MW7 Matrix: Water **Collected:** 2017/04/26

Shipped:

Received: 2017/04/26

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Nitrogen - Nitrate (as N)	CALC	4959709	N/A	2017/05/03	Automated Statchk
рН	AT	4963693	N/A	2017/05/02	Julia McGovern
Phosphorus - ortho	KONE	4962341	N/A	2017/05/02	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4959710	N/A	2017/05/08	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4959711	N/A	2017/05/08	Automated Statchk
Reactive Silica	KONE	4962331	N/A	2017/05/02	Nancy Rogers
Sulphate	KONE	4962327	N/A	2017/05/03	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4959712	N/A	2017/05/08	Automated Statchk
Organic carbon - Total (TOC)	TECH	4962358	N/A	2017/05/01	Soraya Merchant
Turbidity	TURB	4963703	N/A	2017/05/02	Julia McGovern

Maxxam ID: EHA582 Sample ID: MW8

mple ID: MW8 Shipped:
Matrix: Water Received:

Received: 2017/04/26

Collected:

2017/04/26

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4959705	N/A	2017/05/02	Automated Statchk
Alkalinity	KONE	4962307	N/A	2017/05/03	Nancy Rogers
Chloride	KONE	4962319	N/A	2017/05/02	Nancy Rogers
Colour	KONE	4962336	N/A	2017/05/03	Nancy Rogers
Conductance - water	AT	4963694	N/A	2017/05/02	Julia McGovern
Hardness (calculated as CaCO3)		4959568	N/A	2017/05/02	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4959901	2017/04/28	2017/05/01	Arlene Rossiter
Metals Water Diss. MS	CICP/MS	4962494	N/A	2017/05/02	Bryon Angevine
Metals Water Total MS	CICP/MS	4962132	2017/05/01	2017/05/01	Bryon Angevine
Ion Balance (% Difference)	CALC	4959707	N/A	2017/05/08	Automated Statchk
Anion and Cation Sum	CALC	4959708	N/A	2017/05/08	Automated Statchk
Total Ammonia-N	LACH/NH4	4973133	N/A	2017/05/08	Charles Opoku-Ware
Nitrogen - Nitrate + Nitrite	KONE	4962343	N/A	2017/05/02	Nancy Rogers
Nitrogen - Nitrite	KONE	4962344	N/A	2017/05/02	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4959709	N/A	2017/05/03	Automated Statchk
рН	AT	4963693	N/A	2017/05/02	Julia McGovern
Phosphorus - ortho	KONE	4962341	N/A	2017/05/02	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4959710	N/A	2017/05/08	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4959711	N/A	2017/05/08	Automated Statchk
Reactive Silica	KONE	4962331	N/A	2017/05/02	Nancy Rogers
Sulphate	KONE	4962327	N/A	2017/05/03	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4959712	N/A	2017/05/08	Automated Statchk
Organic carbon - Total (TOC)	TECH	4962358	N/A	2017/05/01	Soraya Merchant
Turbidity	TURB	4962161	N/A	2017/05/01	Julia McGovern

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Sampler Initials: LL

TEST SUMMARY

Maxxam ID: EHA583 Sample ID: MW9 Matrix: Water **Collected:** 2017/04/25

Shipped:

Received: 2017/04/26

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4959705	N/A	2017/05/02	Automated Statchk
Alkalinity	KONE	4962347	N/A	2017/05/02	Nancy Rogers
Chloride	KONE	4962349	N/A	2017/05/02	Nancy Rogers
Colour	KONE	4962356	N/A	2017/05/03	Nancy Rogers
Conductance - water	AT	4963694	N/A	2017/05/02	Julia McGovern
Hardness (calculated as CaCO3)		4959568	N/A	2017/05/02	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4959901	2017/04/28	2017/05/01	Arlene Rossiter
Metals Water Diss. MS	CICP/MS	4962494	N/A	2017/05/02	Bryon Angevine
Metals Water Total MS	CICP/MS	4962132	2017/05/01	2017/05/01	Bryon Angevine
Ion Balance (% Difference)	CALC	4959707	N/A	2017/05/08	Automated Statchk
Anion and Cation Sum	CALC	4959708	N/A	2017/05/08	Automated Statchk
Total Ammonia-N	LACH/NH4	4972947	N/A	2017/05/08	Charles Opoku-Ware
Nitrogen - Nitrate + Nitrite	KONE	4962365	N/A	2017/05/02	Nancy Rogers
Nitrogen - Nitrite	KONE	4962366	N/A	2017/05/02	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4959709	N/A	2017/05/03	Automated Statchk
рН	AT	4963693	N/A	2017/05/02	Julia McGovern
Phosphorus - ortho	KONE	4962361	N/A	2017/05/02	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4959710	N/A	2017/05/08	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4959711	N/A	2017/05/08	Automated Statchk
Reactive Silica	KONE	4962354	N/A	2017/05/02	Nancy Rogers
Sulphate	KONE	4962352	N/A	2017/05/03	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4959712	N/A	2017/05/08	Automated Statchk
Organic carbon - Total (TOC)	TECH	4962358	N/A	2017/05/01	Soraya Merchant
Turbidity	TURB	4963703	N/A	2017/05/02	Julia McGovern

Maxxam ID: EHA584 Sample ID: MW10 Matrix: Water **Collected:** 2017/04/26 **Shipped:**

Shipped: Received:

2017/04/26

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4959705	N/A	2017/05/02	Automated Statchk
Alkalinity	KONE	4962347	N/A	2017/05/02	Nancy Rogers
Chloride	KONE	4962349	N/A	2017/05/02	Nancy Rogers
Colour	KONE	4962356	N/A	2017/05/03	Nancy Rogers
Conductance - water	AT	4963694	N/A	N/A 2017/05/02	Julia McGovern
Hardness (calculated as CaCO3)		4959568	N/A	2017/05/02	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4959901	2017/04/28	2017/05/01	Arlene Rossiter
Metals Water Diss. MS	CICP/MS	4962494	N/A	2017/05/02	Bryon Angevine
Metals Water Total MS	CICP/MS	4962132	2017/05/01	2017/05/01	Bryon Angevine
Ion Balance (% Difference)	CALC	4959707	N/A	2017/05/08	Automated Statchk
Anion and Cation Sum	CALC	4959708	N/A	2017/05/08	Automated Statchk
Total Ammonia-N	LACH/NH4	4972947	N/A	2017/05/08	Charles Opoku-Ware
Nitrogen - Nitrate + Nitrite	KONE	4962365	N/A	2017/05/02	Nancy Rogers
Nitrogen - Nitrite	KONE	4962366	N/A	2017/05/02	Nancy Rogers

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Sampler Initials: LL

TEST SUMMARY

Maxxam ID: EHA584 Sample ID: MW10 Matrix: Water

Collected: 2017/04/26

Shipped:

Received: 2017/04/26

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Nitrogen - Nitrate (as N)	CALC	4959709	N/A	2017/05/03	Automated Statchk
рН	AT	4963693	N/A	2017/05/02	Julia McGovern
Phosphorus - ortho	KONE	4962361	N/A	2017/05/02	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4959710	N/A	2017/05/08	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4959711	N/A	2017/05/08	Automated Statchk
Reactive Silica	KONE	4962354	N/A	2017/05/02	Nancy Rogers
Sulphate	KONE	4962352	N/A	2017/05/03	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4959712	N/A	2017/05/08	Automated Statchk
Organic carbon - Total (TOC)	TECH	4962358	N/A	2017/05/01	Soraya Merchant
Turbidity	TURB	4963703	N/A	2017/05/02	Julia McGovern

Maxxam ID: EHA584 Dup Sample ID: MW10 Matrix: Water

2017/04/26 Collected: Shipped:

Received: 2017/04/26

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Turbidity	TURB	4963703	N/A	2017/05/02	Julia McGovern

Maxxam ID: EHA585 Sample ID: MW11 Matrix: Water

Collected: 2017/04/26

Shipped:

Received: 2017/04/26

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4959705	N/A	2017/05/02	Automated Statchk
Alkalinity	KONE	4962347	N/A	2017/05/02	Nancy Rogers
Chloride	KONE	4962349	N/A	2017/05/02	Nancy Rogers
Colour	KONE	4962356	N/A	2017/05/03	Nancy Rogers
Conductance - water	AT	4963694	N/A	2017/05/02	Julia McGovern
Hardness (calculated as CaCO3)		4959568	N/A	2017/05/02	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4959901	2017/04/28	2017/05/01	Arlene Rossiter
Metals Water Diss. MS	CICP/MS	4962494	N/A	2017/05/02	Bryon Angevine
Metals Water Total MS	CICP/MS	4962132	2017/05/01	2017/05/01	Bryon Angevine
Ion Balance (% Difference)	CALC	4959707	N/A	2017/05/08	Automated Statchk
Anion and Cation Sum	CALC	4959708	N/A	2017/05/08	Automated Statchk
Total Ammonia-N	LACH/NH4	4972947	N/A	2017/05/08	Charles Opoku-Ware
Nitrogen - Nitrate + Nitrite	KONE	4962365	N/A	2017/05/02	Nancy Rogers
Nitrogen - Nitrite	KONE	4962366	N/A	2017/05/02	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4959709	N/A	2017/05/03	Automated Statchk
рН	AT	4963693	N/A	2017/05/02	Julia McGovern
Phosphorus - ortho	KONE	4962361	N/A	2017/05/02	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4959710	N/A	2017/05/08	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4959711	N/A	2017/05/08	Automated Statchk
Reactive Silica	KONE	4962354	N/A	2017/05/02	Nancy Rogers
Sulphate	KONE	4962352	N/A	2017/05/03	Nancy Rogers

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Sampler Initials: LL

TEST SUMMARY

Maxxam ID: EHA585 Sample ID: MW11 Matrix: Water

Collected: 2017/04/26

Shipped:

Received: 2017/04/26

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Total Dissolved Solids (TDS calc)	CALC	4959712	N/A	2017/05/08	Automated Statchk
Organic carbon - Total (TOC)	TECH	4962358	N/A	2017/05/01	Soraya Merchant
Turbidity	TURB	4963703	N/A	2017/05/02	Julia McGovern

Maxxam ID: EHA586 Sample ID: MW12 Matrix: Water

Collected: 2017/04/26

Shipped:

Received: 2017/04/26

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4959705	N/A	2017/05/03	Automated Statchk
Alkalinity	KONE	4962347	N/A	2017/05/02	Nancy Rogers
Chloride	KONE	4962349	N/A	2017/05/02	Nancy Rogers
Colour	KONE	4962356	N/A	2017/05/03	Nancy Rogers
Conductance - water	AT	4965729	N/A	2017/05/03	Julia McGovern
Hardness (calculated as CaCO3)		4959568	N/A	2017/05/02	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4959901	2017/04/28	2017/05/01	Arlene Rossiter
Metals Water Diss. MS	CICP/MS	4962494	N/A	2017/05/02	Bryon Angevine
Metals Water Total MS	CICP/MS	4962132	2017/05/01	2017/05/01	Bryon Angevine
Ion Balance (% Difference)	CALC	4959707	N/A	2017/05/08	Automated Statchk
Anion and Cation Sum	CALC	4959708	N/A	2017/05/08	Automated Statchk
Total Ammonia-N	LACH/NH4	4972947	N/A	2017/05/08	Charles Opoku-Ware
Nitrogen - Nitrate + Nitrite	KONE	4962365	N/A	2017/05/02	Nancy Rogers
Nitrogen - Nitrite	KONE	4962366	N/A	2017/05/02	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4959709	N/A	2017/05/03	Automated Statchk
рН	AT	4965728	N/A	2017/05/03	Julia McGovern
Phosphorus - ortho	KONE	4962361	N/A	2017/05/02	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4959710	N/A	2017/05/08	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4959711	N/A	2017/05/08	Automated Statchk
Reactive Silica	KONE	4962354	N/A	2017/05/02	Nancy Rogers
Sulphate	KONE	4962352	N/A	2017/05/03	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4959712	N/A	2017/05/08	Automated Statchk
Organic carbon - Total (TOC)	TECH	4962358	N/A	2017/05/01	Soraya Merchant
Turbidity	TURB	4962161	N/A	2017/05/01	Julia McGovern

Maxxam ID: EHA586 Dup Sample ID: MW12 Matrix: Water

Collected: 2017/04/26 Shipped:

2017/04/26 Received:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Conductance - water	AT	4965729	N/A	2017/05/03	Julia McGovern
pH	AT	4965728	N/A	2017/05/03	Julia McGovern

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Sampler Initials: LL

TEST SUMMARY

Maxxam ID: EHA587 Sample ID: MW-DUP Matrix: Water **Collected:** 2017/04/26

Shipped:

Received: 2017/04/26

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4959705	N/A	2017/05/02	Automated Statchk
Alkalinity	KONE	4962347	N/A	2017/05/02	Nancy Rogers
Chloride	KONE	4962349	N/A	2017/05/02	Nancy Rogers
Colour	KONE	4962356	N/A	2017/05/03	Nancy Rogers
Conductance - water	AT	4963694	N/A	2017/05/02	Julia McGovern
Hardness (calculated as CaCO3)		4959568	N/A	2017/05/02	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	4964407	2017/05/02	2017/05/03	Arlene Rossiter
Metals Water Diss. MS (as rec'd)	CICP/MS	4962508	N/A	2017/05/02	Bryon Angevine
Metals Water Total MS	CICP/MS	4962132	2017/05/01	2017/05/01	Bryon Angevine
Ion Balance (% Difference)	CALC	4959707	N/A	2017/05/08	Automated Statchk
Anion and Cation Sum	CALC	4959708	N/A	2017/05/08	Automated Statchk
Total Ammonia-N	LACH/NH4	4972947	N/A	2017/05/08	Charles Opoku-Ware
Nitrogen - Nitrate + Nitrite	KONE	4962365	N/A	2017/05/02	Nancy Rogers
Nitrogen - Nitrite	KONE	4962366	N/A	2017/05/02	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4959709	N/A	2017/05/03	Automated Statchk
рН	AT	4963693	N/A	2017/05/02	Julia McGovern
Phosphorus - ortho	KONE	4962361	N/A	2017/05/02	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4959710	N/A	2017/05/08	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4959711	N/A	2017/05/08	Automated Statchk
Reactive Silica	KONE	4962354	N/A	2017/05/02	Nancy Rogers
Sulphate	KONE	4962352	N/A	2017/05/03	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4959712	N/A	2017/05/08	Automated Statchk
Organic carbon - Total (TOC)	TECH	4962358	N/A	2017/05/01	Soraya Merchant
Turbidity	TURB	4963703	N/A	2017/05/02	Julia McGovern

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Sampler Initials: LL

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1	-0.7°C
Package 2	2.0°C
Package 3	2.0°C
Package 4	3.7°C

Sample EHA561 [MW1S]: Poor RCAp Ion Balance due to sample matrix. Possibly due to fine particulate matter. Anion sum does not include contribution from Total Organic Carbon.

Sample EHA567 [MW4S] : Elevated reporting limits for trace metals due to sample matrix.

Poor RCAp Ion Balance due to sample matrix. Cation sum does not include contribution from Mn.

Sample EHA570 [MW6S]: Poor RCAp Ion Balance due to sample matrix. Possibly due to fine particulate matter. Anion sum does not include contribution from Total Organic Carbon.

Sample EHA580 [MW6D]: Poor RCAp Ion Balance due to sample matrix.

Sample EHA583 [MW9]: Poor RCAp Ion Balance due to sample matrix. Cation sum does not include contribution from Mn.

Sample EHA585 [MW11]: Poor RCAp Ion Balance due to sample matrix. Cation sum does not include contribution from Mn.

Sample EHA586 [MW12]: Poor RCAp Ion Balance due to sample matrix. Possibly due to fine particulate matter. Anion sum does not include contribution from Total Organic Carbon.

Results relate only to the items tested.

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Sampler Initials: LL

QUALITY ASSURANCE REPORT

4959901			Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
4050001	ARS	Matrix Spike(EHA583)	Total Mercury (Hg)	2017/05/01		98	%	80 - 120
4959901	ARS	Spiked Blank	Total Mercury (Hg)	2017/05/01		104	%	80 - 120
4959901	ARS	Method Blank	Total Mercury (Hg)	2017/05/01	< 0.013		ug/L	
4959901	ARS	RPD - Sample/Sample Dup	Total Mercury (Hg)	2017/05/01	NC		%	20
4960076	SMT	Matrix Spike	Total Organic Carbon (C)	2017/04/28		102	%	80 - 120
4960076	SMT	Spiked Blank	Total Organic Carbon (C)	2017/04/28		103	%	80 - 120
4960076	SMT	Method Blank	Total Organic Carbon (C)	2017/04/28	< 0.50		mg/L	
4960076	SMT	RPD - Sample/Sample Dup	Total Organic Carbon (C)	2017/04/28	NC		%	20
4962130	BAN	Matrix Spike	Total Lead (Pb)	2017/05/01		95	%	80 - 120
4962130	BAN	Spiked Blank	Total Lead (Pb)	2017/05/01		97	%	80 - 120
4962130	BAN	Method Blank	Total Lead (Pb)	2017/05/01	< 0.50		ug/L	
4962130	BAN	RPD - Sample/Sample Dup	Total Lead (Pb)	2017/05/01	0.98		%	20
4962132	BAN	Matrix Spike	Total Lead (Pb)	2017/05/01		93	%	80 - 120
4962132	BAN	Spiked Blank	Total Lead (Pb)	2017/05/01		94	%	80 - 120
4962132	BAN	Method Blank	Total Lead (Pb)	2017/05/01	< 0.50		ug/L	
4962161	JMV	QC Standard	Turbidity	2017/05/01		101	%	80 - 120
4962161	JMV	Spiked Blank	Turbidity	2017/05/01		98	%	80 - 120
4962161	JMV	Method Blank	Turbidity	2017/05/01	<0.10		NTU	
4962161	JMV	RPD - Sample/Sample Dup	Turbidity	2017/05/01	4.8		%	20
4962307	NRG	Matrix Spike	Total Alkalinity (Total as CaCO3)	2017/05/02		103	%	80 - 120
4962307	NRG	Spiked Blank	Total Alkalinity (Total as CaCO3)	2017/05/03		108	%	80 - 120
4962307	NRG	Method Blank	Total Alkalinity (Total as CaCO3)	2017/05/02	<5.0	100	mg/L	00 120
4962307	NRG	RPD - Sample/Sample Dup	Total Alkalinity (Total as CaCO3)	2017/05/02	NC		%	25
4962319	NRG	Matrix Spike	Dissolved Chloride (CI)	2017/05/02		NC	%	80 - 120
4962319	NRG	QC Standard	Dissolved Chloride (CI)	2017/05/02		107	%	80 - 120
4962319	NRG	Spiked Blank	Dissolved Chloride (Cl)	2017/05/02		99	%	80 - 120
4962319	NRG	Method Blank	Dissolved Chloride (CI)	2017/05/02	<1.0	33	mg/L	00 120
4962319	NRG	RPD - Sample/Sample Dup	Dissolved Chloride (CI)	2017/05/02	1.4		%	25
4962327	NRG	Matrix Spike	Dissolved Sulphate (SO4)	2017/05/03	2	139 (1)	%	80 - 120
4962327	NRG	Spiked Blank	Dissolved Sulphate (SO4)	2017/05/03		113	%	80 - 120
4962327	NRG	Method Blank	Dissolved Sulphate (SO4)	2017/05/03	<2.0	113	mg/L	00 120
4962327	NRG	RPD - Sample/Sample Dup	Dissolved Sulphate (SO4)	2017/05/03	NC		%	25
4962331	NRG	Matrix Spike	Reactive Silica (SiO2)	2017/05/02	140	96	%	80 - 120
4962331	NRG	Spiked Blank	Reactive Silica (SiO2)	2017/05/02		96	%	80 - 120
4962331	NRG	Method Blank	Reactive Silica (SiO2)	2017/05/02	<0.50	30	mg/L	00 - 120
4962331	NRG	RPD - Sample/Sample Dup	Reactive Silica (SiO2)	2017/05/02	3.8		/// // // // // // // // // // // // //	25
4962336	NRG	Spiked Blank	Colour	2017/05/02	3.6	100	%	80 - 120
4962336	NRG	Method Blank		• •	∠E 0	100	TCU	80 - 120
4962336	NRG	RPD - Sample/Sample Dup	Colour Colour	2017/05/03 2017/05/03	<5.0 3.7 (2)		%	20
4962341	NRG	Matrix Spike	Orthophosphate (P)	2017/05/03	3.7 (2)	105	%	80 - 120
4962341	NRG	Spiked Blank	Orthophosphate (P)	2017/05/02		103	%	80 - 120
	NRG	•	Orthophosphate (P)	2017/05/02	<0.010	103		60 - 120
4962341		Method Blank	Orthophosphate (P)		<0.010		mg/L °⁄	25
4962341	NRG	RPD - Sample/Sample Dup		2017/05/02	21	00	%	25 80 - 120
4962343	NRG	Matrix Spike	Nitrate + Nitrite (N)	2017/05/02		90 98	%	80 - 120
4962343	NRG	Spiked Blank Method Blank	Nitrate + Nitrite (N)	2017/05/02 2017/05/02	<0.050	98	% ma/l	80 - 120
4962343	NRG	RPD - Sample/Sample Dup	Nitrate + Nitrite (N)		<0.050		mg/L %	25
4962343	NRG		Nitrate + Nitrite (N)	2017/05/02	NC	OF	%	25
4962344	NRG	Matrix Spike	Nitrite (N)	2017/05/02		95 103	%	80 - 120 80 - 120
4962344	NRG	Spiked Blank	Nitrite (N)	2017/05/02	<0.010	103	% ma/l	80 - 120
4962344	NRG	Method Blank	Nitrite (N)	2017/05/02	<0.010		mg/L	25
4962344 4962347	NRG NRG	RPD - Sample/Sample Dup Matrix Spike	Nitrite (N) Total Alkalinity (Total as CaCO3)	2017/05/02 2017/05/03	NC	NC	% %	25 80 - 120

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Sampler Initials: LL

QA/QC								
	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
4962347	NRG	Spiked Blank	Total Alkalinity (Total as CaCO3)	2017/05/02		107	%	80 - 120
4962347	NRG	Method Blank	Total Alkalinity (Total as CaCO3)	2017/05/02	<5.0		mg/L	
4962347	NRG	RPD - Sample/Sample Dup	Total Alkalinity (Total as CaCO3)	2017/05/03	2.3		%	25
4962349	NRG	Matrix Spike	Dissolved Chloride (CI)	2017/05/02		NC	%	80 - 120
4962349	NRG	QC Standard	Dissolved Chloride (CI)	2017/05/02		107	%	80 - 120
4962349	NRG	Spiked Blank	Dissolved Chloride (CI)	2017/05/02		97	%	80 - 120
4962349	NRG	Method Blank	Dissolved Chloride (CI)	2017/05/02	<1.0		mg/L	
4962349	NRG	RPD - Sample/Sample Dup	Dissolved Chloride (CI)	2017/05/02	2.5		%	25
4962352	NRG	Matrix Spike	Dissolved Sulphate (SO4)	2017/05/03		NC	%	80 - 120
4962352	NRG	Spiked Blank	Dissolved Sulphate (SO4)	2017/05/03		114	%	80 - 120
4962352	NRG	Method Blank	Dissolved Sulphate (SO4)	2017/05/03	<2.0		mg/L	
4962352	NRG	RPD - Sample/Sample Dup	Dissolved Sulphate (SO4)	2017/05/03	1.4		%	25
4962354	NRG	Matrix Spike	Reactive Silica (SiO2)	2017/05/02		NC	%	80 - 120
4962354	NRG	Spiked Blank	Reactive Silica (SiO2)	2017/05/02		98	%	80 - 120
4962354	NRG	Method Blank	Reactive Silica (SiO2)	2017/05/02	< 0.50		mg/L	
4962354	NRG	RPD - Sample/Sample Dup	Reactive Silica (SiO2)	2017/05/02	1.4		%	25
4962356	NRG	Spiked Blank	Colour	2017/05/03		113	%	80 - 120
4962356	NRG	Method Blank	Colour	2017/05/03	<5.0		TCU	
4962356	NRG	RPD - Sample/Sample Dup	Colour	2017/05/03	NC		%	20
4962358	SMT	Matrix Spike(EHA562)	Total Organic Carbon (C)	2017/05/01		100	%	80 - 120
4962358	SMT	Spiked Blank	Total Organic Carbon (C)	2017/05/01		93	%	80 - 120
4962358	SMT	Method Blank	Total Organic Carbon (C)	2017/05/01	< 0.50		mg/L	
4962358	SMT	RPD - Sample/Sample Dup	Total Organic Carbon (C)	2017/05/01	NC (3)		%	20
4962361	NRG	Matrix Spike	Orthophosphate (P)	2017/05/02		98	%	80 - 120
4962361	NRG	Spiked Blank	Orthophosphate (P)	2017/05/02		103	%	80 - 120
4962361	NRG	Method Blank	Orthophosphate (P)	2017/05/02	< 0.010		mg/L	
4962361	NRG	RPD - Sample/Sample Dup	Orthophosphate (P)	2017/05/02	NC		%	25
4962365	NRG	Matrix Spike	Nitrate + Nitrite (N)	2017/05/02		102	%	80 - 120
4962365	NRG	Spiked Blank	Nitrate + Nitrite (N)	2017/05/02		91	%	80 - 120
4962365	NRG	Method Blank	Nitrate + Nitrite (N)	2017/05/02	< 0.050		mg/L	
4962365	NRG	RPD - Sample/Sample Dup	Nitrate + Nitrite (N)	2017/05/02	1.7		%	25
4962366	NRG	Matrix Spike	Nitrite (N)	2017/05/02		101	%	80 - 120
4962366	NRG	Spiked Blank	Nitrite (N)	2017/05/02		100	%	80 - 120
4962366	NRG	Method Blank	Nitrite (N)	2017/05/02	< 0.010		mg/L	
4962366	NRG	RPD - Sample/Sample Dup	Nitrite (N)	2017/05/02	NC		%	25
	BAN	Matrix Spike(EHA565)	Dissolved Aluminum (Al)	2017/05/02		102	%	80 - 120
			Dissolved Antimony (Sb)	2017/05/02		109	%	80 - 120
			Dissolved Arsenic (As)	2017/05/02		100	%	80 - 120
			Dissolved Barium (Ba)	2017/05/02		99	%	80 - 120
			Dissolved Beryllium (Be)	2017/05/02		106	%	80 - 120
			Dissolved Bismuth (Bi)	2017/05/02		103	%	80 - 120
			Dissolved Boron (B)	2017/05/02		107	%	80 - 120
			Dissolved Cadmium (Cd)	2017/05/02		104	%	80 - 120
			Dissolved Calcium (Ca)	2017/05/02		NC	%	80 - 120
			Dissolved Chromium (Cr)	2017/05/02		99	%	80 - 120
			Dissolved Cobalt (Co)	2017/05/02		97	%	80 - 120
			Dissolved Copper (Cu)	2017/05/02		96	%	80 - 120
			Dissolved Iron (Fe)	2017/05/02		103	%	80 - 120
			Dissolved Lead (Pb)	2017/05/02		99	%	80 - 120
			Dissolved Magnesium (Mg)	2017/05/02		NC	%	80 - 120
			Dissolved Manganese (Mn)	2017/05/02		NC	%	80 - 120

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Sampler Initials: LL

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			Dissolved Nickel (Ni)	2017/05/02		98	%	80 - 120
			Dissolved Phosphorus (P)	2017/05/02		108	%	80 - 120
			Dissolved Potassium (K)	2017/05/02		109	%	80 - 120
			Dissolved Selenium (Se)	2017/05/02		105	%	80 - 120
			Dissolved Silver (Ag)	2017/05/02		94	%	80 - 120
			Dissolved Sodium (Na)	2017/05/02		102	%	80 - 120
			Dissolved Strontium (Sr)	2017/05/02		NC	%	80 - 120
			Dissolved Thallium (TI)	2017/05/02		105	%	80 - 120
			Dissolved Tin (Sn)	2017/05/02		109	%	80 - 120
			Dissolved Titanium (Ti)	2017/05/02		104	%	80 - 120
			Dissolved Uranium (U)	2017/05/02		111	%	80 - 120
			Dissolved Vanadium (V)	2017/05/02		100	%	80 - 120
			Dissolved Zinc (Zn)	2017/05/02		101	%	80 - 120
4962494	BAN	Spiked Blank	Dissolved Aluminum (AI)	2017/05/02		102	%	80 - 120
			Dissolved Antimony (Sb)	2017/05/02		104	%	80 - 120
			Dissolved Arsenic (As)	2017/05/02		98	%	80 - 120
			Dissolved Barium (Ba)	2017/05/02		101	%	80 - 120
			Dissolved Beryllium (Be)	2017/05/02		103	%	80 - 120
			Dissolved Bismuth (Bi)	2017/05/02		105	%	80 - 120
			Dissolved Boron (B)	2017/05/02		106	%	80 - 120
			Dissolved Cadmium (Cd)	2017/05/02		104	%	80 - 120
			Dissolved Calcium (Ca)	2017/05/02		105	%	80 - 120
			Dissolved Chromium (Cr)	2017/05/02		98	%	80 - 120
			Dissolved Cobalt (Co)	2017/05/02		99	%	80 - 120
			Dissolved Copper (Cu)	2017/05/02		97	%	80 - 120
			Dissolved Iron (Fe)	2017/05/02		102	%	80 - 120
			Dissolved Lead (Pb)	2017/05/02		100	%	80 - 120
			Dissolved Magnesium (Mg)	2017/05/02		106	%	80 - 120
			Dissolved Manganese (Mn)	2017/05/02		100	%	80 - 120
			Dissolved Molybdenum (Mo)	2017/05/02		106	%	80 - 120
			Dissolved Nickel (Ni)	2017/05/02		100	%	80 - 120
			Dissolved Phosphorus (P)	2017/05/02		105	%	80 - 120
			Dissolved Potassium (K)	2017/05/02		109	%	80 - 120
			Dissolved Selenium (Se)	2017/05/02		103	%	80 - 120
			Dissolved Silver (Ag)	2017/05/02		99	%	80 - 120
			Dissolved Sodium (Na)	2017/05/02		105	%	80 - 120
			Dissolved Strontium (Sr)	2017/05/02		100	%	80 - 120
			Dissolved Thallium (TI)	2017/05/02		106	%	80 - 120
			Dissolved Tin (Sn)	2017/05/02		107	%	80 - 120
			Dissolved Titanium (Ti)	2017/05/02		105	%	80 - 120
			Dissolved Uranium (U)	2017/05/02		110	%	80 - 120
			Dissolved Vanadium (V)	2017/05/02		99	%	80 - 120
			Dissolved Zinc (Zn)	2017/05/02		104	%	80 - 120
4962494	BAN	Method Blank	Dissolved Aluminum (Al)	2017/05/02	<5.0		ug/L	
			Dissolved Antimony (Sb)	2017/05/02	<1.0		ug/L	
			Dissolved Arsenic (As)	2017/05/02	<1.0		ug/L	
			Dissolved Barium (Ba)	2017/05/02	<1.0		ug/L	
			Dissolved Beryllium (Be)	2017/05/02	<1.0		ug/L	
			Dissolved Bismuth (Bi)	2017/05/02	<2.0		ug/L	
			Dissolved Bismuth (Bi)	2017/05/02	<50		ug/L ug/L	
			Dissolved Gadmium (Cd)	2017/05/02	<0.010		ug/L ug/L	
			Dissolved Calcium (Ca)	2017/05/02	<100		ug/L ug/L	
			Dissolved Calcium (Ca)	2017/03/02	/100		ug/ L	

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Sampler Initials: LL

QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limit
	Dissolved Chromium (Cr)	2017/05/02	<1.0		ug/L	
	Dissolved Cobalt (Co)	2017/05/02	< 0.40		ug/L	
	Dissolved Copper (Cu)	2017/05/02	<2.0		ug/L	
	Dissolved Iron (Fe)	2017/05/02	<50		ug/L	
	Dissolved Lead (Pb)	2017/05/02	< 0.50		ug/L	
	Dissolved Magnesium (Mg)	2017/05/02	<100		ug/L	
	Dissolved Manganese (Mn)	2017/05/02	<2.0		ug/L	
	Dissolved Molybdenum (Mo)	2017/05/02	<2.0		ug/L	
	Dissolved Nickel (Ni)	2017/05/02	<2.0		ug/L	
	Dissolved Phosphorus (P)	2017/05/02	<100		ug/L	
	Dissolved Potassium (K)	2017/05/02	<100		ug/L	
	Dissolved Selenium (Se)	2017/05/02	<1.0		ug/L	
	Dissolved Silver (Ag)	2017/05/02	<0.10		ug/L	
	Dissolved Sodium (Na)	2017/05/02	<100		ug/L	
	Dissolved Strontium (Sr)	2017/05/02	<2.0		ug/L	
	Dissolved Thallium (TI)	2017/05/02	<0.10		ug/L	
	Dissolved Trialitatif (11)	2017/05/02	<2.0		ug/L	
	Dissolved Titr (311) Dissolved Titanium (Ti)	2017/05/02	<2.0		_	
	, ,	2017/05/02			ug/L	
	Dissolved Uranium (U)	• •	<0.10		ug/L	
	Dissolved Vanadium (V)	2017/05/02	<2.0		ug/L	
DD C	Dissolved Zinc (Zn)	2017/05/02	<5.0		ug/L	20
PD - Sample/Sample Dup	Dissolved Aluminum (Al)	2017/05/02	5.2		%	20
	Dissolved Antimony (Sb)	2017/05/02	NC		%	20
	Dissolved Arsenic (As)	2017/05/02	0.11		%	20
	Dissolved Barium (Ba)	2017/05/02	5.5		%	20
	Dissolved Beryllium (Be)	2017/05/02	NC		%	20
	Dissolved Bismuth (Bi)	2017/05/02	NC		%	20
	Dissolved Boron (B)	2017/05/02	NC		%	20
	Dissolved Cadmium (Cd)	2017/05/02	12		%	20
	Dissolved Calcium (Ca)	2017/05/02	2.9		%	20
	Dissolved Chromium (Cr)	2017/05/02	NC		%	20
	Dissolved Cobalt (Co)	2017/05/02	4.3		%	20
	Dissolved Copper (Cu)	2017/05/02	7.1		%	20
	Dissolved Iron (Fe)	2017/05/02	NC		%	20
	Dissolved Lead (Pb)	2017/05/02	NC		%	20
	Dissolved Magnesium (Mg)	2017/05/02	1.6		%	20
	Dissolved Manganese (Mn)	2017/05/02	1.3		%	20
	Dissolved Molybdenum (Mo)	2017/05/02	NC		%	20
	Dissolved Nickel (Ni)	2017/05/02	2.7		%	20
	Dissolved Phosphorus (P)	2017/05/02	NC		%	20
	Dissolved Potassium (K)	2017/05/02	1.2		%	20
	Dissolved Selenium (Se)	2017/05/02	NC		%	20
	Dissolved Silver (Ag)	2017/05/02	NC		%	20
	Dissolved Sodium (Na)	2017/05/02	1.3		%	20
	Dissolved Strontium (Sr)	2017/05/02	3.0		%	20
	Dissolved Thallium (TI)	2017/05/02	NC		%	20
	Dissolved Tin (Sn)	2017/05/02	NC		%	20
					%	
	Dissolved Lisanium (Ti)	2017/05/02	NC 0.66			20
	` '					20
	` '	• •				20
4			NC			20 80 - 12
⁄/atrix	Spike	Dissolved Uranium (U) Dissolved Vanadium (V) Dissolved Zinc (Zn)	Dissolved Uranium (U) 2017/05/02 Dissolved Vanadium (V) 2017/05/02 Dissolved Zinc (Zn) 2017/05/02	Dissolved Uranium (U) 2017/05/02 0.66 Dissolved Vanadium (V) 2017/05/02 NC Dissolved Zinc (Zn) 2017/05/02 NC	Dissolved Uranium (U) 2017/05/02 0.66 Dissolved Vanadium (V) 2017/05/02 NC Dissolved Zinc (Zn) 2017/05/02 NC	Dissolved Uranium (U) 2017/05/02 0.66 % Dissolved Vanadium (V) 2017/05/02 NC % Dissolved Zinc (Zn) 2017/05/02 NC %

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Sampler Initials: LL

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			Dissolved Antimony (Sb)	2017/05/02		113	%	80 - 120
			Dissolved Arsenic (As)	2017/05/02		99	%	80 - 120
			Dissolved Barium (Ba)	2017/05/02		NC	%	80 - 120
			Dissolved Beryllium (Be)	2017/05/02		108	%	80 - 120
			Dissolved Bismuth (Bi)	2017/05/02		103	%	80 - 120
			Dissolved Boron (B)	2017/05/02		108	%	80 - 120
			Dissolved Cadmium (Cd)	2017/05/02		103	%	80 - 120
			Dissolved Calcium (Ca)	2017/05/02		NC	%	80 - 120
			Dissolved Chromium (Cr)	2017/05/02		95	%	80 - 120
			Dissolved Cobalt (Co)	2017/05/02		92	%	80 - 120
			Dissolved Copper (Cu)	2017/05/02		90	%	80 - 120
			Dissolved Iron (Fe)	2017/05/02		NC	%	80 - 120
			Dissolved Lead (Pb)	2017/05/02		98	%	80 - 120
			Dissolved Magnesium (Mg)	2017/05/02		NC	%	80 - 120
			Dissolved Manganese (Mn)	2017/05/02		NC	%	80 - 120
			Dissolved Molybdenum (Mo)	2017/05/02		113	%	80 - 120
			Dissolved Nickel (Ni)	2017/05/02		NC	%	80 - 120
			Dissolved Phosphorus (P)	2017/05/02		107	%	80 - 120
			Dissolved Potassium (K)	2017/05/02		NC	%	80 - 120
			Dissolved Selenium (Se)	2017/05/02		101	%	80 - 120
			Dissolved Silver (Ag)	2017/05/02		100	%	80 - 120
			Dissolved Sodium (Na)	2017/05/02		NC	%	80 - 120
			Dissolved Strontium (Sr)	2017/05/02		NC	%	80 - 120
			Dissolved Thallium (TI)	2017/05/02		102	%	80 - 120
			Dissolved Tin (Sn)	2017/05/02		116	%	80 - 120
			Dissolved Titanium (Ti)	2017/05/02		103	%	80 - 120
			Dissolved Uranium (U)	2017/05/02		112	%	80 - 120
			Dissolved Vanadium (V)	2017/05/02		99	%	80 - 120
			Dissolved Zinc (Zn)	2017/05/02		92	%	80 - 120
4962508	BAN	Spiked Blank	Dissolved Aluminum (AI)	2017/05/02		107	%	80 - 120
			Dissolved Antimony (Sb)	2017/05/02		107	%	80 - 120
			Dissolved Arsenic (As)	2017/05/02		98	%	80 - 120
			Dissolved Barium (Ba)	2017/05/02		100	%	80 - 120
			Dissolved Beryllium (Be)	2017/05/02		105	%	80 - 120
			Dissolved Bismuth (Bi)	2017/05/02		108	%	80 - 120
			Dissolved Boron (B)	2017/05/02		105	%	80 - 120
			Dissolved Cadmium (Cd)	2017/05/02		102	%	80 - 120
			Dissolved Calcium (Ca)	2017/05/02		105	%	80 - 120
			Dissolved Chromium (Cr)	2017/05/02		97	%	80 - 120
			Dissolved Cobalt (Co)	2017/05/02		98	%	80 - 120
			Dissolved Copper (Cu)	2017/05/02		96	%	80 - 120
			Dissolved Iron (Fe)	2017/05/02		103	%	80 - 120
			Dissolved Lead (Pb)	2017/05/02		102	%	80 - 120
			Dissolved Magnesium (Mg)	2017/05/02		110	%	80 - 120
			Dissolved Manganese (Mn)	2017/05/02		103	%	80 - 120
			Dissolved Molybdenum (Mo)	2017/05/02		104	%	80 - 120
			Dissolved Nickel (Ni)	2017/05/02		98	%	80 - 120
			Dissolved Phosphorus (P)	2017/05/02		109	%	80 - 120
			Dissolved Potassium (K)	2017/05/02		111	%	80 - 120
			Dissolved Selenium (Se)	2017/05/02		101	%	80 - 120
			Dissolved Silver (Ag)	2017/05/02		100	%	80 - 120
			Dissolved Sodium (Na)	2017/05/02		105	%	80 - 120

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Sampler Initials: LL

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
		40.770	Dissolved Strontium (Sr)	2017/05/02		103	%	80 - 120
			Dissolved Thallium (TI)	2017/05/02		106	%	80 - 120
			Dissolved Tin (Sn)	2017/05/02		110	%	80 - 120
			Dissolved Titanium (Ti)	2017/05/02		101	%	80 - 120
			Dissolved Uranium (U)	2017/05/02		113	%	80 - 120
			Dissolved Vanadium (V)	2017/05/02		99	%	80 - 120
			Dissolved Zinc (Zn)	2017/05/02		102	%	80 - 120
4962508	BAN	Method Blank	Dissolved Aluminum (AI)	2017/05/02	<5.0		ug/L	
			Dissolved Antimony (Sb)	2017/05/02	<1.0		ug/L	
			Dissolved Arsenic (As)	2017/05/02	<1.0		ug/L	
			Dissolved Barium (Ba)	2017/05/02	<1.0		ug/L	
			Dissolved Beryllium (Be)	2017/05/02	<1.0		ug/L	
			Dissolved Bismuth (Bi)	2017/05/02	<2.0		ug/L	
			Dissolved Boron (B)	2017/05/02	<50		ug/L	
			Dissolved Cadmium (Cd)	2017/05/02	<0.010		ug/L	
			Dissolved Calcium (Ca)	2017/05/02	<100		ug/L	
			Dissolved Chromium (Cr)	2017/05/02	<1.0		ug/L	
			Dissolved Cobalt (Co)	2017/05/02	<0.40		ug/L	
			Dissolved Copper (Cu)	2017/05/02	<2.0		ug/L	
			Dissolved Iron (Fe)	2017/05/02	<50		ug/L	
			Dissolved Lead (Pb)	2017/05/02	<0.50		ug/L	
			Dissolved Magnesium (Mg)	2017/05/02	<100		ug/L	
			Dissolved Manganese (Mn)	2017/05/02	<2.0		ug/L	
			• , ,					
			Dissolved Molybdenum (Mo)	2017/05/02	<2.0		ug/L	
			Dissolved Dissolver (D)	2017/05/02	<2.0 <100		ug/L	
			Dissolved Phosphorus (P)	2017/05/02			ug/L	
			Dissolved Potassium (K)	2017/05/02	<100		ug/L	
			Dissolved Selenium (Se)	2017/05/02	<1.0		ug/L	
			Dissolved Silver (Ag)	2017/05/02	<0.10		ug/L	
			Dissolved Sodium (Na)	2017/05/02	<100		ug/L	
			Dissolved Strontium (Sr)	2017/05/02	<2.0		ug/L	
			Dissolved Thallium (TI)	2017/05/02	<0.10		ug/L	
			Dissolved Tin (Sn)	2017/05/02	<2.0		ug/L	
			Dissolved Titanium (Ti)	2017/05/02	<2.0		ug/L	
			Dissolved Uranium (U)	2017/05/02	<0.10		ug/L	
			Dissolved Vanadium (V)	2017/05/02	<2.0		ug/L	
			Dissolved Zinc (Zn)	2017/05/02	<5.0		ug/L	
4962508	BAN	RPD - Sample/Sample Dup	Dissolved Aluminum (Al)	2017/05/02	0.65		%	20
			Dissolved Antimony (Sb)	2017/05/02	NC		%	20
			Dissolved Arsenic (As)	2017/05/02	0.31		%	20
			Dissolved Barium (Ba)	2017/05/02	1.1		%	20
			Dissolved Beryllium (Be)	2017/05/02	NC		%	20
			Dissolved Bismuth (Bi)	2017/05/02	NC		%	20
			Dissolved Boron (B)	2017/05/02	NC		%	20
			Dissolved Cadmium (Cd)	2017/05/02	0.47		%	20
			Dissolved Calcium (Ca)	2017/05/02	0.48		%	20
			Dissolved Chromium (Cr)	2017/05/02	3.1		%	20
			Dissolved Cobalt (Co)	2017/05/02	1.1		%	20
			Dissolved Copper (Cu)	2017/05/02	1.2		%	20
			Dissolved Iron (Fe)	2017/05/02	1.6		%	20
			Dissolved Lead (Pb)	2017/05/02	1.3		%	20
			Dissolved Magnesium (Mg)	2017/05/02	1.2		%	20

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Sampler Initials: LL

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			Dissolved Manganese (Mn)	2017/05/02	0.61		%	20
			Dissolved Molybdenum (Mo)	2017/05/02	NC		%	20
			Dissolved Nickel (Ni)	2017/05/02	1.7		%	20
			Dissolved Phosphorus (P)	2017/05/02	NC		%	20
			Dissolved Potassium (K)	2017/05/02	0.32		%	20
			Dissolved Selenium (Se)	2017/05/02	NC		%	20
			Dissolved Silver (Ag)	2017/05/02	NC		%	20
			Dissolved Sodium (Na)	2017/05/02	2.0		%	20
			Dissolved Strontium (Sr)	2017/05/02	0.60		%	20
			Dissolved Thallium (TI)	2017/05/02	NC		%	20
			Dissolved Tin (Sn)	2017/05/02	NC		%	20
			Dissolved Titanium (Ti)	2017/05/02	NC		%	20
			Dissolved Uranium (U)	2017/05/02	3.5		%	20
			Dissolved Vanadium (V)	2017/05/02	NC		%	20
			Dissolved Zinc (Zn)	2017/05/02	1.2		%	20
4963693	JMV	QC Standard	pH	2017/05/02		101	%	97 - 103
4963693	JMV	RPD - Sample/Sample Dup	pH	2017/05/02	1.6		%	N/A
4963694	JMV	Spiked Blank	Conductivity	2017/05/02		101	%	80 - 120
4963694	JMV	Method Blank	Conductivity	2017/05/02	1.3,		uS/cm	
			•		RDL=1.0			
4963694	JMV	RPD - Sample/Sample Dup	Conductivity	2017/05/02	0.94		%	25
4963699	JMV	QC Standard	pH	2017/05/02		101	%	97 - 103
4963699	JMV	RPD - Sample/Sample Dup	Hq	2017/05/02	0.99 (4)		%	N/A
4963701	JMV	Spiked Blank	Conductivity	2017/05/02	. ,	100	%	80 - 120
4963701	JMV	Method Blank	Conductivity	2017/05/02	1.4,		uS/cm	
			,	- , , -	RDL=1.0		,	
4963701	JMV	RPD - Sample/Sample Dup	Conductivity	2017/05/02	1.1		%	25
4963703	JMV	QC Standard	Turbidity	2017/05/02		101	%	80 - 120
4963703	JMV	Spiked Blank	Turbidity	2017/05/02		98	%	80 - 120
4963703	JMV	Method Blank	Turbidity	2017/05/02	<0.10		NTU	
4963703	JMV	RPD - Sample/Sample Dup	Turbidity	2017/05/02	2.5		%	20
4963727	MLB	Matrix Spike	Total Lead (Pb)	2017/05/02		92	%	80 - 120
4963727	MLB	Spiked Blank	Total Lead (Pb)	2017/05/02		98	%	80 - 120
4963727	MLB	Method Blank	Total Lead (Pb)	2017/05/02	<0.50		ug/L	
4964407	ARS	Matrix Spike	Total Mercury (Hg)	2017/05/03		108	%	80 - 120
4964407	ARS	Spiked Blank	Total Mercury (Hg)	2017/05/03		100	%	80 - 120
4964407	ARS	Method Blank	Total Mercury (Hg)	2017/05/03	< 0.013	100	ug/L	00 120
4964407	ARS	RPD - Sample/Sample Dup	, , ,	2017/05/03	NC		%	20
4965728	JMV	QC Standard	pH	2017/05/03		100	%	97 - 103
4965728	JMV	RPD - Sample/Sample Dup	pH	2017/05/03	0.037	100	%	N/A
4965729	JMV	Spiked Blank	Conductivity	2017/05/03	0.037	101	%	80 - 120
4965729	JMV	Method Blank	Conductivity	2017/05/03	1.2,	101	uS/cm	00 120
-1303723	31010	Wethou Blank	Conductivity	2017/05/05	RDL=1.0		u3/ cm	
4965729	JMV	RPD - Sample/Sample Dup	Conductivity	2017/05/03	0.40		%	25
4972947	COP	Matrix Spike	Total Ammonia-N	2017/05/08	0. 10	91	%	80 - 120
4972947	COP	Spiked Blank	Total Ammonia-N	2017/05/08		98	%	85 - 115
4972947	COP	Method Blank	Total Ammonia-N	2017/05/08	<0.050	50	mg/L	05-113
4972947	COP	RPD - Sample/Sample Dup	Total Ammonia-N	2017/05/08	9.2		// // // // // // // // // // // // //	20
4972947	COP	Matrix Spike	Total Ammonia-N	2017/05/08	J.∠	98	%	80 - 12 0
4972953	COP	Spiked Blank	Total Ammonia-N	2017/05/08		98	%	85 - 115
4972953	COP	Method Blank	Total Ammonia-N	2017/05/08	<0.050	90	% mg/L	05 - 115
							_	20
4972953	COP	RPD - Sample/Sample Dup	Total Ammonia-N	2017/05/08	3.9		%	20

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Sampler Initials: LL

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
4973133	COP	Matrix Spike	Total Ammonia-N	2017/05/08		96	%	80 - 120
4973133	COP	Spiked Blank	Total Ammonia-N	2017/05/08		97	%	85 - 115
4973133	COP	Method Blank	Total Ammonia-N	2017/05/08	< 0.050		mg/L	
4973133	COP	RPD - Sample/Sample Dup	Total Ammonia-N	2017/05/08	0.98		%	20
4973235	AHA	Matrix Spike	Total Ammonia-N	2017/05/08		94	%	80 - 120
4973235	AHA	Spiked Blank	Total Ammonia-N	2017/05/08		97	%	85 - 115
4973235	AHA	Method Blank	Total Ammonia-N	2017/05/08	< 0.050		mg/L	
4973235	AHA	RPD - Sample/Sample Dup	Total Ammonia-N	2017/05/08	NC		%	20

N/A = Not Applicable

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

- (1) Elevated matrix spike recovery due to sample matrix, result confirmed by repeat analysis.
- (2) Elevated reporting limit due to sample matrix.
- (3) Reporting limit was increased due to turbidity.
- (4) pH: linear range exceedance. Extended linearity confirmed.

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Sampler Initials: LL

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Mike MacGillivray, Scientific Specialist (Inorganics)

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Page 44 of 46

	4	INVOICE TO:				Report Information	notion					Project Information	ormation		Labo	Laboratory Use Only	inly
Commany Name	#41009 Englo	be Com.		Common Name	400			1		Die	Duntsding 6	872846			Maxxam Job #		Bottle Order#:
Contact Name		ble		Cooted Name	Lisa Ladouceur	H	Aven G	olo		P.O. #	#	P-001090	A08530		R78433A		606945
Addinss	Dartmouth NS B3B 2A7	B3B 2A7		Address						Proj	Project #				Chain Of Custody Record	cord	Project Manager
Phone	(902) 468-6486 x		(902) 468-4919 x	Phone			Faxe			Site #	W.	Lake Geo	Lake George Road, Lake George,	ke George,			Michelle Hill
Email	Dartmouth.AP@	Dartmouth.AP@englobecorp.com		Email	lisa,ladouc	lisa.ladouceur@englobecorp.com	corp,can			San	Sampled By	L	-L, 5W		C#606949-01-01		
Regulatory Criteria:	Zrileria:			Spec	Special instructions		1	-	4	AALYSIS REI	ANALYSIS REQUESTED (PLEASE BE SPECIFIC)	SE BE SPECIFI	G G		Turnardund Time (TAT) Required; Please provide advance netice for rush projects	Turnardund Time (TAT) Required: se provide advance notice for rush proj	uired: th projects
and the second s	The state of the s	The second secon				pen			(CVAA,LL)					R. S. S. S. S. S. S. S. S. S. S. S. S. S.	Regular (Standard) TAT: (will be applied if Rush TAT is not appectised): Standard TAT = 6.7 Working diays for most toxis. Standard TAT for centain tests such as BOD and Dioxins/Furans are > 5 days - contract Manager for details.	lñadj. nost tosts. iosts such as BOL r detalls.	We Dioxins/Furans are >
a decard w	Polable/Nonpotable/TR	speury intitive. Surtaceller out for spewards Sewagas Enutrities des essent Potablan Umpotablan Tressas Scall Studge Metal					see & Preser ion Required pessiO &M-c							7 0	Job Specific Rush TAT (if applies to entire submission) Date Required:	ontire submission) Time Required:	on) ired:
	SAMPLES MUST BE K	SAMPLES MUST BE KEPT COOL (< 10°C) FROM TIME OF SAMPLING UNTIL DELIVERY TO MAXXAM	ME OF SAMPLI	NG UNTIL DELIVERY	TO MAXXAM		letilita d		rai Les					1.0	# of Contracts //	Contrents / Nazards / Other Required Analysis	equired Analysis
Sample	Sample Barcode Label	Sample (Location) Identification	ισορού	Date Sampled	Time Sampled	Matrix	e7	M	+						South		
		MW1S		26 FV/73		Geo	×	×	×						n		
		MW1D		76/4/17		Cer >	×	×	×						3		
		MW2S		36/4/17		an	2	×	×						n		
		MW2D		36/4/17		3	R	×	×						N		
		MW3S		35/4/14		Sec	×	×	×						7		
		MW3D		25/4/17		(50)	×	×	×						77		
		MW4S		76/4/17		Geo	×	×	×						v		
		MW4D		26/4/17		Ges >	×	×	×						2		
		MW5		76/4/17		B	×	×	×						N		
		MW6S		71/4/05		B	×	×	×	1					5		0.876
· KELIN	· RELINGUISHED BY (Signature) Print)	steiPrint)	to: (YY	1	1	RECEIVE	RECEIVED BY: (SignaturalPrint)	twee/Print)	1	1	Date: [YY/IMM/DD]	Timé	# Jars used and not submitted	nd Time Sentitive		Lab Use Only Gustody	Custody Seel Intact on Copier?
3	7	24	1/4	10 10 10 M	611	20	K 164	DIENTE	0						Temporalure ("C) on Receipt		Yes

Maxxam Analytics International Corporation o/a Maxxam Analytics

Page 45 of 46

		INVOICE TO:				Report Information	formation					Project Information	rmation		Laboratory Use Only	Use Only
Company Name	#41009 Englobe Corp.	be Corp.		Company Name	Name			0		Quotation #	# uo	B72846			Maxxam Job #	Bottle Order#:
Contact Name	Accounts Payable	ble		Contact Name	ame Lisa Ladouceur	7	Aven	Colo		P.O. W		A055550	5550		GTG4329	
	Dartmouth NS B3B 2A7	B3B 2A7		Address						Project #		200			Chain Of Gustody Record	Project Manager
Phone	(902) 468-6486 x	Fax	(902) 468-4919 x	Phone			Fax			Site #	Name	Lake Geor	Lake George Road, Lake George,	George,		
Email	Dartmouth.AP@	Darlmouth.AP@englobecorp.com		Emsil	lisa.ladov	lisa.tadouceur@englobecorp.com	ppecorp.co	uc		Sampled By	yd By	77	Sie		C#606945-02-01	Mchelle Hill
Regulatory Criteria:	iteria:			Sp.	Special Instructions				A	JALYSIS REGIL	ANALYSIS REQUESTED (PLEASE BE SPECIFIC)	E BE SPECIFIC			Turnaround Time (TAT) Required	T) Required;
									(7)					Regu	Please provide advance notice for rush projects (Standard) TAT: Not projects his monitor if Royal TAT: and smoothed):	
Specify Ma	vin: Surface/Ground/T	apwater/Sewage/Effluent/Seawater						olved (Fieli	d (CVAA.L					Stant Plosa days	Tree or appared in court in the production of the control of the court	as 800 and Diakins/Furans are >
	Potable/Nonpotable/Ti	PolatherNorpotatlerTissuesSoil/StudgerMotal					esar¶ & be							Job Date 8	Job Spocific Rush TAT (if applies to entire submission) Date Required:	submission) Time Required
	SAMPLES MUST BE K	SAMPLES MUST BE KEPT COOL (< 10°C.) FROM TIME OF SAMPLING UNTIL DELIVERY TO MAXXAM	OF SAMPLING	UNTIL DELIVE	RY TO MAXXAM				- Ain		_					
Sample	Sample Barcode Label	Sample (Location) Identification		Dale Sampled	Time Sampled	Matrix		M						Ballies		Comments / Hazards / Other Required Analysis
		MW6D	K	36/11/17		(12)	×	×	×					15.		
		MW7	170	36/4/13		Co	×	×	×					M	195	
		MW8	18	36/4/17		B	×	×	×					72		
		MW9	13	35/4/13	Pho	GW	×	×	×					I	120	
		MW10	T.	76/2/17	-	GW	×	×	×	1				S	10	
		MW11	60	76/4/17		(72)	8	×	×					n	~	
		MW12	13	71/17		(120)	×	×	×					Å	\$	
		MW-DUP	0	76/4/17		B	×	×	×					9	5	
																3
- RELIN	* RELINGUISHED BY (Signature/Print)	melPrinty	Date: (YY/MM/DD)	1	Time	RECE	RECEIVED BY: (Signature/Print)	nature/Print)		Date	Date: (YY/MM/DD)	Time	# jars used and not submitted		Lab Use Only	
13	An lore to a	1	14/4/210	-	Senso //	10	1/1	1610	OKOUE	+				BANGE OF THE CONTROL	Temperature (*C) on Receipt	Clustody Seal Infact on Cooler?
UNLESS OTH	ERWISE AGREED TO II	WIFE STREET TO NUMBER AND SIDERITY WITH STANDING STREET AND STREET STANDING STREET STANDING STANDING STREET STANDING STANDING STANDING STREET STANDING STA	TUID PUNIS OF	TO GI WHAT IS OF	DISTANCE TO MANAGE	O STANDARD T	TOWN AND C	SMORTHUM	T 30 Summer	UIG CHAIN OF C	METORY DOCUM	THE BY ACKNOS	IN BRIGHERY AND A	and deliverance of	SALIS SECTION AND ADDRESS AND ADDRESS OF THE PERSON NAMED IN	Company of the Compan

	_	
	7	Cope
	T	onb Ce
1	>	00.00
	×	(8)
	1	Bures
	5	

ADDITIONAL COOLER TEMPERATURE RECORD

CHAIN-OF-CUSTODY RECORD

			_	3.		-	_	10		-		2 3				1			-	2 3	-		÷	-	-			1	F		m		-	_	*		-		2 3	יושואיו	fianar	WACACO
				2		H		1		H		-		H		1			_	-1	1		-	-	ŀ		-	1	ŀ		-		F		1		-		1	TIME (HH-MM)	That Time	
	COOLERID		TEMP		COOLER ID		TEMP		COOLER ID		TEMP		COCILERID		TEMP		COOLER ID		TEMP		COOLER ID	5	TEMP	1	COOLERID	200,000	Trian	COOLER ID		TEMP		COCIERID		TEMP		COOLERID		TEMP		Г	T	
	ON				NO				NO				ON		1		ON			-	ON		1	4	NO		1	ON				GN .			L	ON S			Ц	/MM/	Thank!	
	YES	L			YES	L		L	YES	H	_	H	YES	L	E.		YES		-	+	YES	+	+	1	YES	+	ł	YES	+	-	-	534	-		H	YES			Н	DATE (VVVV/MM/DD)		
MAXXAM JOB#:	CUSTODY SEAL	PRESENT	INTACT	ICE PRESENT	CUSTODY SEAL	PRESENT	WTACT	ICE PRESENT	CUSTODY SEAL	PRESENT	INTACT	ICE PRESENT	CUSTODY SEAL	PRESENT	INTACT	ICE PRESENT	CUSTODY SEAL	PRESENT	INTACT	ICE PRESENT	CUSTODY SEAL	PRESERVE	(NIAC)	ILLE PRESENT	CUSTODY SEAL	INTACT	ILTE PRESENT	CUSTODY SEAL	PRESENT	INTACT	ICE PRESENT	CUSTODY SEAL	PHESENT	INTACT	ICE PRESENT	CUSTODY SEAL	PRESENT	INTACT	ICE PRESENT	TAG	1	
Σ	+	(0	-		-	_	m		(J	e.		-	0	70				~	1		,	,	T		H	T	T		177	Γ	I		m	Γ	0		19			
			-	2		,	9	~		1	0	2		1	Λ	2				~			,	ņ			2				74				2				2			
	COOLER ID	1	TEMP		CODIERIO		TEMP -	1	COOLER ID	0	TEMP 5	-	COOLERID	2	1EMP	1	COOLER ID		TEMP	-	COOLERID		TEMP	,	COOLER ID	TEASE	,	COOLER ID	L	TEMP		COOLER ID	-	TEMP	1	COOLER ID		TEMP			-	
	NO COO	H	12		NO COD		9	Г	NO COO	L	E	Г	NO COO	-	16		NO COO	1	Te Te	-	NO COO	T	T	7	NO COO	T	T	NO COO	+	TE	Г	NO COC	H	#	Г	NO COC	-	14	Н	(TNI)		11. 11.
TONS	YES				YES				YES 1				YES				YES			4	YES		1	_	YES		1	VES				YES				YES				GN & PE	5	1
COOLER OBSERVATIONS:	CUSTOBY SEAL	PRESENT	INTACT	ICE PRESENT	CUSTODY SEAL	PRESENT	INTACT	ICE PRESENT	CUSTODY SEAL	PRESENT	INTACT	ICE PRESENT	CUSTODY SEAL	PRESENT	INTACT	ICE PRESENT	CUSTODY SEAL	PRESENT	INTACT	ICE PRESENT	CUSTODY SEAL	MESON	INIACI OF INDECEME	ILE PRESENT	CUSTODY SEAL	INTACT	ICE PRESENT	CUSTODY SEAL	PRESENT	INTACT	ICE PRESENT	CUSTODY SEAL	PRESENT	INTACT	ICE PRESENT	CUSTODY SEAL	PRESENT	INTACT	ICE PRESENT	RECEIVED BY (SIGN & PRINT)	100	Ma S
USTODY#																																										
CHAIN OF CUSTODY #		Jo		ot		of		ot		of		of		of		lo		lo	7	10	940	5		100	-		of		al		Jo		lo		of		ot		of			
	age	1	age	1	age		age		age	1	age	1	age	-	age		age		age	1	age	1	age		986	Sape	0	age,		age		age		age		alle	1	age				

Your P.O. #: A08530

Your Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Your C.O.C. #: 606956-01-01

Attention:Lisa Ladouceur

Englobe Corp.
97 Troop Ave
Dartmouth, NS
CANADA B3B 2A7

Report Date: 2017/05/08

Report #: R4453171 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B784383
Received: 2017/04/26, 16:26
Sample Matrix: Drinking Water

Samples Received: 3

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Carbonate, Bicarbonate and Hydroxide	2	N/A	2017/05/01	N/A	SM 22 4500-CO2 D
Alkalinity	2	N/A	2017/05/02	ATL SOP 00013	EPA 310.2 R1974 m
Chloride	2	N/A	2017/05/02	ATL SOP 00014	SM 22 4500-Cl- E m
Colour	2	N/A	2017/05/03	ATL SOP 00020	SM 22 2120C m
Conductance - water	2	N/A	2017/05/01	ATL SOP 00004	SM 22 2510B m
Hardness (calculated as CaCO3)	2	N/A	2017/05/02	ATL SOP 00048	SM 22 2340 B
Metals Water Total MS	3	2017/05/01	2017/05/01	ATL SOP 00058	EPA 6020A R1 m
Ion Balance (% Difference)	2	N/A	2017/05/08	N/A	Auto Calc.
Anion and Cation Sum	2	N/A	2017/05/08	N/A	Auto Calc.
Total Ammonia-N (1)	2	N/A	2017/05/08	CAM SOP-00441	EPA GS I-2522-90 m
Nitrogen - Nitrate + Nitrite	2	N/A	2017/05/02	ATL SOP 00016	USGS SOPINCF0452.2 m
Nitrogen - Nitrite	2	N/A	2017/05/02	ATL SOP 00017	SM 22 4500-NO2- B m
Nitrogen - Nitrate (as N)	2	N/A	2017/05/03	ATL SOP 00018	ASTM D3867-16
pH (2)	2	N/A	2017/05/01	ATL SOP 00003	SM 22 4500-H+ B m
Phosphorus - ortho	2	N/A	2017/05/02	ATL SOP 00021	EPA 365.2 m
Sat. pH and Langelier Index (@ 20C)	2	N/A	2017/05/08	ATL SOP 00049	Auto Calc.
Sat. pH and Langelier Index (@ 4C)	2	N/A	2017/05/08	ATL SOP 00049	Auto Calc.
Reactive Silica	2	N/A	2017/05/02	ATL SOP 00022	EPA 366.0 m
Sulphate	2	N/A	2017/05/03	ATL SOP 00023	ASTMD516-11 m
Total Dissolved Solids (TDS calc)	2	N/A	2017/05/08	N/A	Auto Calc.
Organic carbon - Total (TOC) (3)	2	N/A	2017/04/28	ATL SOP 00037	SM 22 5310C m
Turbidity	2	N/A	2017/05/01	ATL SOP 00011	EPA 180.1 R2 m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported: unless indicated otherwise, associated sample data are not blank corrected.

Your P.O. #: A08530

Your Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Your C.O.C. #: 606956-01-01

Attention:Lisa Ladouceur

Englobe Corp.
97 Troop Ave
Dartmouth, NS
CANADA B3B 2A7

Report Date: 2017/05/08

Report #: R4453171 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B784383

Received: 2017/04/26, 16:26

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- st RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) This test was performed by Maxxam Analytics Mississauga
- (2) The APHA Standard Method require pH to be analyzed within 15 minutes of sampling and therefore field analysis is required for compliance. All Laboratory pH analyses in this report are reported past the APHA Standard Method holding time.
- (3) TOC / DOC present in the sample should be considered as non-purgeable TOC / DOC.

Encryption Key

Maxxam 08 May 2017 18:07:44

Please direct all questions regarding this Certificate of Analysis & Project Manager.

Michelle Hill, Project Manager Email: MHill@maxxam.ca Phone# (902)420-0203 Ext:289

This report has been generated and distributed using a secure automated process.

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Your P.O. #: A08530 Sampler Initials: LL

ATLANTIC RCAP-MS TOTAL METALS IN WATER (DRINKING WATER)

Maxxam ID		EHA694		EHA696			
Sampling Date		2017/04/25		2017/04/26			
COC Number		606956-01-01		606956-01-01			
	UNITS	PW3	QC Batch	PW8	RDL	QC Batch	MDL
Calculated Parameters							
Anion Sum	me/L	3.55	4957617	2.63	N/A	4957617	N/A
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	11	4957614	69	1.0	4957614	0.20
Calculated TDS	mg/L	200	4957610	160	1.0	4957610	0.20
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	4957614	<1.0	1.0	4957614	0.20
Cation Sum	me/L	3.15	4957617	2.54	N/A	4957617	N/A
Hardness (CaCO3)	mg/L	25	4957615	87	1.0	4957615	1.0
Ion Balance (% Difference)	%	5.97	4957616	1.74	N/A	4957616	N/A
Langelier Index (@ 20C)	N/A	-3.28	4957608	-0.588		4957608	
Langelier Index (@ 4C)	N/A	-3.53	4957609	-0.839		4957609	
Nitrate (N)	mg/L	0.13	4957618	<0.050	0.050	4958335	N/A
Saturation pH (@ 20C)	N/A	9.49	4957608	8.12		4957608	
Saturation pH (@ 4C)	N/A	9.74	4957609	8.37		4957609	
Inorganics					,		
Total Alkalinity (Total as CaCO3)	mg/L	11	4962347	69	5.0	4962347	N/A
Total Ammonia-N	mg/L	<0.050	4972947	<0.050	0.050	4972947	0.0080
Dissolved Chloride (CI)	mg/L	110	4962349	37	1.0	4962349	N/A
Colour	TCU	6.3	4962356	<5.0	5.0	4962356	N/A
Nitrate + Nitrite (N)	mg/L	0.13	4962365	<0.050	0.050	4962365	N/A
Nitrite (N)	mg/L	<0.010	4962366	<0.010	0.010	4962366	N/A
Total Organic Carbon (C)	mg/L	0.90	4959696	0.63	0.50	4959696	N/A
Orthophosphate (P)	mg/L	<0.010	4962361	<0.010	0.010	4962361	N/A
рН	рН	6.21	4962125	7.53	N/A	4962127	N/A
Reactive Silica (SiO2)	mg/L	5.7	4962354	21	0.50	4962354	N/A
Dissolved Sulphate (SO4)	mg/L	12	4962352	9.9	2.0	4962352	N/A
Turbidity	NTU	0.42	4962159	6.2	0.10	4962159	0.10
Conductivity	uS/cm	390	4962126	260	1.0	4962128	N/A
Metals	•		•			•	
Total Aluminum (Al)	ug/L	95	4962132	6.1	5.0	4962132	N/A
Total Antimony (Sb)	ug/L	<1.0	4962132	<1.0	1.0	4962132	N/A
Total Arsenic (As)	ug/L	<1.0	4962132	1.5	1.0	4962132	N/A
Total Barium (Ba)	ug/L	22	4962132	18	1.0	4962132	N/A
Total Beryllium (Be)	ug/L	<1.0	4962132	<1.0	1.0	4962132	N/A
Total Bismuth (Bi)	ug/L	<2.0	4962132	<2.0	2.0	4962132	N/A
RDL = Reportable Detection Limit QC Batch = Quality Control Batch							

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Your P.O. #: A08530 Sampler Initials: LL

ATLANTIC RCAP-MS TOTAL METALS IN WATER (DRINKING WATER)

Maxxam ID		EHA694		EHA696			
Sampling Date		2017/04/25		2017/04/26			
COC Number		606956-01-01		606956-01-01			
	UNITS	PW3	QC Batch	PW8	RDL	QC Batch	MDL
Total Boron (B)	ug/L	<50	4962132	<50	50	4962132	N/A
Total Cadmium (Cd)	ug/L	0.051	4962132	<0.010	0.010	4962132	N/A
Total Calcium (Ca)	ug/L	7100	4962132	26000	100	4962132	N/A
Total Chromium (Cr)	ug/L	<1.0	4962132	<1.0	1.0	4962132	N/A
Total Cobalt (Co)	ug/L	<0.40	4962132	<0.40	0.40	4962132	N/A
Total Copper (Cu)	ug/L	6.9	4962132	<2.0	2.0	4962132	N/A
Total Iron (Fe)	ug/L	200	4962132	980	50	4962132	N/A
Total Lead (Pb)	ug/L	1.6	4962132	<0.50	0.50	4962132	N/A
Total Magnesium (Mg)	ug/L	1600	4962132	5400	100	4962132	N/A
Total Manganese (Mn)	ug/L	41	4962132	250	2.0	4962132	N/A
Total Molybdenum (Mo)	ug/L	<2.0	4962132	<2.0	2.0	4962132	N/A
Total Nickel (Ni)	ug/L	<2.0	4962132	<2.0	2.0	4962132	N/A
Total Phosphorus (P)	ug/L	<100	4962132	<100	100	4962132	N/A
Total Potassium (K)	ug/L	750	4962132	1800	100	4962132	N/A
Total Selenium (Se)	ug/L	<1.0	4962132	<1.0	1.0	4962132	N/A
Total Silver (Ag)	ug/L	<0.10	4962132	<0.10	0.10	4962132	N/A
Total Sodium (Na)	ug/L	60000	4962132	16000	100	4962132	N/A
Total Strontium (Sr)	ug/L	40	4962132	150	2.0	4962132	N/A
Total Tellurium (Te)	ug/L	<2.0	4962132	<2.0	2.0	4962132	N/A
Total Thallium (Tl)	ug/L	<0.10	4962132	<0.10	0.10	4962132	N/A
Total Tin (Sn)	ug/L	<2.0	4962132	<2.0	2.0	4962132	N/A
Total Titanium (Ti)	ug/L	<2.0	4962132	<2.0	2.0	4962132	N/A
Total Uranium (U)	ug/L	<0.10	4962132	<0.10	0.10	4962132	N/A
Total Vanadium (V)	ug/L	<2.0	4962132	<2.0	2.0	4962132	N/A
Total Zinc (Zn)	ug/L	29	4962132	<5.0	5.0	4962132	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Your P.O. #: A08530 Sampler Initials: LL

ELEMENTS BY ICP/MS (DRINKING WATER)

Maxxam ID		EHA695			
Sampling Date		2017/04/25			
COC Number		606956-01-01			
	UNITS	PW3A	RDL	QC Batch	MDL
Metals					
Total Aluminum (Al)	ug/L	91	5.0	4962132	N/A
Total Antimony (Sb)	ug/L	<1.0	1.0	4962132	N/A
Total Arsenic (As)	ug/L	<1.0	1.0	4962132	N/A
Total Barium (Ba)	ug/L	21	1.0	4962132	N/A
Total Beryllium (Be)	ug/L	<1.0	1.0	4962132	N/A
Total Bismuth (Bi)	ug/L	<2.0	2.0	4962132	N/A
Total Boron (B)	ug/L	<50	50	4962132	N/A
Total Cadmium (Cd)	ug/L	0.046	0.010	4962132	N/A
Total Calcium (Ca)	ug/L	7200	100	4962132	N/A
Total Chromium (Cr)	ug/L	<1.0	1.0	4962132	N/A
Total Cobalt (Co)	ug/L	<0.40	0.40	4962132	N/A
Total Copper (Cu)	ug/L	100	2.0	4962132	N/A
Total Iron (Fe)	ug/L	220	50	4962132	N/A
Total Lead (Pb)	ug/L	<0.50	0.50	4962132	N/A
Total Magnesium (Mg)	ug/L	1700	100	4962132	N/A
Total Manganese (Mn)	ug/L	42	2.0	4962132	N/A
Total Molybdenum (Mo)	ug/L	<2.0	2.0	4962132	N/A
Total Nickel (Ni)	ug/L	<2.0	2.0	4962132	N/A
Total Phosphorus (P)	ug/L	<100	100	4962132	N/A
Total Potassium (K)	ug/L	770	100	4962132	N/A
Total Selenium (Se)	ug/L	<1.0	1.0	4962132	N/A
Total Silver (Ag)	ug/L	<0.10	0.10	4962132	N/A
Total Sodium (Na)	ug/L	61000	100	4962132	N/A
Total Strontium (Sr)	ug/L	40	2.0	4962132	N/A
Total Tellurium (Te)	ug/L	<2.0	2.0	4962132	N/A
Total Thallium (Tl)	ug/L	<0.10	0.10	4962132	N/A
Total Tin (Sn)	ug/L	<2.0	2.0	4962132	N/A
Total Titanium (Ti)	ug/L	<2.0	2.0	4962132	N/A
Total Uranium (U)	ug/L	<0.10	0.10	4962132	N/A
Total Vanadium (V)	ug/L	<2.0	2.0	4962132	N/A
Total Zinc (Zn)	ug/L	8.9	5.0	4962132	N/A
RDI = Reportable Detection	l imit	· ·		·	

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Your P.O. #: A08530 Sampler Initials: LL

TEST SUMMARY

Maxxam ID: EHA694 Sample ID: PW3

Matrix: Drinking Water

Collected:

2017/04/25

Shipped: Received: 2017/04/26

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4957614	N/A	2017/05/01	Automated Statchk
Alkalinity	KONE	4962347	N/A	2017/05/02	Nancy Rogers
Chloride	KONE	4962349	N/A	2017/05/02	Nancy Rogers
Colour	KONE	4962356	N/A	2017/05/03	Nancy Rogers
Conductance - water	AT	4962126	N/A	2017/05/01	Julia McGovern
Hardness (calculated as CaCO3)		4957615	N/A	2017/05/02	Automated Statchk
Metals Water Total MS	CICP/MS	4962132	2017/05/01	2017/05/01	Bryon Angevine
Ion Balance (% Difference)	CALC	4957616	N/A	2017/05/08	Automated Statchk
Anion and Cation Sum	CALC	4957617	N/A	2017/05/08	Automated Statchk
Total Ammonia-N	LACH/NH4	4972947	N/A	2017/05/08	Charles Opoku-Ware
Nitrogen - Nitrate + Nitrite	KONE	4962365	N/A	2017/05/02	Nancy Rogers
Nitrogen - Nitrite	KONE	4962366	N/A	2017/05/02	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4957618	N/A	2017/05/03	Automated Statchk
pH	AT	4962125	N/A	2017/05/01	Julia McGovern
Phosphorus - ortho	KONE	4962361	N/A	2017/05/02	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4957608	N/A	2017/05/08	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4957609	N/A	2017/05/08	Automated Statchk
Reactive Silica	KONE	4962354	N/A	2017/05/02	Nancy Rogers
Sulphate	KONE	4962352	N/A	2017/05/03	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4957610	N/A	2017/05/08	Automated Statchk
Organic carbon - Total (TOC)	TECH	4959696	N/A	2017/04/28	Soraya Merchant
Turbidity	TURB	4962159	N/A	2017/05/01	Julia McGovern

Maxxam ID: EHA695 Sample ID: PW3A

Matrix: Drinking Water

Collected: 2017/04/25

Shipped:

2017/04/26 Received:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Metals Water Total MS	CICP/MS	4962132	2017/05/01	2017/05/01	Bryon Angevine

Maxxam ID: EHA696 Sample ID: PW8

Matrix: Drinking Water

Collected: 2017/04/26

Shipped:

2017/04/26 Received:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4957614	N/A	2017/05/01	Automated Statchk
Alkalinity	KONE	4962347	N/A	2017/05/02	Nancy Rogers
Chloride	KONE	4962349	N/A	2017/05/02	Nancy Rogers
Colour	KONE	4962356	N/A	2017/05/03	Nancy Rogers
Conductance - water	AT	4962128	N/A	2017/05/01	Julia McGovern
Hardness (calculated as CaCO3)		4957615	N/A	2017/05/02	Automated Statchk
Metals Water Total MS	CICP/MS	4962132	2017/05/01	2017/05/01	Bryon Angevine
Ion Balance (% Difference)	CALC	4957616	N/A	2017/05/08	Automated Statchk

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Your P.O. #: A08530 Sampler Initials: LL

TEST SUMMARY

Maxxam ID: EHA696 Sample ID: PW8

Matrix: Drinking Water

Collected: 2017/04/26 **Shipped:**

Received: 2017/04/26

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Anion and Cation Sum	CALC	4957617	N/A	2017/05/08	Automated Statchk
Total Ammonia-N	LACH/NH4	4972947	N/A	2017/05/08	Charles Opoku-Ware
Nitrogen - Nitrate + Nitrite	KONE	4962365	N/A	2017/05/02	Nancy Rogers
Nitrogen - Nitrite	KONE	4962366	N/A	2017/05/02	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4958335	N/A	2017/05/03	Automated Statchk
рН	AT	4962127	N/A	2017/05/01	Julia McGovern
Phosphorus - ortho	KONE	4962361	N/A	2017/05/02	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4957608	N/A	2017/05/08	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4957609	N/A	2017/05/08	Automated Statchk
Reactive Silica	KONE	4962354	N/A	2017/05/02	Nancy Rogers
Sulphate	KONE	4962352	N/A	2017/05/03	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4957610	N/A	2017/05/08	Automated Statchk
Organic carbon - Total (TOC)	TECH	4959696	N/A	2017/04/28	Soraya Merchant
Turbidity	TURB	4962159	N/A	2017/05/01	Julia McGovern

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Your P.O. #: A08530 Sampler Initials: LL

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1	-0.7°C
Package 2	2.0°C
Package 3	2.0°C
Package 4	3.7°C

Sample EHA694 [PW3]: Poor RCAp Ion Balance due to sample matrix.

Results relate only to the items tested.

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Your P.O. #: A08530 Sampler Initials: LL

QUALITY ASSURANCE REPORT

QUALITY ASSURANCE REPORT											
QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits			
4959696	SMT	Matrix Spike(EHA696)	Total Organic Carbon (C)	2017/04/28	value	99	%	80 - 120			
4959696	SMT	Spiked Blank	Total Organic Carbon (C)	2017/04/28		103	%	80 - 120			
4959696	SMT	Method Blank	Total Organic Carbon (C)	2017/04/28	<0.50	103	mg/L	00 120			
4959696	SMT	RPD - Sample/Sample Dup	Total Organic Carbon (C)	2017/04/28	3.7		%	20			
4962125	JMV	QC Standard	pH	2017/05/01	5.7	100	%	97 - 103			
4962125	JMV	RPD - Sample/Sample Dup	pH	2017/05/01	0.35	100	%	N/A			
4962126	JMV	Spiked Blank	Conductivity	2017/05/01	0.55	100	%	80 - 120			
4962126	JMV	Method Blank	Conductivity	2017/05/01	1.3,	100	uS/cm	80 - 120			
4902120	JIVIV	Method blank	Conductivity	2017/03/01	RDL=1.0		us/ciii				
4962126	JMV	RPD - Sample/Sample Dup	Conductivity	2017/05/01	0.76		%	25			
4962127	JMV	QC Standard	рН	2017/05/01		100	%	97 - 103			
4962127	JMV	RPD - Sample/Sample Dup	рН	2017/05/01	1.6		%	N/A			
4962128	JMV	Spiked Blank	Conductivity	2017/05/01		101	%	80 - 120			
4962128	JMV	Method Blank	Conductivity	2017/05/01	1.4,		uS/cm				
					RDL=1.0						
4962128	JMV	RPD - Sample/Sample Dup	Conductivity	2017/05/01	0.57		%	25			
4962132	BAN	Matrix Spike	Total Aluminum (Al)	2017/05/01		94	%	80 - 120			
			Total Antimony (Sb)	2017/05/01		102	%	80 - 120			
			Total Arsenic (As)	2017/05/01		96	%	80 - 120			
			Total Barium (Ba)	2017/05/01		94	%	80 - 120			
			Total Beryllium (Be)	2017/05/01		97	%	80 - 120			
			Total Bismuth (Bi)	2017/05/01		96	%	80 - 120			
			Total Boron (B)	2017/05/01		104	%	80 - 120			
			Total Cadmium (Cd)	2017/05/01		99	%	80 - 120			
			Total Calcium (Ca)	2017/05/01		NC	%	80 - 120			
			Total Chromium (Cr)	2017/05/01		96	%	80 - 120			
			Total Cobalt (Co)	2017/05/01		95	%	80 - 120			
			Total Copper (Cu)	2017/05/01		94	%	80 - 120			
			Total Iron (Fe)	2017/05/01		99	%	80 - 120			
			Total Lead (Pb)	2017/05/01		93	%	80 - 120			
			Total Magnesium (Mg)	2017/05/01		NC	%	80 - 120			
			Total Manganese (Mn)	2017/05/01		95	%	80 - 120			
			Total Molybdenum (Mo)	2017/05/01		104	%	80 - 120			
			Total Nickel (Ni)	2017/05/01		95	%	80 - 120			
			Total Phosphorus (P)	2017/05/01		100	%	80 - 120			
			Total Potassium (K)	2017/05/01		103	%	80 - 120			
			Total Selenium (Se)	2017/05/01		101	%	80 - 120			
			Total Silver (Ag)	2017/05/01		99	%	80 - 120			
			Total Sodium (Na)	2017/05/01		NC	%	80 - 120			
			Total Strontium (Sr)	2017/05/01		NC	%	80 - 120			
			Total Tellurium (Te)	2017/05/01		96	%	80 - 120			
			Total Thallium (TI)	2017/05/01		98	%	80 - 120			
			Total Tin (Sn)	2017/05/01		105	%	80 - 120			
			Total Titanium (Ti)	2017/05/01		100	%	80 - 120			
			Total Uranium (U)	2017/05/01		104	%	80 - 120			
			Total Vanadium (V)	2017/05/01		96	%	80 - 120			
			Total Zinc (Zn)	2017/05/01		96	%	80 - 120			
4962132	BAN	Spiked Blank	Total Aluminum (Al)	2017/05/01		99	%	80 - 120			
			Total Antimony (Sb)	2017/05/01		102	%	80 - 120			
			Total Arsenic (As)	2017/05/01		95	%	80 - 120			
			Total Barium (Ba)	2017/05/01		95	%	80 - 120			

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Your P.O. #: A08530 Sampler Initials: LL

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limit
			Total Beryllium (Be)	2017/05/01		97	%	80 - 120
			Total Bismuth (Bi)	2017/05/01		101	%	80 - 120
			Total Boron (B)	2017/05/01		105	%	80 - 120
			Total Cadmium (Cd)	2017/05/01		98	%	80 - 120
			Total Calcium (Ca)	2017/05/01		104	%	80 - 120
			Total Chromium (Cr)	2017/05/01		97	%	80 - 120
			Total Cobalt (Co)	2017/05/01		98	%	80 - 120
			Total Copper (Cu)	2017/05/01		96	%	80 - 120
			Total Iron (Fe)	2017/05/01		103	%	80 - 120
			Total Lead (Pb)	2017/05/01		94	%	80 - 120
			Total Magnesium (Mg)	2017/05/01		105	%	80 - 120
			Total Manganese (Mn)	2017/05/01		98	%	80 - 120
			Total Molybdenum (Mo)	2017/05/01		103	%	80 - 120
			Total Nickel (Ni)	2017/05/01		98	%	80 - 120
			Total Phosphorus (P)	2017/05/01		103	%	80 - 120
			Total Potassium (K)	2017/05/01		108	%	80 - 120
			Total Selenium (Se)	2017/05/01		100	%	80 - 120
			Total Silver (Ag)	2017/05/01		96	%	80 - 12
			Total Sodium (Na)	2017/05/01		104	%	80 - 120
			Total Strontium (Sr)	2017/05/01		97	%	80 - 12
			Total Tellurium (Te)	2017/05/01		97	%	80 - 12
			Total Thallium (TI)	2017/05/01		102	%	80 - 12
			Total Tin (Sn)	2017/05/01		104	%	80 - 12
			Total Titanium (Ti)	2017/05/01		98	%	80 - 12
			Total Uranium (U)	2017/05/01		103	%	80 - 12
			Total Vanadium (V)	2017/05/01		96	%	80 - 12
			Total Zinc (Zn)	2017/05/01		102	%	80 - 12
962132	BAN	Method Blank	Total Aluminum (Al)	2017/05/01	6.7,	102	ug/L	00 12
302132	27	method Blank		201.700701	RDL=5.0 (1)		~8 <i>/</i> =	
			Total Antimony (Sb)	2017/05/01	<1.0		ug/L	
			Total Arsenic (As)	2017/05/01	<1.0		ug/L	
			Total Barium (Ba)	2017/05/01	<1.0		ug/L	
			Total Beryllium (Be)	2017/05/01	<1.0		ug/L	
			Total Bismuth (Bi)	2017/05/01	<2.0		ug/L	
			Total Boron (B)	2017/05/01	<50		ug/L	
			Total Cadmium (Cd)	2017/05/01	< 0.010		ug/L	
			Total Calcium (Ca)	2017/05/01	<100		ug/L	
			Total Chromium (Cr)	2017/05/01	<1.0		ug/L	
			Total Cobalt (Co)	2017/05/01	< 0.40		ug/L	
			Total Copper (Cu)	2017/05/01	<2.0		ug/L	
			Total Iron (Fe)	2017/05/01	<50		ug/L	
			Total Lead (Pb)	2017/05/01	<0.50		ug/L	
			Total Magnesium (Mg)	2017/05/01	<100		ug/L	
			Total Manganese (Mn)	2017/05/01	<2.0		ug/L	
			Total Maliganese (Mil) Total Molybdenum (Mo)	2017/05/01	<2.0		ug/L	
			Total Nickel (Ni)	2017/05/01	<2.0		ug/L ug/L	
			Total Phosphorus (P)	2017/05/01	<100			
							ug/L	
			Total Solonium (K)	2017/05/01	<100		ug/L	
			Total Silver (As)	2017/05/01	<1.0		ug/L	
			Total Silver (Ag)	2017/05/01	<0.10		ug/L	
		Total Sodium (Na)	2017/05/01	<100		ug/L		

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Your P.O. #: A08530 Sampler Initials: LL

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			Total Strontium (Sr)	2017/05/01	<2.0		ug/L	
			Total Tellurium (Te)	2017/05/01	<2.0		ug/L	
			Total Thallium (TI)	2017/05/01	<0.10		ug/L	
			Total Tin (Sn)	2017/05/01	<2.0		ug/L	
			Total Titanium (Ti)	2017/05/01	<2.0		ug/L	
			Total Uranium (U)	2017/05/01	<0.10		ug/L	
			Total Vanadium (V)	2017/05/01	<2.0		ug/L	
			Total Zinc (Zn)	2017/05/01	<5.0		ug/L	
4962132	BAN	RPD - Sample/Sample Dup	Total Arsenic (As)	2017/05/01	0.65		%	20
4962159	JMV	QC Standard	Turbidity	2017/05/01		101	%	80 - 120
4962159	JMV	Spiked Blank	Turbidity	2017/05/01		98	%	80 - 120
4962159	JMV	Method Blank	Turbidity	2017/05/01	< 0.10		NTU	
4962159	JMV	RPD - Sample/Sample Dup	Turbidity	2017/05/01	4.6		%	20
4962347	NRG	Matrix Spike	Total Alkalinity (Total as CaCO3)	2017/05/03		NC	%	80 - 120
4962347	NRG	Spiked Blank	Total Alkalinity (Total as CaCO3)	2017/05/02		107	%	80 - 120
4962347	NRG	Method Blank	Total Alkalinity (Total as CaCO3)	2017/05/02	<5.0		mg/L	
4962347	NRG	RPD - Sample/Sample Dup	Total Alkalinity (Total as CaCO3)	2017/05/03	2.3		%	25
4962349	NRG	Matrix Spike	Dissolved Chloride (CI)	2017/05/02		NC	%	80 - 120
4962349	NRG	QC Standard	Dissolved Chloride (CI)	2017/05/02		107	%	80 - 120
4962349	NRG	Spiked Blank	Dissolved Chloride (CI)	2017/05/02		97	%	80 - 120
4962349	NRG	Method Blank	Dissolved Chloride (CI)	2017/05/02	<1.0		mg/L	
4962349	NRG	RPD - Sample/Sample Dup	Dissolved Chloride (CI)	2017/05/02	2.5		%	25
4962352	NRG	Matrix Spike	Dissolved Sulphate (SO4)	2017/05/03		NC	%	80 - 120
4962352	NRG	Spiked Blank	Dissolved Sulphate (SO4)	2017/05/03		114	%	80 - 120
4962352	NRG	Method Blank	Dissolved Sulphate (SO4)	2017/05/03	<2.0		mg/L	
4962352	NRG	RPD - Sample/Sample Dup	Dissolved Sulphate (SO4)	2017/05/03	1.4		%	25
4962354	NRG	Matrix Spike	Reactive Silica (SiO2)	2017/05/02		NC	%	80 - 120
4962354	NRG	Spiked Blank	Reactive Silica (SiO2)	2017/05/02		98	%	80 - 120
4962354	NRG	Method Blank	Reactive Silica (SiO2)	2017/05/02	<0.50		mg/L	
4962354	NRG	RPD - Sample/Sample Dup	Reactive Silica (SiO2)	2017/05/02	1.4		%	25
4962356	NRG	Spiked Blank	Colour	2017/05/03		113	%	80 - 120
4962356	NRG	Method Blank	Colour	2017/05/03	<5.0		TCU	
4962356	NRG	RPD - Sample/Sample Dup	Colour	2017/05/03	NC		%	20
4962361	NRG	Matrix Spike	Orthophosphate (P)	2017/05/02		98	%	80 - 120
4962361	NRG	Spiked Blank	Orthophosphate (P)	2017/05/02		103	%	80 - 120
4962361	NRG	Method Blank	Orthophosphate (P)	2017/05/02	<0.010		mg/L	
4962361	NRG	RPD - Sample/Sample Dup	Orthophosphate (P)	2017/05/02	NC		%	25
4962365	NRG	Matrix Spike	Nitrate + Nitrite (N)	2017/05/02		102	%	80 - 120
4962365	NRG	Spiked Blank	Nitrate + Nitrite (N)	2017/05/02		91	%	80 - 120
4962365	NRG	Method Blank	Nitrate + Nitrite (N)	2017/05/02	<0.050	<i>3</i> 1	mg/L	00 120
4962365	NRG	RPD - Sample/Sample Dup	Nitrate + Nitrite (N)	2017/05/02	1.7		%	25
4962366	NRG	Matrix Spike	Nitrite (N)	2017/05/02	1.7	101	%	80 - 120
4962366	NRG	Spiked Blank	Nitrite (N)	2017/05/02		100	%	80 - 120
4962366	NRG	Method Blank	Nitrite (N)	2017/05/02	<0.010	100	mg/L	00 - 120
4962366	NRG	RPD - Sample/Sample Dup	Nitrite (N)	2017/05/02	NC		111g/L %	25
4902300	COP	Matrix Spike	Total Ammonia-N	2017/05/02	INC	91	% %	80 - 120
4972947	COP	Spiked Blank	Total Ammonia-N	2017/05/08		98	%	85 - 115
4972947	COP	Method Blank	Total Ammonia-N	2017/05/08	<0.050	30		00 - 113
43/234/	COP	IVICTION DIVIN	TOTAL AHIIIIOIIIa-IN	2017/03/08	<u>\0.030</u>		mg/L	

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Your P.O. #: A08530 Sampler Initials: LL

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	l Value	% Recovery	UNITS	QC Limits
4972947	COP	RPD - Sample/Sample Dup	Total Ammonia-N	2017/05/08	9.2		%	20

N/A = Not Applicable

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) Low level lab contamination. Minimal impact on sample data quality.

Englobe Corp.

Client Project #: P-0010903-0-00-205

Site Location: Lake George Road, Lake George, NS

Your P.O. #: A08530 Sampler Initials: LL

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Eric Dearman, Scientific Specialist

Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Page 14 of 14

	IN	INVOICE TO:			Report Information	mation			Project Information	ormation		Laboratory Use Only	/ Use Only
Company Name	#41009 Englobe Corp.	Corp.	Company Name	p				Occimien #	872846	1000		Маххат Јор в	Bottle Order 81
Contact Name		2	Contact Name	Lisa Ladouceur	1	Aren	Colo	POW	AC	A08550		200	
Address	97 Troop Ave		Address					Project #	P-001090	P-0010903-0-00-205		6.18,4583	606956
	Dartmouth NS B3B 2A7							Project Name				Chain Of Custody Record	Project Manager
Phone	(902) 468-5486 x Fax	Fax (902) 468-4919 x	19 x Phone	Fax:	dirimenolo)	Fax:		She#	Lake Geo	Lake George Road, Lake George,	ke George,		Michelle Hill
Remission Colinia	Burta:			Special Instructions	0			ANALYSIS REQUESTED (PLEASE BE SPECIFIC)	SE BE SPECIFIC		-	Turnamed Time (TAT) Remired	ATI Required
						_						Please provide advance notice for rush projects	ice for rush projects.
							in Shetals in				Rec (vel.	Regular (Standard) TAT: (will be applied if Rush TAT is not specified): Standard TAT = 5-7 Working days for most leate. Standard TAT = 5-7 Working days for most leate. Standard TAT for certain treas a such as BDD and Dioptical-quains are > 5 days - constar your Proper Manager for definite.	is. In as BOD and Dioxins/Furans are >
w Abacit w	Potable/Nonpotable/Tiss	Potatric Autradula outra appeare sowige trudera deswerre Potation/Amporable/Tissue/Sol/Sludge/Mera				Bequires					Dan	Job Specific Rush TAT (if applies to entire submission) Date Required: Time Required	s submission) Time Required:
	SAMPLES MUST BE KEE	SAMPLES MIST BE KERT COOL (< 10°C) FROM THIS DE SAMBLING.HATL DELIVERY TO MAXXAM	APLING HATH DELIVERY	TO MAXXAM		noted							
Sample	Sarville Harmodia Labari	Sample (Loculon) (denticulon	Date Sampled	Tire Sarcied	Marios	13 de.l	nate W				6	# of Comments / Hazards /	Comments / Hazards / Other Required Analysis.
1		PW3	35/4/17		Pw	-					.,,,	2	
D.		PW3A	354/17		Pw	7	×						
0		PW8	711/17		Md	x	×					22	
30													
ID.													
7													
=													
Ø1													
0,	1	0											
RELIE	RELINGUISHED.BY: L'SIGNATURIENT		Date: (YY/MM/DD) Time		RECEIV	ED BY: (5igi	RECEIVED BY: (Signatura/Print)	Dats: (VY/MM/DD)	Time	# jars used and	pi,	Lab Usa Only	
100	1000	161	14/36 16n30	0	100	A	KIM SUNCE			not submitte	The Sensor	Temperature (*C) on Recept	INTERES
100	And BAR Della	Life And Coal Delow											Yes

laxxam Analytics International Corporation o/s Maxxam Analytics